JPS624843A - Production of fiber-reinforced composite metallic material - Google Patents

Production of fiber-reinforced composite metallic material

Info

Publication number
JPS624843A
JPS624843A JP14304085A JP14304085A JPS624843A JP S624843 A JPS624843 A JP S624843A JP 14304085 A JP14304085 A JP 14304085A JP 14304085 A JP14304085 A JP 14304085A JP S624843 A JPS624843 A JP S624843A
Authority
JP
Japan
Prior art keywords
fiber
metal
mold
reinforcing
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14304085A
Other languages
Japanese (ja)
Inventor
Masakatsu Kawahara
河原 雅克
Masahiro Tomita
富田 正博
Katsumi Ogawa
勝美 小川
Kenichiro Ouchi
大内 権一郎
Toshiyuki Minamide
南出 俊幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14304085A priority Critical patent/JPS624843A/en
Publication of JPS624843A publication Critical patent/JPS624843A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a composite material thoroughly penetrated with a matrix metal into reinforcing fiber materials in the stage of producing a fiber-reinforced composite metallic material by putting the preheated reinforcing fiber materials into a casting mold having an air permeable partition member in the bottom part, pouring a molten metal for the matrix from above the same, vacuum-evacuating the gas from the lower part and pressurizing the materials. CONSTITUTION:The reinforcing fiber materials 8 such as carbon fibers, alumina fibers or SiC fibers having high strength and high elasticity are preheated and are put into the casting mold 1. The partition member 4 formed of porous ceramics or 150-300 mesh metallic screen is placed in the bottom of the casting mold 1 and is supported from below by a reinforcing plate 5. The melt 9 of the light metal such as Al, Mg or the alloy thereof is poured onto the reinforcing fibers 8 in the casting mold and while the gas in the fibers 8 is sucked and removed from a vacuum discharge port 7, the molten metal 9 is pressurized and solidified by a plunger 10. The light metal which is the matrix metal is thoroughly penetrated into the reinforcing fiber materials 8 and the fiber-reinforced composite metallic material having the excellent reinforcing characteristic by the fiber materials is produced with a good yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、繊維強化金属複合材料の製造方法に係り、繊
維強化材にマトリックス金属の浸透しない部分を可及的
に減少せしめる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a fiber-reinforced metal composite material, and more particularly, to a method for reducing as much as possible the portion of the fiber-reinforced material that is not penetrated by matrix metal.

(従来の技術) 近年、炭素、アルミナ、炭化ケイ素等からなる高強度、
高弾性を有する繊維を強化材とし、アルミニウム、マグ
ネシウムのような軽金属又はそれらの合金をマトリック
スとした繊維強化金属複合材料(以下、FRMという。
(Conventional technology) In recent years, high-strength materials made of carbon, alumina, silicon carbide, etc.
Fiber-reinforced metal composite material (hereinafter referred to as FRM) is a fiber-reinforced metal composite material (hereinafter referred to as FRM) in which highly elastic fibers are used as a reinforcing material and a light metal such as aluminum or magnesium or an alloy thereof is used as a matrix.

)の開発が活発化しており、またセラミックス粒子を強
化材とした金属複合材料の開発も活発化している。
), and the development of metal composite materials using ceramic particles as reinforcement is also becoming more active.

これらのFRMの製造方法の代表的なものとして加圧鋳
造方法がある。この方法は、有底円筒状の鋳型内に繊維
強化材を装入し予熱後、溶湯マトリックス金属を注入し
、その後前記鋳型に嵌装されたプランジャによりマトリ
ックス金属を繊維強化材へ加圧浸透させた後、凝固させ
て目的とするFRMを得る方法である。
A pressure casting method is a typical method for manufacturing these FRMs. In this method, a fiber reinforced material is charged into a cylindrical mold with a bottom, and after preheating, a molten matrix metal is injected, and then a plunger fitted in the mold is used to pressurize and infiltrate the matrix metal into the fiber reinforced material. After that, it is solidified to obtain the desired FRM.

