JPS6248712A - Rubber-dispersed copolymer resin - Google Patents

Rubber-dispersed copolymer resin

Info

Publication number
JPS6248712A
JPS6248712A JP60186638A JP18663885A JPS6248712A JP S6248712 A JPS6248712 A JP S6248712A JP 60186638 A JP60186638 A JP 60186638A JP 18663885 A JP18663885 A JP 18663885A JP S6248712 A JPS6248712 A JP S6248712A
Authority
JP
Japan
Prior art keywords
copolymer
maleimide
rubber
monomer residue
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60186638A
Other languages
Japanese (ja)
Other versions
JPH0692472B2 (en
Inventor
So Iwamoto
岩本 宗
Noribumi Ito
伊藤 紀文
Kazuo Sugazaki
菅崎 和男
Tetsuyuki Matsubara
松原 徹行
Toshihiko Ando
敏彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP18663885A priority Critical patent/JPH0692472B2/en
Priority to CA000516616A priority patent/CA1272321A/en
Priority to US06/899,867 priority patent/US4808661A/en
Priority to CN86106270A priority patent/CN1009935B/en
Priority to CN90102331A priority patent/CN1041318C/en
Priority to EP86306596A priority patent/EP0216524B2/en
Priority to DE3685707T priority patent/DE3685707T3/en
Priority to KR1019860007104A priority patent/KR900005838B1/en
Priority to KR1019900010104A priority patent/KR900006041B1/en
Publication of JPS6248712A publication Critical patent/JPS6248712A/en
Priority to US07/248,951 priority patent/US4954571A/en
Publication of JPH0692472B2 publication Critical patent/JPH0692472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To provide the titled composition having excellent heat-resistance, impact strength and moldability and composed of a disperse phase consisting of a rubbery polymer occluding a specific copolymer and a continuous phase consisting of a copolymer obtained by copolymerizing styrene, acrylonitrile and a specific amount of maleimide. CONSTITUTION:A rubbery polymer (e.g. polybutadiene), a styrene monomer, an acrylonitrile monomer and a maleimide monomer, etc., are charged in a reactor and polymerized to obtain the objective resin composed of (A) a disperse phase consisting of a rubbery polymer occluded or grafted with 50-100wt% copolymer containing styrene monomer residue, acrylonitrile monomer residue and maleimide monomer residue as essential components wherein the ratio (X) of the maleimide monomer residue in the copolymer is 1-25wt% and (B) a continuous phase composed of a copolymer containing styrene monomer residue, acrylonitrile monomer residue and maleimide monomer residue as essential components wherein the ratio (Y) of the maleimide monomer residue in the copolymer is 1-25wt%. X and Y satisfy the formula.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性、衝撃強度、成形加工性のすぐれたゴム
分散共重合樹脂に関する。本発明の樹脂は例えば電気機
器、電子機器、自動車等の材料部品等に成形材料として
用いられる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rubber-dispersed copolymer resin having excellent heat resistance, impact strength, and moldability. The resin of the present invention is used, for example, as a molding material for material parts for electrical equipment, electronic equipment, automobiles, and the like.

〔従来の技術〕[Conventional technology]

ビニル系重合体の共重合による耐熱性の改善については
従来数多く行なわれているが、一般的傾向として耐熱性
を向上させると衝撃性が低下するという問題があった。
Many attempts have been made to improve heat resistance by copolymerizing vinyl polymers, but as a general trend, there has been a problem in that impact resistance decreases when heat resistance is improved.

かかる問題に対して例えば、特開昭58−129043
、特開昭58−206657等では、N置換マレイミド
とビニル単量体の共重合体とグラフト共重合体とを特定
条件で配合した樹脂組成物が提案されている。かかる組
成物においては、樹脂の耐熱性及びアイゾツト衝撃強度
の性能バランスは従来のスチレン系単量体とアクリロニ
トリル系単量体の共重合体とグラフト共重合体より成る
樹脂(ABS)より良好に保持される。しかしながら、
かかる従来の樹脂においては、特に実用衝撃強度の面で
いまだ改良の余地があった。
To solve this problem, for example, Japanese Patent Application Laid-Open No. 58-129043
, JP-A-58-206657, etc., propose a resin composition in which a copolymer of an N-substituted maleimide and a vinyl monomer and a graft copolymer are blended under specific conditions. In such compositions, the performance balance of heat resistance and isot impact strength of the resin is maintained better than that of conventional resins (ABS) made of copolymers and graft copolymers of styrene monomers and acrylonitrile monomers. be done. however,
Such conventional resins still have room for improvement, particularly in terms of practical impact strength.

また一方、特開昭47−6891では、高衝撃強度、高
軟化温度の共重合体の重合法として共役ジオレフィンエ
ラストマー1〜20wt%存在下でスチレン、アクリロ
ニトリル、マレイミド系単量体を重合する方法が提案さ
れているが、この方法で製造される共重合体は、高いア
イゾツト衝撃強度、高軟化温度を有するものの実用衝撃
強度については十分ではなかった。本発明者らは、共重
合体の実用衝撃強度の向上について、マレイミド系単量
体残基な含む共重合体の構造、とりわけ、ゴム状重合体
成分とゴム状重合体以外の共重合体の組成と実用衝撃強
度の関係を厳密に研究して、実用衝撃強度の向上を達成
することができた。
On the other hand, JP-A No. 47-6891 discloses a method of polymerizing styrene, acrylonitrile, and maleimide monomers in the presence of 1 to 20 wt% of a conjugated diolefin elastomer as a method of polymerizing a copolymer with high impact strength and high softening temperature. has been proposed, but although the copolymers produced by this method have high Izod impact strength and high softening temperature, they do not have sufficient practical impact strength. In order to improve the practical impact strength of copolymers, the present inventors have investigated the structure of copolymers containing maleimide monomer residues, particularly the structure of copolymers containing rubbery polymer components and copolymers other than rubbery polymers. By rigorously studying the relationship between composition and practical impact strength, we were able to achieve an improvement in practical impact strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

即ち、近年電気機器、電子機器分野、自動車工業材料分
野等では、耐熱性の樹脂が大型化かつ複雑化した成形部
品として用いられ、樹脂に対、して耐熱性のみならず実
用的な衝撃強度の向上及び成形加工性の向上が強く求め
られている。実用衝撃強度とは、成形物を実用に供する
時に発生する落下や衝撃時における衝撃強度であり、特
に耐熱性の高い大形成形物においては肉厚の変化する部
位及び角の形状の部位近辺の部位が衝撃に対して最も弱
く、改良が求められていた。
In other words, in recent years, heat-resistant resins have been used in the fields of electrical equipment, electronic equipment, automobile industrial materials, etc. to make larger and more complex molded parts. There is a strong demand for improvements in the processability and moldability. Practical impact strength is the impact strength at the time of dropping or impact that occurs when a molded product is put into practical use.In particular, for large molded products with high heat resistance, it is the impact strength in areas where the wall thickness changes and around corners. This area was the most vulnerable to impact, and improvements were needed.

