JPS6248173B2 - - Google Patents

Info

Publication number
JPS6248173B2
JPS6248173B2 JP8729381A JP8729381A JPS6248173B2 JP S6248173 B2 JPS6248173 B2 JP S6248173B2 JP 8729381 A JP8729381 A JP 8729381A JP 8729381 A JP8729381 A JP 8729381A JP S6248173 B2 JPS6248173 B2 JP S6248173B2
Authority
JP
Japan
Prior art keywords
temperature
polymer
temperature sensing
sensing device
electrode conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8729381A
Other languages
Japanese (ja)
Other versions
JPS57201827A (en
Inventor
Yoshio Kishimoto
Takashi Iwasa
Takeshi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8729381A priority Critical patent/JPS57201827A/en
Publication of JPS57201827A publication Critical patent/JPS57201827A/en
Publication of JPS6248173B2 publication Critical patent/JPS6248173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/34Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using capacitative elements
    • G01K7/343Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using capacitative elements the dielectric constant of which is temperature dependant

Description

【発明の詳細な説明】 本発明は、同心円状の可撓性線温度検知線を用
いた温度検知装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature sensing device using concentric flexible wire temperature sensing wires.

従来、同心円状の可撓性線状温度検知線は電気
毛布、電気カーペツト等面状採暖具用の温度セン
サーとして用いられている。この温度検知線は第
1図に示すように芯糸1、内側電極導体2、高分
子感温体層3、外側電極導体4、絶縁性外被5に
よつて構成されるのが一般的であり、二線式温度
制御装置においては温度検知線として、一線式温
度制御装置においては加熱機能を兼ね備えた感熱
ヒータ線として用いることができる。ところで、
IC駆動による温度制御の場合には直流電圧を用
い、高分子感温体としてはこのとき、電子伝導形
感温体を用いる。また一方、一線式温度制御方式
においても、一方の電極導体が線の長さ方向に発
熱線として使われるため、必ず直流成分の電界が
高分子感温体に印加されることになる。
Conventionally, concentric flexible linear temperature sensing wires have been used as temperature sensors for surface heating devices such as electric blankets and electric carpets. As shown in FIG. 1, this temperature detection line is generally composed of a core thread 1, an inner electrode conductor 2, a polymer temperature sensitive layer 3, an outer electrode conductor 4, and an insulating jacket 5. It can be used as a temperature detection wire in a two-wire temperature control device, and as a thermal heater wire that also has a heating function in a single-wire temperature control device. by the way,
In the case of temperature control by IC drive, a direct current voltage is used, and an electron conduction type temperature sensor is used as the polymer temperature sensor. On the other hand, even in the one-line temperature control method, one electrode conductor is used as a heating wire in the length direction of the wire, so that an electric field with a DC component is always applied to the polymer temperature sensitive body.

すなわち、この温度制御方式においては、商用
交流電界を二導体間に印加し、高分子感温体の温
度によるインピーダンス変化を、交流電界の片側
サイクル(たとえば正サイクル)の電界が印加さ
れたときの電流変化として温度検知に利用するの
が一般的である。一方、発熱線には温度信号に基
づくサイリスタ制御による半波電流が流され、加
熱機能を発揮するように構成される。
In other words, in this temperature control method, a commercial alternating current electric field is applied between two conductors, and the impedance change due to temperature of the polymer temperature sensitive body is calculated by applying the electric field of one side cycle (for example, positive cycle) of the alternating current electric field. It is generally used to detect temperature as a change in current. On the other hand, a half-wave current controlled by a thyristor based on a temperature signal is passed through the heating wire, so that it exhibits a heating function.

それ故、加熱信号、すなわちサイリスタの
ON、OFFにより、高分子感温体に印加される交
流電界は感熱ヒータの一方の端では常時交流全波
であるが、他方の端ではサイリスタのON、OFF
にしたがつて半波、全波となる。これは原理的な
概念であり、実際の温度制御回路においては、こ
のほかに常時直流電位がかかり、電圧がシフトす
ることはある。
Therefore, the heating signal, i.e. of the thyristor
Due to ON and OFF, the AC electric field applied to the polymer temperature sensitive body is always an AC full wave at one end of the thermal heater, but at the other end, the thyristor is ON and OFF.
Accordingly, it becomes a half wave and a full wave. This is a fundamental concept, and in an actual temperature control circuit, a direct current potential is always applied in addition to this, and the voltage may shift.