(発明が解決しようとする問題点) この加圧鋳造方法で問題となるのが加圧時の脱気である
。すなわち、鋳型内部空間の空気及びガス成分の脱気は
、プランジャの押し込みに従って、鋳型内面とプランジ
ャとの微小な隙間からの自然脱気に頼っている。装入し
た繊維強化材に空気が残っている場合、あるいは繊維強
化材を予熱する際の高温加熱時における繊維強化材の吸
着ガス成分がガス化した場合、これらの脱気が不十分で
あれば、その部分へ溶融マトリックス金属が圧入、浸透
されない。従って、鋳造後のFRMの機械的強度もこの
未浸透部分が欠陥となり、所期のものが得られず、延い
ては製造歩留りの低下、コストの増大を招来するものと
なる。
(Problems to be Solved by the Invention) A problem with this pressure casting method is degassing during pressurization. That is, the air and gas components in the mold interior space are degassed by natural degassing from a minute gap between the mold inner surface and the plunger as the plunger is pushed. If air remains in the charged fiber reinforced material, or if adsorbed gas components of the fiber reinforced material are gasified during high temperature heating when preheating the fiber reinforced material, if these are insufficiently degassed. , the molten matrix metal is not forced into or penetrated into that part. Therefore, the mechanical strength of the FRM after casting becomes defective due to the unpenetrated portion, and the desired mechanical strength cannot be obtained, resulting in a decrease in manufacturing yield and an increase in cost.

本発明はかかる問題に鑑みなされたものであって、繊維
強化材にマトリックス金属溶湯を加圧・浸透させてFR
Mを製造するに際し、繊維強化材が装填された鋳型空間
に空気及びガス成分が残留せず、それ故高品質のFRM
が得られる製造方法を提供することを目的とする。・ (問題点を解決するための手段) 上記目的を達成するための本発明の特徴とする手段は、
加圧鋳造法において、鋳型の底部に通気性のある仕切り
部材を設け、該鋳型に装入された繊維強化材の上部を前
記溶湯で密封し、繊維強化材の占める鋳型内部空間の空
気及びガス成分を前記仕切り部材から真空脱気した後又
は真空脱気しつつ、前記溶湯を加圧して繊維強化材に浸
透させる点にある。
The present invention was made in view of the above problem, and is an FR material in which molten matrix metal is pressurized and permeated into a fiber reinforced material.
When manufacturing FRM, no air or gas components remain in the mold space filled with fiber reinforcement, thus producing high quality FRM.
The purpose of the present invention is to provide a manufacturing method that can obtain the following. - (Means for solving the problem) The means characterized by the present invention for achieving the above object are as follows:
In the pressure casting method, a breathable partition member is provided at the bottom of the mold, and the upper part of the fiber reinforced material charged into the mold is sealed with the molten metal, thereby preventing air and gas from the mold interior space occupied by the fiber reinforced material. After or while vacuum degassing the components from the partition member, the molten metal is pressurized and permeated into the fiber reinforcing material.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を適用したFRMの製造過程における鋳
型1の断面図である。同図において、鋳型本体2の外周
には予熱用のヒータ3が設けられており、本体2の下部
には通気性のある仕切り部材4が装着され、補強板5及
び底板6゛と共に鋳型lの底部を形成している。該仕切
り部材4は多孔質セラミックスや150〜300メツシ
ユの金属製スクリーンで形成されており、その直下に設
けられた補強板5によってバックアップされている。該
補強板5には多数の脱気孔が設けられており、底板6に
開設された真空排気ロアに連通されている。
FIG. 1 is a sectional view of a mold 1 in the process of manufacturing an FRM to which the present invention is applied. In the same figure, a heater 3 for preheating is provided on the outer periphery of the mold body 2, and a breathable partition member 4 is attached to the lower part of the mold body 2. forming the bottom. The partition member 4 is formed of porous ceramics or a metal screen of 150 to 300 meshes, and is backed up by a reinforcing plate 5 provided directly below it. The reinforcing plate 5 is provided with a large number of degassing holes, which communicate with a vacuum exhaust lower provided in the bottom plate 6.