この実用衝撃強度は、樹脂のアイゾツト衝撃値とは対応
せず、アイゾツト衝撃強度よりもむしろ、成形物の上記
の部位の落錘衝撃強度に依存する。
This practical impact strength does not correspond to the Izot impact value of the resin, and depends on the falling weight impact strength of the above-mentioned portion of the molded product rather than the Izot impact strength.

また、成形加工性の点においては、一般に樹脂の耐熱性
や実用衝撃性を向上させるために耐熱性付与上ツマ−と
の共重合を行なったり、ゴム性成分の量や分子量を増大
するに従って成形加工時の樹脂の流動性が減少する傾向
があり、このような場合成形加工温度の高温化を行うと
成形サイクルが低下し、また成形加工圧力を増加しても
、金型内に樹脂が十分に充填されず、成形加工そのもの
ができなくなるという問題があった。
In addition, in terms of moldability, in general, in order to improve the heat resistance and practical impact resistance of the resin, copolymerization with a resin is performed to impart heat resistance, and molding is performed by increasing the amount and molecular weight of the rubbery component. The fluidity of the resin during processing tends to decrease, and in such cases, increasing the molding temperature will slow down the molding cycle, and even if the molding pressure is increased, there will be insufficient resin in the mold. There was a problem that the molding process itself was not possible because the molding process was not filled.

本発明は、大型で複雑な形状の成形物用の樹脂材料とし
て、耐熱性、実用衝撃性及び成形加工性のバランスを著
しく高めたスチレン系単量体、アクリロニトリル系単量
体、マレイミド系単量体及びゴム状重合体より成るゴム
分散共重合体樹脂の提供を目的とする。
The present invention uses styrene monomers, acrylonitrile monomers, and maleimide monomers that have a significantly improved balance of heat resistance, practical impact resistance, and moldability as resin materials for molded products with large and complex shapes. The object of the present invention is to provide a rubber-dispersed copolymer resin comprising a rubber-like polymer and a rubber-like polymer.

本発明者らはかかる目的の重大性に鑑み鋭意検討した結
果、全く驚くべきことに、ゴム状重合体に吸蔵もしくは
グラフトしたマレイミド系単量体残基を含む共重合体の
量と組成を特定の景に維持した、新規な多元のゴム分散
共重合体により上記の目的が達成されることを見出し本
発明に到達した。
As a result of intensive studies in view of the importance of the objective, the present inventors surprisingly identified the amount and composition of a copolymer containing maleimide monomer residues occluded or grafted to a rubber-like polymer. The present inventors have discovered that the above object can be achieved by a novel multi-component rubber dispersion copolymer based on the above principles.

〔問題点を解決するための手段〕[Means for solving problems]

即ち本発明は分散相と連続相より構成され、分散相がゴ
ム状重合体の粒子より構成され、連続相がスチレン系単
量体残基、アクリロニトリル系単量体残基及びマレイミ
ド系単量体残基な必須としてなる共重合体より構成され
る樹脂(=おいて、(a)  分散相のゴム状重合体が
スチレン系単量体残基、アクリロニトリル系単量体残基
及びマレイミド系単量体残基を必須成分とする共重合体
を吸蔵もしくはグラフトしており、ゴム状重合体に対す
るかかる吸蔵もしくはグラフトした共重合体(GCP)
の割合いが50〜1oo wt%であ−1て、かつ ■) 該GCP+二おいて、全GCP+二対するマレイ
ミド系単量体残基の割合い(3)が1〜25wt%であ
って、かつ (c)連続相の共重合体において、全共重合体に対する
マレイミド系単量体残基の割合い(1)が1〜25 w
t%であって、 (d)  XとYの関係が次式(1)を満足する0、5
 (Y/X (0,2(I) ことを特徴とするゴム分散共重合樹脂である。
That is, the present invention is composed of a dispersed phase and a continuous phase, where the dispersed phase is composed of particles of a rubbery polymer, and the continuous phase is composed of styrene monomer residues, acrylonitrile monomer residues, and maleimide monomer residues. (a) The rubbery polymer of the dispersed phase consists of styrene monomer residues, acrylonitrile monomer residues, and maleimide monomer residues. A copolymer containing body residue as an essential component is occluded or grafted, and such a copolymer (GCP) is occluded or grafted to a rubber-like polymer.
The ratio (3) of maleimide monomer residues to the total GCP+2 is 1 to 25 wt% in the GCP+2, and and (c) in the continuous phase copolymer, the ratio (1) of maleimide monomer residues to the total copolymer is 1 to 25 w.
t%, and (d) 0, 5 where the relationship between X and Y satisfies the following formula (1)
(Y/X (0,2(I)) This is a rubber dispersion copolymer resin.

本発明でいう単量体残基とは、重合反応により重合体分
子鎖を構成する単量体の反応物をいう。
The term "monomer residue" as used in the present invention refers to a reactant of a monomer that constitutes a polymer molecular chain through a polymerization reaction.

本発明でいうスチレン系単量体とは、スチレン、ビニル
キシレン、Q−t−メチルスチレン、p−t−プチルス
ヂレン、p−メチルスチレンのようす核アルキル置換ス
チレン、トリブロムスチレン、テトラブロムスチレン等
のハロゲン化スチレン及びp−ヒドロキシスチレン、0
−メトキシスチレン、ビニルナフレタン等が挙げられる
が、特(1件ましくは、スチレンおよびα−メチルスチ
レンであり、かかるスチレン系単量体の一種以上が用い
られ得る。
The styrenic monomers used in the present invention include styrene, vinylxylene, Q-t-methylstyrene, pt-butylstyrene, p-methylstyrene, alkyl-substituted styrene, tribromostyrene, tetrabromostyrene, etc. Halogenated styrene and p-hydroxystyrene, 0
-Methoxystyrene, vinylnafretane, etc., particularly styrene and α-methylstyrene, and one or more of these styrenic monomers may be used.