しかしながら、いずれにしても一線式感熱ヒー
タの左端、右端において高分子感温体に印加され
る電界は異なり、直流成分が高分子感温体に印加
される方式となる。一方、この一線式制御装置に
用いる高分子感温体としては、静電容量形、電子
伝導形のサーミスタ特性を示す組成物が使用でき
る。しかしながら、一般に材料は電気泳動現象を
多かれ少なかれ有するため、交流よりも直流によ
る材料の特性変化が著しい。これらの寿命特性を
鋭意検討した結果、この直流成分による特性の経
時変化が、高分子感温体材料とヒータ線構造に大
きく依存していることが判明し、本発明に至つた
ものである。
However, in any case, the electric field applied to the polymeric temperature sensitive body is different at the left end and the right end of the single line thermal heater, and the system is such that a direct current component is applied to the polymeric temperature sensitive body. On the other hand, a composition exhibiting capacitance type or electron conduction type thermistor characteristics can be used as the polymer temperature sensitive body used in this one-line control device. However, since materials generally have electrophoretic phenomena to a greater or lesser extent, the changes in the properties of materials caused by direct current are more significant than by alternating current. As a result of intensive study of these life characteristics, it was found that the change in characteristics due to the direct current component over time largely depends on the polymer temperature sensitive material and the heater wire structure, which led to the present invention.

本発明において、高分子感温体に用いる材料と
しては、先に述べたごとく電子伝導形、静電容量
形等の材料があるが、いずれのものも極性高分子
組成物を用いるものであり、このことは高分子に
含有されたイオンキヤリヤーが相溶性を有し、イ
オン化されやすく組成物がイオン性を帯びやすい
ことを意味する。
In the present invention, as the material used for the polymer temperature sensitive body, there are electronic conduction type materials, capacitance type materials, etc. as described above, but all of them use polar polymer compositions. This means that the ion carrier contained in the polymer has compatibility and is easily ionized and the composition is likely to have ionic properties.

高分子感温体中のイオンキヤリヤとは、不純物
イオンあるいは極性添加物であつて、それがたと
え微量であつても、電界により電気泳動する含有
物質をいう。主イオンとは高分子マトリクス中に
存在する極性添加剤であつて高分子マトリクスと
共重合しているものではなく、その高分子組成物
中に分散されているイオンで、組成物のイオン伝
導性の主キヤリヤとして働く量もバルキーなイオ
ンをいう。たとえばフエノール系物質では
〔〓〓/ 〕であり、イオンラジカル塩ではイオンラ ジカル〔A〓或はB〓〕をここでは主イオンとい
う。
The ion carrier in a polymeric thermosensitive material refers to a substance contained therein, such as an impurity ion or a polar additive, which is electrophoresed by an electric field, even if it is in a minute amount. Main ions are polar additives present in the polymer matrix, and are not copolymerized with the polymer matrix, but are ions dispersed in the polymer composition, and are ions that are dispersed in the polymer composition. The amount that acts as the main carrier of ion is also bulky ion. For example, in a phenolic substance, it is [〓〓/ ], and in an ion radical salt, the ion radical [A〓 or B〓] is referred to as the main ion here.

高分子感温体は第1図のように同心円状可撓性
温度検知線として用いられる際、内巻、外巻両電
極に介在された高分子感温体ではその電界の極性
により含有するイオンの電気泳動の方向が反転す
ることになり、それ故、高分子感温体中の主イオ
ンが同心円筒構造線の内側に泳動するような電界
極性であるとき、内側への物質移動は線が閉構造
であるため、即座に飽和し、物性の経時変化が著
しく抑制され、長寿命特性を示すことになる。一
方、逆に主イオンが円筒構造の外側に移動するよ
うな電極極性のとき、たとえ、それが不純物的な
微量イオンであつても長期間経過後の経時変化は
大きく、飽和し難い。
When a polymer thermosensor is used as a concentric flexible temperature sensing wire as shown in Figure 1, the polymer thermosensor interposed between the inner and outer electrodes can contain ions depending on the polarity of the electric field. Therefore, when the electric field polarity is such that the main ions in the polymer thermosensor migrate inside the concentric cylindrical structure lines, the inward mass transfer will be reversed. Since it has a closed structure, it saturates immediately, significantly suppresses changes in physical properties over time, and exhibits long-life characteristics. On the other hand, when the electrode polarity is such that the main ions move to the outside of the cylindrical structure, even if the main ions are trace ions like impurities, the change over time after a long period of time is large and saturation is difficult.