8は該鋳型1に装入された繊維強化材であり、9はマト
リックス金属溶湯、10は溶湯加圧用のプランジャであ
る。
8 is a fiber reinforcing material charged into the mold 1, 9 is a matrix metal molten metal, and 10 is a plunger for pressurizing the molten metal.

次に本発明によるFRMの製造方法を第1図に基づいて
説明する。
Next, a method for manufacturing an FRM according to the present invention will be explained based on FIG.

予備成形によりかさ密度が高められた繊維強化材8を加
熱した鋳型1に装入し、300℃以上マトリックス金属
の融点まで加熱する。かかる温度域に予熱するのは繊維
強化材8の繊維表面に吸着しているガス成分を離脱させ
ると同時に、繊維強化材8のマトリックス金属溶湯に対
する濡れ性を良くし、マトリックス金属溶湯が浸透し易
いようにするためである。尚、予熱によって、繊維強化
材が酸化劣化する場合には、不活性ガス雰囲気下にて予
熱を行うことが肝要である。
The fiber reinforced material 8 whose bulk density has been increased by preforming is charged into the heated mold 1 and heated to 300° C. or more to the melting point of the matrix metal. Preheating to such a temperature range allows the gas components adsorbed on the fiber surface of the fiber reinforcing material 8 to be released, and at the same time improves the wettability of the fiber reinforcing material 8 to the matrix metal molten metal, making it easier for the matrix metal molten metal to penetrate. This is to ensure that. In addition, if the fiber reinforcing material deteriorates due to oxidation due to preheating, it is important to perform the preheating under an inert gas atmosphere.

次に、マトリックス金属溶湯を鋳型1に注入する。該溶
湯は鋳型1に注入しただけでは、その表面張力により繊
維強化材8には浸透せず、その上に溜った状態となる。
Next, a matrix metal molten metal is poured into the mold 1. If the molten metal is simply injected into the mold 1, it will not penetrate into the fiber reinforcing material 8 due to its surface tension and will remain thereon.

すなわち、鋳型1に装入された繊維強化材8は、鋳型1
の底面、周側面及びマトリックス金属溶湯9によって取
り囲まれ、繊維強化材8の上部は該溶湯9により大気か
らシールされた状態となる。
That is, the fiber reinforced material 8 charged into the mold 1
is surrounded by the bottom surface, peripheral side surface, and matrix metal molten metal 9, and the upper part of the fiber reinforced material 8 is sealed from the atmosphere by the molten metal 9.

かかる状態で真空脱気を行うと繊維強化材8が占める鋳
型1の内部空間の空気及びガス成分、すなわち繊維強化
材8内の空気及び予熱時に発生したガス成分は、鋳型1
底部の仕切り部材4、補強板5及び底板6の真空排気ロ
アを通って外部へ排出される。その後、プランジャ10
で前記溶湯9を加圧することにより、繊維強化材とマト
リックス金属とが良好に密着した高品質の複合材料を得
ることができる。尚、鋳型1内の空気等を脱気した後に
限らず、鋳型1を真空引きしながら鋳型1内の空気及び
ガス成分を脱気しつつ、プランジャで加圧してもよい。
When vacuum degassing is performed in such a state, the air and gas components in the internal space of the mold 1 occupied by the fiber reinforced material 8, that is, the air inside the fiber reinforced material 8 and the gas components generated during preheating, are removed from the mold 1.
It passes through the bottom partition member 4, the reinforcing plate 5, and the vacuum evacuation lower part of the bottom plate 6, and is discharged to the outside. After that, plunger 10
By pressurizing the molten metal 9, it is possible to obtain a high-quality composite material in which the fiber reinforcement material and the matrix metal are in good contact with each other. Note that the pressure is not limited to after the air and the like in the mold 1 have been degassed, but the plunger may be applied while the mold 1 is being evacuated and the air and gas components in the mold 1 are being degassed.