本発明でいうアクリロニトリル系単量体とは、アクリロ
ニトリル、メタクリロニトリル、フヤロニトリル、マレ
オニトリノv、 a−クロロ7”!Jiffニトリル等
が挙げられ、特にアクリロニトリルが好ましい。かかる
単量体の一種以上が用いられる。
The acrylonitrile monomer in the present invention includes acrylonitrile, methacrylonitrile, fyalonitrile, maleonitrino V, a-chloro 7"! Jiff nitrile, etc., with acrylonitrile being particularly preferred. It will be done.

アクリロニトリルが好ましく用いられる。Acrylonitrile is preferably used.

本発明でいうマレイミド系単量体とは (式中、Rは水素、又は炭素数1〜15のアルキル、シ
クロアルキル、もしくは芳香族残基を表わす。)で示さ
れるものであり、たとえばマレイミド、N−メチルマレ
イミド、N−エチルマレイミド、N−プdピルマレイミ
ド、N−t−ブチルマレイミド、N−イソプロピルマレ
イミド、N−シクロへキシルマレイミド、N−フェニル
マレイミド、N−−1)−フチルマレイミF、N−0−
クロルフェニルマレイミド等が挙げられるが、特に好ま
しくは、マレイミド、N−メチルマレイミド、N−フェ
ールマレイミド、N−シクロへキシルマレイミド等であ
る。かかるマレイミド系単量体の一種以上が用いられる
The maleimide monomer in the present invention is represented by (in the formula, R represents hydrogen, an alkyl having 1 to 15 carbon atoms, a cycloalkyl, or an aromatic residue), and includes, for example, maleimide, N-methylmaleimide, N-ethylmaleimide, N-pylmaleimide, N-t-butylmaleimide, N-isopropylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N--1)-phthylmaleimide, N-0-
Examples include chlorphenylmaleimide, and particularly preferred are maleimide, N-methylmaleimide, N-fermaleimide, N-cyclohexylmaleimide, and the like. One or more types of such maleimide monomers are used.

本発明においては、必要に応じて第4の単量体を共重合
して用いてもよい。かかる場合第4の単量体残基は、上
記スチレン系単量体残基、アクリロニトリル単量体残基
の量の総量の50 wt%以下好ましくは3Qwt%以
下で用いられる。かかる第4の単量体としては例えばメ
チルメタアクリレート等のメタクリル酸エステル単量体
、メチルアクリレート等のアクリル酸エステル等があげ
られる。
In the present invention, a fourth monomer may be copolymerized and used if necessary. In such a case, the fourth monomer residue is used in an amount of 50 wt% or less, preferably 3Qwt% or less of the total amount of the styrene monomer residue and acrylonitrile monomer residue. Examples of the fourth monomer include methacrylic acid ester monomers such as methyl methacrylate, and acrylic acid esters such as methyl acrylate.

本発明でいうゴム状重合体としては、ポリブタジェンゴ
ム、アクリロニトリル−ブタジェン共重合体ゴム(NB
R)、スチレン−ブタジェン共重合体ゴム(SBR)等
のジエン系ゴム、ポリブチルアクリレート、ポリプロピ
ルアクリレート等のアクリル系ゴム、およびエチレン−
プロピレン−ジエン系ゴム(EPDM)等を用いること
ができる。
The rubbery polymer referred to in the present invention includes polybutadiene rubber, acrylonitrile-butadiene copolymer rubber (NB
R), diene rubbers such as styrene-butadiene copolymer rubber (SBR), acrylic rubbers such as polybutyl acrylate, polypropyl acrylate, and ethylene-
Propylene-diene rubber (EPDM) or the like can be used.

特に好ましくは、ポリブタジェンゴムおよびSBRが用
いられる。
Particularly preferably polybutadiene rubber and SBR are used.

本発明でいう分散相と連続相より構成される樹脂とは、
例えばHIPS(衝撃性スチレン樹脂)に代表される如
き電子顕微鏡において、海(連続相)島(分散ゴム相)
が観察される樹脂である。本発明においては、連続相お
よび分散ゴム相の共重合体は、スチレン系単量体残基、
アクリロニトリル系単量体残基およびマレイミド系単量
体残基で構成されることを必須とする。
In the present invention, the resin composed of a dispersed phase and a continuous phase is
For example, in an electron microscope such as HIPS (high impact styrene resin), sea (continuous phase) islands (dispersed rubber phase)
This is the resin in which this is observed. In the present invention, the copolymer of the continuous phase and the dispersed rubber phase contains styrenic monomer residues,
It must be composed of acrylonitrile monomer residues and maleimide monomer residues.

本発明においては、ゴム分散共重合樹脂中でゴム状重合
体およびGCPと連続相の共重合体の総量を100 w
t%としてゴム状重合体を3〜20wt%、およびGC
Pと連続相の共重合体の総量が97〜so wt%より
成る組成が好ましい。 また、GCPと連続相に存在す
る共重合体の総量を100 wt%として、スチレン系
単量体残基が30〜80 wt%、アクリロニトリル系
単量体残基が10〜50wt%、マレイミド系単量体残
基が1〜25 wt%およびその他の単量体残基が0〜
20wt%である共重合体が好ましい。なかでも°スチ
レン系単量体残基とアクリロニトリル系単量体残基の割
合いは、スチレン系単量体残基/アクリロニトリル系単
量体=60/40〜77/2°3 (wt%/wt%)
の範囲が好ましく特に、65/35〜74/26 (w
tチ/wt%)の範囲が好ましい。
In the present invention, the total amount of the rubber-like polymer and the continuous phase copolymer with GCP in the rubber dispersion copolymer resin is 100 w.
3 to 20 wt% of rubbery polymer as t%, and GC
A composition in which the total amount of P and continuous phase copolymer is comprised between 97 and so wt% is preferred. Furthermore, assuming that the total amount of the copolymer present in GCP and the continuous phase is 100 wt%, styrene monomer residues are 30 to 80 wt%, acrylonitrile monomer residues are 10 to 50 wt%, and maleimide monomer residues are 10 to 80 wt%. 1 to 25 wt% of mer residues and 0 to 25 wt% of other monomer residues
A copolymer that is 20 wt% is preferred. Among them, the ratio of styrene monomer residues to acrylonitrile monomer residues, or styrene monomer residues/acrylonitrile monomer = 60/40 to 77/2°3 (wt%/ wt%)
The range is preferably from 65/35 to 74/26 (w
A range of tchi/wt%) is preferable.