次に本発明の詳細を具体的材料に基づいて説明
する。アルキルフエノール樹脂あるいはオキシ安
息香酸エステルホルムアルデヒド重合体等をポリ
アミド樹脂の一種であるナイロン12に添加して
或る組成物を高分子感温体として利用するとき、
本発明の効果を著しく発揮する。一般に一線式温
度制御装置に用いる感温体は150〜200℃での温度
ヒユーズ機能や温度検出能(サーミスタB定数が
大きいこと)、吸湿性が少ないこと等よりナイロ
ン12組成物を用いる。このナイロン12を含むポリ
アミド樹脂はアミド基、水酸基をもつ物質以外に
は相溶性に乏しく、アミド基、アルコール系水酸
基は吸質性を増加させる場合が多い。フエノール
系添加剤によつては吸湿性は減少する上、相溶性
も大変優れている。そこで上記のようなフエノー
ル樹脂の低重合体あるいは単量体等をポリアミド
中に添加し、高分子感温体として用いた場合、外
側電極用導体を(−)極としたとき、第3図のよ
うに非常にすぐれた耐熱寿命特性を示すことを見
い出した。これはこの高分子感温体中の主イオン
がフエノール陰性基であり、これが電界により、
高温にて徐々に(+)極側、すなわち内側電極の
方へ移動するためであり、この移動は内側方向は
閉構造であるために、ブリードできず、寿命が大
変長くなることがわかつた。それ故、サンドイツ
チシート試料によるテストに比べても、格段の長
寿命がえられることがわかる。この内側(+)極
は本発明の温度検知線において、サイリスタ制御
によるAC半波加熱電流を外側電極用導体に通す
ことにより必然的に達成される。これら本発明は
高分子感温体の電気泳動による組成変化を極度に
抑制するものであり、温度検知装置の高信頼性を
実現するものである。本発明の原理に基づく具体
的な材料の組合せの一例をその理由と共に次に述
べる。
Next, details of the present invention will be explained based on specific materials. When alkylphenol resin or oxybenzoic acid ester formaldehyde polymer or the like is added to nylon 12, which is a type of polyamide resin, and a certain composition is used as a polymer temperature sensitive body,
The effects of the present invention are significantly exhibited. Generally, a nylon 12 composition is used as a thermosensor used in a one-line temperature control device due to its temperature fuse function at 150 to 200°C, temperature detection ability (large thermistor B constant), and low hygroscopicity. This polyamide resin containing nylon 12 has poor compatibility with substances other than substances having amide groups and hydroxyl groups, and amide groups and alcohol-based hydroxyl groups often increase absorbency. Some phenolic additives not only reduce hygroscopicity but also have very good compatibility. Therefore, when the above-mentioned phenolic resin low polymer or monomer is added to polyamide and used as a polymer temperature sensor, when the outer electrode conductor is the (-) pole, the It has been found that this material exhibits extremely excellent heat resistance and life characteristics. This is because the main ion in this polymer thermosensitive material is a phenol negative group, and this is caused by an electric field.
This is because it gradually moves toward the (+) pole side, ie, toward the inner electrode, at high temperatures, and because the inner electrode has a closed structure, it cannot bleed, resulting in a very long life. Therefore, it can be seen that a significantly longer life can be obtained compared to the test using a sandwiched sheet sample. This inner (+) pole is necessarily achieved in the temperature sensing line of the present invention by passing a thyristor-controlled AC half-wave heating current through the outer electrode conductor. These aspects of the present invention are intended to extremely suppress compositional changes due to electrophoresis of a polymer thermosensitive material, and to realize high reliability of a temperature sensing device. An example of a specific combination of materials based on the principle of the present invention will be described below along with its reasons.