加圧によってマトリックス金属溶湯を繊維強化材の末端
まで加圧・浸透させ、凝固・冷却後、底板6及び補強板
5を取り外し、上部から押出して鋳型から複合材を取り
出す。
The molten matrix metal is pressurized and permeated to the end of the fiber reinforced material, and after solidification and cooling, the bottom plate 6 and reinforcing plate 5 are removed, and the composite material is taken out from the mold by extrusion from the upper part.

第2図及び第3図は本発明の他の実施例における鋳型1
の断面図である。第2図及び第3図では、プランジャが
インナプランジャ10aとアウタプランジャ10bの2
重構造になっている。かかる構造にすることにより、繊
維強化材の予備成形が不要になり、かつ任意充填率のF
RMが容易に得られる。
Figures 2 and 3 show a mold 1 in another embodiment of the present invention.
FIG. In FIGS. 2 and 3, there are two plungers, an inner plunger 10a and an outer plunger 10b.
It has a heavy structure. By adopting such a structure, preforming of the fiber reinforcing material is not necessary, and the F
RM is easily obtained.

すなわち、鋳型1内に予備成形のされていない繊維強化
材を装入し、その上に押え用の金属製スクリーン11を
介して、第2図の如くインナープランジャ10a及びア
ウタプランジャlobを共に押し下げ、繊維強化材を所
望のかさ密度に圧縮する。
That is, a fiber reinforced material that has not been preformed is charged into the mold 1, and the inner plunger 10a and the outer plunger lob are both pushed down through the holding metal screen 11 as shown in FIG. Compress the fiber reinforcement to the desired bulk density.

マトリックス金属溶湯の注入時には、インナプランジャ
10aのみを引き抜き、アウタプランジャ10bの内部
へ前記溶湯を注入する。この際、繊維強化材8は、アウ
タプランジャ10bとスクリーン11によって圧縮され
た状態を保持し、所望のかさ密度となっている。ここで
、先の実施例と同様に鋳型1内の空気及びガス成分を真
空脱気した後、あるいは脱気しつつインナプランジャ1
0aによって、前記溶湯9を繊維強化材8へ加圧浸透す
るので、所期の繊維強化材の充填率の高品質FRMが、
容易に得られる。、また、繊維強化材の予備成形の必要
がなくなり、設備コスト、製造工程の簡素化が図れ、製
造コスト面で有利となる。
When injecting the matrix metal molten metal, only the inner plunger 10a is pulled out and the molten metal is injected into the outer plunger 10b. At this time, the fiber reinforced material 8 is maintained in a compressed state by the outer plunger 10b and the screen 11, and has a desired bulk density. Here, as in the previous embodiment, after vacuum degassing the air and gas components in the mold 1, or while degassing the inner plunger 1.
0a, the molten metal 9 is infiltrated into the fiber reinforced material 8 under pressure, so that a high quality FRM with the desired fiber reinforced material filling rate is obtained.
easily obtained. In addition, there is no need for preforming of the fiber reinforced material, which simplifies equipment costs and manufacturing processes, which is advantageous in terms of manufacturing costs.

以上の発明はFRMの製造方法について詳述したが、本
発明はセラミックス粒子等を強化材とした金属複合材料
一般について適用できるものである。
Although the above invention has been described in detail with respect to the method for manufacturing FRM, the present invention can be applied to metal composite materials in general using ceramic particles or the like as a reinforcing material.