本発明においては、分散相のゴム状重合体がスチレン系
単量体残基、アクリロニトリル系単量体残基およびマレ
イミド系単量体残基な必須成分とする共重合体を吸蔵も
しくはグラフトしており、ゴム状重合体に対するかかる
吸蔵もしくはグラフトした共重合体(GCP)の割合い
が50〜100wt%、好ましくは60〜9Q wt%
でなければならない。かかるGCPの割合いは、ゴム分
散共重合樹脂(約12を精秤、a2)メチルエチルケト
ン/メタノール7/3の混合溶剤(30CC)に分散し
、不溶分を遠心分離法にで分離して乾燥し、不溶分の重
量(b2)を精秤し次式により求められる。但しC(w
t%)はa中のゴム状重合体の重量濃度である。
In the present invention, the rubber-like polymer of the dispersed phase occludes or grafts a copolymer having essential components of styrene monomer residues, acrylonitrile monomer residues, and maleimide monomer residues. The proportion of such occluded or grafted copolymer (GCP) to the rubbery polymer is 50 to 100 wt%, preferably 60 to 9Q wt%.
Must. The proportion of GCP is determined by dispersing a rubber dispersion copolymer resin (accurately weighed approximately 12 mm, a2) in a mixed solvent of methyl ethyl ketone/methanol 7/3 (30 CC), separating the insoluble matter by centrifugation, and drying. , the weight of the insoluble matter (b2) is accurately weighed and determined by the following formula. However, C(w
t%) is the weight concentration of the rubbery polymer in a.

かかるGCPの割合いが50Wt1未満では実用衝撃強
度が低下し、100 wt%以上では成形加工性が低下
する。
If the proportion of GCP is less than 50 wt%, the practical impact strength decreases, and if it exceeds 100 wt%, moldability decreases.

本発明においては、GCPにおいて、全GCPに対する
マレイミド系単量体残基の割合い(3)は1〜25wt
%好ましくは、3〜20 wt%でなければならない。
In the present invention, in GCP, the ratio (3) of maleimide monomer residues to the total GCP is 1 to 25 wt.
% should preferably be between 3 and 20 wt%.

l wt%未満では耐熱性に劣り又25wt%を越える
と耐衝撃性が低下する。かかるマレイミド系単量体残基
の割合いはGCPに関するN、C、H。
If it is less than 1 wt%, the heat resistance will be poor, and if it exceeds 25 wt%, the impact resistance will be reduced. The ratio of such maleimide monomer residues or N, C, H regarding GCP.

0の元素分析により求められる。Determined by elemental analysis of 0.

本発明においては、連続相の共重合体において全重合体
に対するマレイミド系単量体残基の割合い(1)が1〜
25 wt%好ましくは3〜2Xl wt%特に好まし
くは4〜17wt%でなければならない。l wt%未
満では耐熱性に劣り、又25wt%を越えると耐衝撃性
が−しく低下する。かかるマレイミド系単量体残基の量
は元素分析により求められる。
In the present invention, the ratio (1) of maleimide monomer residues to the total polymer in the continuous phase copolymer is 1 to 1.
25 wt% preferably 3-2Xl wt% particularly preferably 4-17 wt%. If it is less than 1 wt%, the heat resistance will be poor, and if it exceeds 25 wt%, the impact resistance will be severely reduced. The amount of such maleimide monomer residues is determined by elemental analysis.

本発明においては、該XどYの関係が次式(1)を好ま
しくは(■すを満足せねばならない。
In the present invention, the relationship between X and Y must preferably satisfy the following equation (1).

Q、5 (Y/X (2,0(I) 0.6 (Y/X <1.!5   (1’)Y/Xの
値が、0.5以下の場合、また2、0を越えると実用衝
撃強度が著しく低下する。
Q, 5 (Y/X (2,0(I) 0.6 (Y/X <1.!5 (1') If the value of Y/X is less than 0.5, it also exceeds 2,0 and the practical impact strength decreases significantly.

本発明のゴム分散共重合体の製造方法は、好ましくは例
えば、連続式の塊状重合法を用いて製造される。かかる
製造法について説明すれば、攪拌機付2段以上の反応器
を用いて重合が行なわれ、重合の最終段を経てゴム状重
合体、生成共重合体、未反応単量体および溶剤等より成
る重合液混合物をゴム分散共重合体と揮発成分に分離す
る脱揮発分工程を経てゴム分散共重合体が得られる。か
かる方法において、第1段目の重合器には単量体に溶解
したゴム状重合体が供給され、また、単量体および重合
開始剤および連鎖移動剤は重合の任意の段階で反応器に
供給され得る。
The method for producing the rubber dispersion copolymer of the present invention is preferably carried out using, for example, a continuous bulk polymerization method. To explain this production method, polymerization is carried out using two or more stage reactors equipped with a stirrer, and after the final stage of polymerization, a rubber-like polymer, a copolymer formed, an unreacted monomer, a solvent, etc. are formed. A rubber-dispersed copolymer is obtained through a devolatilization step in which the polymerization liquid mixture is separated into a rubber-dispersed copolymer and volatile components. In this method, a rubbery polymer dissolved in monomer is supplied to the first stage polymerization vessel, and the monomer, polymerization initiator, and chain transfer agent are added to the reactor at any stage of the polymerization. Can be supplied.

本発明でいうGCPの量は、重合開始剤、攪拌の強度、
ゴム状重合体の種類および使用量、単量体の量と種類、
脱揮発分の工程によって調整され、一般に重合開始剤の
量が多い程、又攪拌の程度が低い程、ゴム状重合体中の
ジエン成分残基が多い程、ゴム状重合体が少ない程、ス
チレン系単量体が多い程、脱揮発分工程の温度が高い程
、該GCPの量は増大する傾向にあるが、当業者におい
ては、かかる量を調整することによりトライアンドエラ
ー法で任意のGCPの量が得られるものである。
The amount of GCP referred to in the present invention includes the polymerization initiator, stirring intensity,
Type and amount of rubbery polymer, amount and type of monomer,
It is adjusted by the devolatilization process, and generally speaking, the larger the amount of polymerization initiator, the lower the degree of stirring, the more diene component residues in the rubbery polymer, the less the rubbery polymer, the higher the styrene content. The amount of GCP tends to increase as the amount of system monomer increases and the temperature of the devolatilization step increases. amount is obtained.

本発明において、GCP中および連続相の共重合体中の
マレイミド系単量体残基の量は、反応に供するマレイミ
ド系単量体の量により調節され得る。
In the present invention, the amount of maleimide monomer residues in the GCP and in the continuous phase copolymer can be adjusted by the amount of maleimide monomer used in the reaction.

本発明においてY/Xの値は、マレイミド系単量体を供
給する工程時点と量に上って調整し得る。
In the present invention, the value of Y/X can be adjusted depending on the process time and amount of supplying the maleimide monomer.

一般に、重合の進行度合の低い時点に多量に供給すると
Y/Xは小さくなり、重合の進行度合の高い時点(ユ多
量に供給すると、Y/Xは大きくなり、又平均的に供給
するとY/Xは1に近づく。本発明の目的を達する上で
は、Y/Xを必ずしも1にする必要はなく、本発明の範
囲内であればよい。
In general, if a large amount is supplied at a time when the degree of progress of polymerization is low, Y/X will become small; if a large amount is supplied at a time when the degree of progress of polymerization is high (Y/ X approaches 1. To achieve the purpose of the present invention, Y/X does not necessarily need to be 1, as long as it is within the scope of the present invention.

本発明の目的を達する為には、GCPの量、X。To achieve the objectives of the present invention, the amount of GCP, X.

YおよびY/Xのいずれの値も本発明の要件を満足せね
ばならない。本発明のゴム分散共重合樹脂が耐熱性、実
用衝撃強度および成形加工性の性能バランスにおいて著
しい効果を有する理由は明確ではないが、実用衝撃強度
は、ゴム状重合体の含有するGCPが適量のマレイミド
系単量体残基な含む共重合体によりゴム状重合体成分の
効率が高まり、なおかつ、連続相とGCP相の共重合体
間の相互結合性が高くなったことによるものと推察され
る。
Both values of Y and Y/X must satisfy the requirements of the present invention. The reason why the rubber dispersion copolymer resin of the present invention has a remarkable effect on the performance balance of heat resistance, practical impact strength, and moldability is not clear, but the practical impact strength is determined by the amount of GCP contained in the rubbery polymer. This is presumed to be due to the fact that the copolymer containing maleimide monomer residues increases the efficiency of the rubber-like polymer component, and that the mutual bonding between the copolymers of the continuous phase and GCP phase also increases. .

本発明のゴム分散共重合樹脂において、分散相の架橋度
指数は4〜11倍が好ましく、より好ましくは6〜11
倍特に好ましくは、6〜10倍である。
In the rubber dispersion copolymer resin of the present invention, the crosslinking degree index of the dispersed phase is preferably 4 to 11 times, more preferably 6 to 11 times.
Particularly preferably 6 to 10 times.

かかる分散相の架橋度指数は、次の方法により測定され
る。ゴム分散共重合樹脂0,4fをトルエン/メチルエ
チルケトンの混合比7/3の液30CCに部分溶解させ
る。遠心分離後、溶剤にて膨潤した不溶分の重量を秤量
(w、 )する。秤量後、該不溶分を真空乾燥し再度秤
量(W2)する。架橋度指数は、W。
The crosslinking degree index of such a dispersed phase is measured by the following method. Rubber dispersion copolymer resin 0.4f is partially dissolved in 30 cc of a liquid of toluene/methyl ethyl ketone at a mixing ratio of 7/3. After centrifugation, the weight of the insoluble matter swollen with the solvent is weighed (w, ). After weighing, the insoluble matter is vacuum dried and weighed again (W2). The crosslinking degree index is W.

÷W2で得られる。かかる架橋度指数は、重合開始剤の
量、種類、および脱揮発処理時の温度、滞留時間に依存
するが、更にマレイミド系単量体残基の量にも依存する
。当業者においては、製造プロセスの条件をトライアン
ドエラー法で選定することにより適当な架橋度指数を設
定できる。かかる架橋度指数が4未満では衝撃強度は著
しく低く、また流動性も低い。また11を越えても実用
衝撃強度が小さくなる。
Obtained by ÷W2. The crosslinking degree index depends on the amount and type of polymerization initiator, the temperature and residence time during devolatilization treatment, and further depends on the amount of maleimide monomer residue. Those skilled in the art can set an appropriate degree of crosslinking index by selecting manufacturing process conditions by trial and error. If the crosslinking degree index is less than 4, the impact strength is extremely low and the fluidity is also low. Moreover, even if it exceeds 11, the practical impact strength becomes small.

本発明のゴム分散共重合樹脂において、連続相の共重合
体の30℃、0,5wt%のジメチルホルムアミド外(
DMF)溶液の還元粘度は好ましくは叩〜1、Ode/
グ、より好ましくは0.6〜0.9 dl/グ、特に好
ましくは0.6〜0.85 di/?である。かかる値
が1.0を越えると、極端に流動性が悪化し、又0.5
未満では衝撃強度が低下する。還元粘度は次のようにし
て測定される。即ち、ゴム分散共重合樹脂をメチルエチ
ルケトン/メタ−ノールの7/3の混合溶剤に分散し、
遠心分離により混合溶剤不溶分を除き、可溶成分を含む
溶剤を約20倍量のメタノールに投入し、再沈殿させる
。この沈殿物を濾過1.乾燥後、ジメチルホルムアミド
を用いて還元粘度を測定する。
In the rubber dispersion copolymer resin of the present invention, 0.5 wt% of dimethylformamide (
The reduced viscosity of the solution (DMF) is preferably 1 to 1, Ode/
g, more preferably 0.6 to 0.9 dl/g, particularly preferably 0.6 to 0.85 di/? It is. When this value exceeds 1.0, the fluidity deteriorates extremely;
If it is less than that, the impact strength will decrease. Reduced viscosity is measured as follows. That is, a rubber dispersion copolymer resin is dispersed in a 7/3 mixed solvent of methyl ethyl ketone/methanol,
Insoluble components of the mixed solvent are removed by centrifugation, and the solvent containing soluble components is poured into about 20 times the volume of methanol to reprecipitate. Filter this precipitate 1. After drying, the reduced viscosity is measured using dimethylformamide.

本発明のゴム分散共重合樹脂には、通常のヒンたり、滑
剤を添加して流動性をさらによくすることもできる。ま
た目的に合わせて、ガラス繊維等の繊維補強剤、無機充
填剤、着色剤、顔料を配合することもできる。また本発
明の樹脂組成物にテトラブロモビスフェノールA1デカ
ブロモピフエニルエーテル、臭素化ポリカーボネート等
の一般ハロゲン化有機化合物系難燃剤を酸化アンチモン
とともに混合することによって難燃化が可能である。
The rubber-dispersed copolymer resin of the present invention can be further improved in fluidity by adding a conventional lubricant or lubricant. Depending on the purpose, fiber reinforcing agents such as glass fibers, inorganic fillers, colorants, and pigments can also be blended. Further, flame retardation can be achieved by mixing general halogenated organic compound flame retardants such as tetrabromobisphenol A1 decabromo piphenyl ether and brominated polycarbonate with antimony oxide in the resin composition of the present invention.