尚、第1図の鋳型1及びプランジャ10を用いた場合、
鋳型1に予備成形をしていない繊維強化材を装入し、こ
れをプランジャ10によりある程度予備成形することは
可能である。この際、無機バインダを添加することもで
きる。
In addition, when using the mold 1 and plunger 10 shown in FIG.
It is possible to charge the mold 1 with unpreformed fiber reinforcement and preform it to some extent with the plunger 10. At this time, an inorganic binder may also be added.

(発明の効果) 以上説明した通り、本発明によれば、鋳型内に繊維強化
材を装入し、次いでマトリックス金属溶湯を注入して、
これを前記強化材に加圧・浸透させる前、あるいは加圧
・浸透を行いつつ、鋳型内部の空気及び予熱に伴い発生
したガス成分を真空脱気するので、マトリックス金属溶
湯が浸透しない部分を可及的に減少することができ、更
にマトリックス金属と繊維強化材とがより良く密着し、
機械的性質の向上、製品歩留りの向上、コストの低減を
図ることができる。
(Effects of the Invention) As explained above, according to the present invention, a fiber reinforcing material is charged into a mold, then a matrix metal molten metal is poured,
Before pressurizing and infiltrating the reinforcing material, or while pressurizing and infiltrating, the air inside the mold and the gas components generated during preheating are vacuum degassed. In addition, the matrix metal and the fiber reinforcement are better adhered to each other.
It is possible to improve mechanical properties, improve product yield, and reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の実施過程における鋳型の断面図
、第2図及び第3図は本発明方法の他の実施過程におけ
る鋳型の断面図であり、第2図は繊維強化材の予備成形
状態を、第3図はマトリックス金属溶湯の注入状態を示
す。 1・・・鋳型、4・・・仕切り部材、7・・・真空排気
口、8・・・繊維強化材、9・・・マトリックス金属溶
湯、10・・・プランジャ、10a・・・インナプラン
ジャ、10b・・・アウタプランジャ。 特 許 出 願 人 株式会社 神戸製鋼所化 理 人
 弁理士 安  1) 敏  雄第3図
FIG. 1 is a sectional view of a mold in the process of implementing the method of the present invention, FIGS. 2 and 3 are sectional views of the mold in other steps of implementing the method of the present invention, and FIG. 2 is a preliminary drawing of the fiber reinforced material. The molding state is shown in FIG. 3, and FIG. 3 shows the state in which the molten matrix metal is poured. DESCRIPTION OF SYMBOLS 1... Mold, 4... Partition member, 7... Vacuum exhaust port, 8... Fiber reinforcement material, 9... Matrix metal molten metal, 10... Plunger, 10a... Inner plunger, 10b...Outer plunger. Patent applicant Kobe Steel Corporation Manager Patent attorney Yasu 1) Toshio Figure 3

Claims (1)

【特許請求の範囲】 鋳型に繊維強化材を装入して予熱した後、マトリックス
金属溶湯を注入し、該溶湯を加圧して繊維強化材に浸透
させる金属複合材料の製造方法において、 鋳型の底部に通気性のある仕切り部材を設け、該鋳型に
装入された繊維強化材の上部を前記溶湯で密封し、繊維
強化材の占める鋳型内部空間の空気及びガス成分を前記
仕切り部材から真空脱気した後又は真空脱気しつつ、前
記溶湯を加圧して繊維強化材に浸透させることを特徴と
する繊維強化金属複合材料の製造方法。
[Scope of Claim] A method for manufacturing a metal composite material in which a fiber reinforced material is charged into a mold and preheated, and then a matrix metal molten metal is injected, and the molten metal is pressurized to penetrate into the fiber reinforced material, comprising: A breathable partition member is provided in the mold, the upper part of the fiber reinforced material charged into the mold is sealed with the molten metal, and the air and gas components in the mold interior space occupied by the fiber reinforced material are vacuum degassed through the partition member. A method for producing a fiber-reinforced metal composite material, characterized in that the molten metal is pressurized and permeated into the fiber-reinforced material after or while being vacuum-degassed.
JP14304085A 1985-06-28 1985-06-28 Production of fiber-reinforced composite metallic material Pending JPS624843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14304085A JPS624843A (en) 1985-06-28 1985-06-28 Production of fiber-reinforced composite metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14304085A JPS624843A (en) 1985-06-28 1985-06-28 Production of fiber-reinforced composite metallic material