本発明のゴム分散共重合樹脂は、ポリ塩化ビニル、スチ
レン−アクリロニトリル樹脂、ポリカーボネート、ポリ
ブチレンテレフタレート、ポリエチレンテレフタレート
、ナイロン6、ナイロン66、ナイロン12、ポリフエ
ニレンオキンドおよびポリフェニレンスルフィド等の樹
脂にブレンドして成形に供することもできる。
The rubber dispersion copolymer resin of the present invention can be blended with resins such as polyvinyl chloride, styrene-acrylonitrile resin, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, nylon 6, nylon 66, nylon 12, polyphenylene oxide, and polyphenylene sulfide. It can also be used for molding.

以下実施例を示して本発明を具体的に説明するがこれら
は、本発明の゛範囲を限定するものではない。
EXAMPLES The present invention will be specifically described below with reference to Examples, but these are not intended to limit the scope of the present invention.

実施例1〜3、比較例1〜4、参考例1゜A ゴム分散
共重合樹脂の製造 5基の直列の攪拌機付反応器と予熱器と真空槽よりなる
連続塊状重合装置を用いて、順次反応条件を変更し、種
々のゴム分散共重合樹脂を得た。第1基目の攪拌機付反
応器にゴム状重合体(ポリブタジェン)6重量部2工テ
ルベンゼン20重量部/スチレン50重量部、アクリロ
ニトリル24重量部より成る原料液を連続的に供給した
。また、第1基〜第5基目の攪拌機付反応器にメチ2フ
50重量部アクリロニトリル24重量部N−フェニルマ
レイミド26重量部より成る液を分割して連続的に添加
し、その供給量は順次変更した。
Examples 1 to 3, Comparative Examples 1 to 4, Reference Example 1゜A Production of rubber dispersion copolymer resin Using a continuous bulk polymerization apparatus consisting of five series reactors equipped with a stirrer, a preheater, and a vacuum chamber, the process was carried out sequentially. By changing the reaction conditions, various rubber-dispersed copolymer resins were obtained. A raw material solution consisting of 6 parts by weight of a rubbery polymer (polybutadiene), 20 parts by weight of di-terbenzene, 50 parts by weight of styrene, and 24 parts by weight of acrylonitrile was continuously supplied to the first reactor equipped with a stirrer. Further, a liquid consisting of 50 parts by weight of methyphenyl chloride, 24 parts by weight of acrylonitrile, and 26 parts by weight of N-phenylmaleimide was continuously added to the first to fifth reactors equipped with a stirrer, and the amount supplied was Changed sequentially.

比較の為N−フェニルマレイミドを添加しない樹脂も製
造した。重合開始剤として有機過酸化物を用い、分子量
調節剤としてドデシルメルカプタンを使用した。予熱器
の温度は260〜280℃に保持し、真空槽の真空度は
70 torrとした。
For comparison, a resin without added N-phenylmaleimide was also produced. An organic peroxide was used as a polymerization initiator, and dodecyl mercaptan was used as a molecular weight regulator. The temperature of the preheater was maintained at 260 to 280°C, and the degree of vacuum of the vacuum chamber was 70 torr.

なお参考例1は市販の超耐熱銘柄ABSを用いたもので
ある。
Note that Reference Example 1 uses commercially available super heat-resistant brand ABS.

B  評     価 B−1,成 形 得られた樹脂を80℃で3時間乾燥した後、成形温度2
40℃、金型温度60℃で射出成形機で成形した。
B Evaluation B-1, Molding After drying the resulting resin at 80°C for 3 hours, molding temperature 2
It was molded using an injection molding machine at 40°C and a mold temperature of 60°C.

B−2,物性の評価 (1)  アイゾツト衝撃強度:JIS  K  68
71に準じて測定。
B-2, Evaluation of physical properties (1) Izod impact strength: JIS K 68
Measured according to 71.

(2)耐熱性の評価:ASTM D  1525  に
準じてビカット軟化点を測定。
(2) Evaluation of heat resistance: Vicat softening point was measured according to ASTM D 1525.

(3)成形加工性の評価:射出成形においてショートシ
ョットを生じない最低の射出圧力に必要な成形機の油圧
(ンヨートショット油圧)により評価した。市販のAB
S (超耐熱銘柄、参考例)を基準とし、ショートショ
ット油圧の差異で評価した。(差異が負の場合は、市販
のABS(超耐熱銘柄)よりも油圧が低く、成形加工時
の流動性の良好な材料として評価される。) (4)実用衝撃強度の評価:射出成形により図1(a)
、図1 (b)で示される形状の成形物の3箇所の部位
、部位(1)、部位(2)、部位(3)について、落錘
衝撃強度試験を行った。落錘の先端部R= 6.4%、
受台の内径25%とした。
(3) Evaluation of molding processability: Evaluation was performed using the molding machine oil pressure (pressure shot oil pressure) required for the lowest injection pressure that does not cause short shots during injection molding. Commercially available AB
S (super heat-resistant brand, reference example) was used as the standard, and evaluation was made based on the difference in short shot oil pressure. (If the difference is negative, it is evaluated as a material with lower oil pressure than commercially available ABS (super heat resistant grade) and good fluidity during molding.) (4) Evaluation of practical impact strength: By injection molding Figure 1(a)
A falling weight impact strength test was conducted on three sites, site (1), site (2), and site (3) of the molded product having the shape shown in FIG. 1(b). Tip R of falling weight = 6.4%,
The inner diameter of the pedestal was set to 25%.

部位(1)は厚みの変化する部位であり、部位(2)は
角の近辺の部位、部位(3)は標準的な部位である。
Part (1) is a part whose thickness changes, part (2) is a part near the corner, and part (3) is a standard part.

B−3,評価の結果を表1に示す。B-3, the results of the evaluation are shown in Table 1.

実施例1は本発明のゴム分散共重合樹脂である。比較例
1はゴム状重合体に対するGCPの割合いが大きく、シ
ョートショットしやすく震形加工に劣る。比較例2はY
/Xの値が大きく実用衝撃強度が低い。比較例3はGC
Pおよび連続相の共重合体の総和中でのマレイミド系単
量体残基の量が大きく衝撃強度が低い。比較例4は、マ
レイミド系単量体が零であり、耐熱性が低い。実施例2
.3は、ゴム状重合体含量、マレイミド系重合体含量を
変更して試験したものである。実施例1,2゜3の樹脂
の成形物の外観は、シルバー模、様、フローマーク、ジ
ェツテイング等はみられず、表面光沢もすぐれていた。
Example 1 is a rubber-dispersed copolymer resin of the present invention. Comparative Example 1 has a large ratio of GCP to the rubbery polymer, is easily short shot, and is inferior in shape processing. Comparative example 2 is Y
/X value is large and practical impact strength is low. Comparative example 3 is GC
The amount of maleimide monomer residues in the total of P and the continuous phase copolymer is large, and the impact strength is low. Comparative Example 4 contained zero maleimide monomers and had low heat resistance. Example 2
.. Sample No. 3 was tested by changing the rubbery polymer content and maleimide polymer content. The appearance of the resin molded products of Examples 1, 2, and 3 showed no silver patterns, flow marks, jetting, etc., and the surface gloss was excellent.

参考例1の市販のABSの超耐熱銘柄は、シルバー模様
およびフローマークがみられた。
The commercially available super heat-resistant ABS brand of Reference Example 1 had silver patterns and flow marks.

比較例5゜ 比較例3の樹脂とアクリロニトリル・スチレン共重合樹
脂(AS樹脂)を1:1で混合し、実施例1と同様にし
て評価した。YiXの値が低く、またGCP中のマレイ
ミド系単量体残基の割合いが大きく、衝撃強度が低かっ
た。結果を表1に示す。
Comparative Example 5 The resin of Comparative Example 3 and acrylonitrile-styrene copolymer resin (AS resin) were mixed at a ratio of 1:1 and evaluated in the same manner as in Example 1. The YiX value was low, the proportion of maleimide monomer residues in GCP was high, and the impact strength was low. The results are shown in Table 1.

比較例6゜ ポリブタジェンゴムラテックス60重仝部存在下で、N
−フェニルマレイミド10M1部、スtレン22重置部
、アクリロニトリル8重ダニ部を重合せしめ、ゴム含有
樹脂(R1’)を得た。
Comparative Example 6 In the presence of 60 parts by weight of polybutadiene rubber latex, N
- 1 part of 10M phenylmaleimide, 22 parts of strene, and 8 parts of acrylonitrile were polymerized to obtain a rubber-containing resin (R1').

一方スチレン、アクリロニトリル存在下にN−フェニル
マレイミドを連続的に滴下して重合して、スチレン62
重量部、アクリロニトリ、。
On the other hand, in the presence of styrene and acrylonitrile, N-phenylmaleimide was continuously added dropwise and polymerized.
Parts by weight, acrylonitrile.

23M、N部、N−フェニルマレイミド15重量部より
なる共重合樹脂(R2)を得た。R1と鳥を1=33の
割合いで混合して、実施例1と同様の評価を行った。結
果を表1に示す。ゴム状重合体含有量が同等である実施
例1と比較して、実用衝撃強度が小さい。
A copolymer resin (R2) consisting of 23M, N parts, and 15 parts by weight of N-phenylmaleimide was obtained. The same evaluation as in Example 1 was conducted by mixing R1 and bird at a ratio of 1=33. The results are shown in Table 1. The practical impact strength is lower than that of Example 1, which has the same rubbery polymer content.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明のゴム分散共重合樹脂は、実
用衝撃強度、耐熱性および成形加工性にすぐれ、又外観
もすぐれており電気機器、電子機器および自動車等の部
品材料用の用途において産業上の利用価値は太きいもの
である。
As detailed above, the rubber-dispersed copolymer resin of the present invention has excellent practical impact strength, heat resistance, and moldability, and also has an excellent appearance, and is suitable for use in parts materials for electrical equipment, electronic equipment, automobiles, etc. It has great industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、落錘衝撃試験に用いた成形物の形状を示す。(
a)は平面図であり、(b)は断面図である。
Figure 1 shows the shape of the molded product used in the falling weight impact test. (
(a) is a plan view, and (b) is a cross-sectional view.

Claims (7)