Publications (1)

Publication Number Publication Date
JPS624843A true JPS624843A (en) 1987-01-10

Family

ID=15329507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14304085A Pending JPS624843A (en) 1985-06-28 1985-06-28 Production of fiber-reinforced composite metallic material

Country Status (1)

Country Link
JP (1) JPS624843A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243248A (en) * 1987-03-31 1988-10-11 Nippon Light Metal Co Ltd Wear-resistant magnesium-alloy casting and its production
JPH01212730A (en) * 1988-02-18 1989-08-25 Mitsubishi Alum Co Ltd Manufacture of ceramic grain dispersion-type aluminum-based composite material
JPH02186606A (en) * 1989-01-13 1990-07-20 Nippondenso Co Ltd Coil device
WO1990008610A1 (en) * 1989-02-04 1990-08-09 Mahle Gmbh Process for manufacturing a casting, in particular of aluminium, provided with a porous insert
CN104588617A (en) * 2015-01-23 2015-05-06 同济大学 One-stage method for preparing metal matrix light-weighted composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243248A (en) * 1987-03-31 1988-10-11 Nippon Light Metal Co Ltd Wear-resistant magnesium-alloy casting and its production
JPH0465138B2 (en) * 1987-03-31 1992-10-19 Nippon Light Metal Co
JPH01212730A (en) * 1988-02-18 1989-08-25 Mitsubishi Alum Co Ltd Manufacture of ceramic grain dispersion-type aluminum-based composite material
JPH02186606A (en) * 1989-01-13 1990-07-20 Nippondenso Co Ltd Coil device
WO1990008610A1 (en) * 1989-02-04 1990-08-09 Mahle Gmbh Process for manufacturing a casting, in particular of aluminium, provided with a porous insert
CN104588617A (en) * 2015-01-23 2015-05-06 同济大学 One-stage method for preparing metal matrix light-weighted composite material

Similar Documents

Publication Publication Date Title
JP4212256B2 (en) Manufacturing method of composite material
US4889177A (en) Method and apparatus for sand moulding composite articles with a die made of light alloy and a fibrous insert
JPS5996236A (en) Production of composite material
JPS6241282B2 (en)
JPS6164801A (en) Molding method of powder of metal, ceramics or the like
JPS624843A (en) Production of fiber-reinforced composite metallic material
JP2643504B2 (en) Mold casting equipment
JP3788667B2 (en) Cylinder block manufacturing method
JP3073105B2 (en) Manufacturing method of light alloy composite member
JPS61284542A (en) Production of fiber reinforced composite metallic material
JPS61257442A (en) Manufacture of composite material
JP2591688B2 (en) Method for producing fiber-reinforced metal composite material
JPS61283448A (en) Production of composite metallic material
JPH09300060A (en) Sprue member for casting and manufacture thereof
WO1990015681A1 (en) Metal infiltration apparatus, methods and composites obtained thereby
JPH03146253A (en) Production of metal base composite material
JP2976437B2 (en) Manufacturing method of metal matrix composite material
JPH04200854A (en) Production of fiber reinforced metal matrix composite
KR0136182B1 (en) Method and device of manufacturing composite material of metal
JPH02303672A (en) Production of casting of metallic composite material
JPH0421741B2 (en)
JPH0497964A (en) Bonded body of metal and ceramic and its production
JPS63238968A (en) Manufacture of metal base composite material
JPS62196129A (en) Tubular reinforcing fiber molded body and manufacture thereof
JPS606265A (en) Production of composite fiber member