【特許請求の範囲】[Claims] (1)分散相と連続相より構成され、分散相がゴム状重
合体の粒子より構成され、連続相がスチレン系単量体残
基、アクリロニトリル系単量体残基及びマレイミド系単
量体残基を必須としてなる共重合体より構成される樹脂
において、 (a)分散相のゴム状重合体がスチレン系単量体残基、
アクリロニトリル系単量体残基及びマレイミド系単量体
残基を必須成分とする共重合体を吸蔵もしくはグラフト
しており、ゴム状重合体に対するかかる吸蔵もしくはク
ラフトした共重合体(GCP)の割合いが50〜100
wt%であって、かつ (b)該GCPにおいて、全GCPに対するマレイミド
系単量体残基の割合い(X)が1〜25wt%であって
、かつ (c)連続相の共重合体において、全共重合体に対する
マレイミド系単量体残基の割合い(Y)が1〜25wt
%であって、 (d)XとYの関係が次式( I )を満足する0.5<
Y/X<2.0 ( I ) ことを特徴とするゴム分散共重合樹脂。
(1) Composed of a dispersed phase and a continuous phase, where the dispersed phase is composed of rubbery polymer particles, and the continuous phase is composed of styrene monomer residues, acrylonitrile monomer residues, and maleimide monomer residues. In a resin composed of a copolymer in which groups are essential, (a) the rubbery polymer of the dispersed phase is a styrene monomer residue,
A copolymer containing an acrylonitrile monomer residue and a maleimide monomer residue as essential components is occluded or grafted, and the ratio of such occluded or crafted copolymer (GCP) to the rubbery polymer is is 50-100
wt%, and (b) in the GCP, the ratio (X) of maleimide monomer residues to the total GCP is 1 to 25 wt%, and (c) in the continuous phase copolymer. , the ratio of maleimide monomer residue to the total copolymer (Y) is 1 to 25 wt.
%, and (d) the relationship between X and Y satisfies the following formula (I): 0.5<
A rubber dispersion copolymer resin characterized in that Y/X<2.0 (I).
(2)ゴム状重合体及びGCPと連続相の共重合体の総
量を100wt%としてゴム状重合体が3〜20wt%
、及びGCPと連続相の共重合体の総量が97〜80w
t%よりなる特許請求の範囲第1項記載のゴム分散共重
合樹脂。
(2) The rubbery polymer is 3 to 20wt% when the total amount of the rubbery polymer and the copolymer of GCP and the continuous phase is 100wt%.
, and the total amount of GCP and continuous phase copolymer is 97 to 80w
t% of the rubber dispersion copolymer resin according to claim 1.
(3)GCPと連続相に存在する共重合体の総量を10
0wt%としてスチレン系単量体残基が30〜80wt
%、アクリロニトリル系単量体残基が10〜50wt%
、マレイミド系単量体残基が1〜25wt%及びその他
の単量体残基が0〜20wt%である共重合体より構成
される特許請求の範囲第1〜2項のいずれかに記載のゴ
ム分散共重合樹脂。
(3) The total amount of copolymer present in GCP and continuous phase is 10
Assuming 0 wt%, styrene monomer residue is 30 to 80 wt.
%, acrylonitrile monomer residue is 10-50 wt%
, comprising a copolymer containing 1 to 25 wt% of maleimide monomer residues and 0 to 20 wt% of other monomer residues, according to any one of claims 1 to 2. Rubber dispersion copolymer resin.
(4)分散相の架橋度指数が4〜11倍である特許請求
の範囲第1〜3項のいずれかに記載のゴム分散共重合樹
脂。
(4) The rubber dispersion copolymer resin according to any one of claims 1 to 3, wherein the crosslinking degree index of the dispersed phase is 4 to 11 times.
(5)連続相の共重合体の30℃、0.5wt%のジメ
チルホルムアミド溶液の還元粘度が0.5〜1.0dl
/gである特許請求の範囲第1〜4項のいずれかに記載
のゴム分散共重合樹脂。
(5) The reduced viscosity of a 0.5 wt% dimethylformamide solution of the continuous phase copolymer at 30°C is 0.5 to 1.0 dl.
/g of the rubber dispersion copolymer resin according to any one of claims 1 to 4.
(6)XとYの関係が次式( I ′)を満足する0.6
<Y/X<1.5 ( I ′) 特許請求の範囲第1〜5項のいずれかに記載のゴム分散
共重合樹脂。
(6) 0.6 where the relationship between X and Y satisfies the following formula (I')
<Y/X<1.5 (I') The rubber-dispersed copolymer resin according to any one of claims 1 to 5.
(7)マレイミド系単量体残基がN−フェニルマレイミ
ド系単量体残基である特許請求の範囲第1〜6項のいず
れかに記載のゴム分散共重合樹脂。
(7) The rubber dispersion copolymer resin according to any one of claims 1 to 6, wherein the maleimide monomer residue is an N-phenylmaleimide monomer residue.
JP18663885A 1985-08-27 1985-08-27 Rubber dispersion copolymer resin Expired - Lifetime JPH0692472B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP18663885A JPH0692472B2 (en) 1985-08-27 1985-08-27 Rubber dispersion copolymer resin
CA000516616A CA1272321A (en) 1985-08-27 1986-08-22 Rubber dispersed copolymer resin
US06/899,867 US4808661A (en) 1985-08-27 1986-08-25 Rubber dispersed copolymer resin
EP86306596A EP0216524B2 (en) 1985-08-27 1986-08-27 Rubber dispersed copolymer resin
CN90102331A CN1041318C (en) 1985-08-27 1986-08-27 Process for preparing rubber dispersed copolymer resin
CN86106270A CN1009935B (en) 1985-08-27 1986-08-27 Copolymer resin of disperse rubber
DE3685707T DE3685707T3 (en) 1985-08-27 1986-08-27 Copolymer dispersed in rubber.
KR1019860007104A KR900005838B1 (en) 1985-08-27 1986-08-27 Rubber dispersed copolymer resin
KR1019900010104A KR900006041B1 (en) 1985-08-27 1986-11-28 Dispersed multi-component gel containing copolymer
US07/248,951 US4954571A (en) 1985-08-27 1988-09-26 Rubber dispersed copolymer resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18663885A JPH0692472B2 (en) 1985-08-27 1985-08-27 Rubber dispersion copolymer resin

Publications (2)

Publication Number Publication Date
JPS6248712A true JPS6248712A (en) 1987-03-03
JPH0692472B2 JPH0692472B2 (en) 1994-11-16

Family

ID=16192085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18663885A Expired - Lifetime JPH0692472B2 (en) 1985-08-27 1985-08-27 Rubber dispersion copolymer resin

Country Status (1)

Country Link
JP (1) JPH0692472B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439284U (en) * 1987-08-31 1989-03-08
US5091470A (en) * 1989-04-26 1992-02-25 The Dow Chemical Company Molding resin
US5155497A (en) * 1991-07-30 1992-10-13 Hewlett-Packard Company Service station for ink-jet printer
US5241709A (en) * 1991-05-21 1993-09-07 Kufner Textilwerke Gmbh Interfacing for stiffening outer garments and its particular application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439284U (en) * 1987-08-31 1989-03-08
US5091470A (en) * 1989-04-26 1992-02-25 The Dow Chemical Company Molding resin
US5241709A (en) * 1991-05-21 1993-09-07 Kufner Textilwerke Gmbh Interfacing for stiffening outer garments and its particular application
US5155497A (en) * 1991-07-30 1992-10-13 Hewlett-Packard Company Service station for ink-jet printer

Also Published As

Publication number Publication date
JPH0692472B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
KR900005838B1 (en) Rubber dispersed copolymer resin
KR100566769B1 (en) Thermoplastic resin composition and process for producing the same
EP2094746B1 (en) Thermoplastic resin having uniform composition and narrow molecular weight distribution, and method for preparing the same
JP2606895B2 (en) Block copolymer rubber-modified styrene copolymer
JPS63146960A (en) Thermoplastic resin composition
JPS6314740B2 (en)
JPH0466902B2 (en)
KR20190065966A (en) Heat-resistant resin composition
US5574099A (en) Rubber-reinforced styrene resin composition and process for producing the same
JPS6248712A (en) Rubber-dispersed copolymer resin
US5180780A (en) Rubber-modified styrene-based copolymer
TWI732307B (en) Vinylidene substituted aromatic monomer and cyclic (meth)acrylate ester polymers
JPS6347744B2 (en)
JPH05194676A (en) Rubber modified aromatic vinyl-based copolymer resin and its production
EP0378410B1 (en) Rubber-modified styrene-based copolymer
JP2504741B2 (en) Copolymer composition containing dispersed composite gel
JPH05247149A (en) Rubber-modified aromatic vinyl coopolymer resin and its production
JP3386532B2 (en) Thermoplastic resin composition
JP2650902B2 (en) Rubber-modified styrene copolymer resin composition
JPH0216139A (en) Styrene copolymer modified with anionically polymerized rubber
JP2632831B2 (en) Rubber-modified styrenic copolymer composition
KR910008280B1 (en) Rubber - modified styren based copolymer
EP0505153A1 (en) Rubber-reinforced styrene resin composition and process for producing the same
JPS62101612A (en) Production of thermoplastic resin
JPS63207803A (en) Rubber-modified styrene based copolymer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term