7・7・8・8−テトラシアノキノジメタン
(TCNQと略)、陰イオンラジカルを主イオンとし
て含む高分子感温体では、内側電極が正極として
使われ、これはすなわち、外側電極発熱体に相当
する。これら電子伝導形高分子感温体において
は、TCNQ等イオンラジカルを含む電荷移動錯体
を高分子中に含有させる場合が多い。感温体の電
子伝導は一般に電荷移動形高分子組成物を用いる
ことにより、利用されるが、この組成物は電子伝
導とともにイオン性物質移動を併発しやすい。こ
れは電荷移動錯体がイオンラジルを含む塩である
ためであり、これが高分子マトリクス中に多少溶
解し、このイオン性伝導と併発する。そしてこの
組成物の電子伝導キヤリヤサイトであるイオンラ
ジカルの濃度が高くなる箇所、すなわちイオンラ
ジカルの逆極性電極付近において濃度が上り、比
抵抗が低下する方向に経時変化をする。それ故本
発明においてこの場合の主イオンであるイオンラ
ジカルが内側電極方向に移動する電界極性におい
ては、温度検知線のインピーダンスは同一温度に
おいて低くなる方向に経時変化し、このように検
知線の寿命劣化に際して、採暖具等加熱目的の装
置においては低温度側、すなわち火災等の事故を
生じない安全側に経時変化をすることになるとい
う利点を有する。具体的には、先にのべたTCNQ
塩のような陰イオンラジカルを含有する場合は内
側電極を(+)極とすることにより、本発明の効
果は発揮される。陽イオンラジカルを含む組成物
においてはこれが逆極性になることは言うまでも
ない。
7,7,8,8-tetracyanoquinodimethane (abbreviated as TCNQ), a polymer thermosensor containing anion radicals as main ions, the inner electrode is used as the positive electrode, which means that the outer electrode heating element corresponds to In these electron conductive polymer temperature sensitive bodies, a charge transfer complex containing an ion radical such as TCNQ is often contained in the polymer. Electron conduction in a temperature sensitive body is generally utilized by using a charge transfer type polymer composition, but this composition tends to cause ionic mass transfer together with electron conduction. This is because the charge transfer complex is a salt containing ionic radyl, which dissolves to some extent in the polymer matrix and occurs concurrently with this ionic conduction. The concentration of ion radicals, which are electron-conducting carrier sites in this composition, increases in the vicinity of the opposite polarity electrode, and the specific resistance changes over time in a direction that decreases. Therefore, in the present invention, in an electric field polarity in which ion radicals, which are the main ions in this case, move toward the inner electrode, the impedance of the temperature detection wire changes over time in the direction of decreasing at the same temperature. This has the advantage that when deteriorating, the temperature of devices for heating purposes such as heating equipment changes over time to a lower temperature side, that is, a safer side that does not cause accidents such as fire. Specifically, the TCNQ mentioned earlier
When an anion radical such as a salt is contained, the effect of the present invention is exhibited by making the inner electrode the (+) electrode. It goes without saying that this polarity will be reversed in compositions containing cation radicals.

次に本発明の温度検知線に用いる芯糸について
説明する。本発明におけるような同心円状温度検
知線や感熱ヒータにおいては芯糸上にスパイラル
状に内側電極を設けることが一般的でその場合に
用いる芯糸は可撓性付与と引張強度付与の目的で
材料が選ばれ、一般にはポリエステル糸が用いら
れている。その他ガラスセンイ、芳香族ポリアミ
ド等もその製品用途により用いられる。この芯糸
が高分子感温体の非移行性材料であるとき、本発
明の効果は特に大きく発揮される。さらには芯糸
内あるいは芯糸上に高分子感温体中の主イオンを
含有する材料を予め含有させることはさらに大き
な効果を発揮することはいうまでもない。
Next, the core yarn used in the temperature sensing wire of the present invention will be explained. In concentric temperature sensing wires and thermal heaters such as those used in the present invention, it is common to provide an inner electrode in a spiral shape on the core yarn, and the core yarn used in this case is made of a material for the purpose of imparting flexibility and tensile strength. is selected, and polyester thread is generally used. Other materials such as glass fibers and aromatic polyamides may also be used depending on the product application. When the core thread is a non-migration material of a polymer thermosensitive material, the effects of the present invention are particularly greatly exhibited. Furthermore, it goes without saying that an even greater effect can be obtained by pre-containing a material containing the main ion in the polymer thermosensitive material in or on the core thread.

たとえば、フエノール物質含有ポリアミド組成
物においては、ポリエステル芯が非移行性材料で
あるために適しているが、芳香族ポリアミドセン
イ(ケブラーセンイ、デユポン社製)は移行性で
あるため適しているとはいえない。芯糸内あるい
は芯糸上に高分子感温体の主イオン含有物質を含
有させる方法としては、芯糸を予め、主イオン含
有物質、たとえばフエノール低重合体溶液に含浸
させる方法あるいは主イオン含有物質センイを混
紡する方法あるいは芯糸上にコーテイングする方
法等があり、これらはいずれも適用できる。
For example, in a polyamide composition containing a phenolic substance, the polyester core is suitable because it is a non-migratory material, but aromatic polyamide fiber (Kevlar fiber, manufactured by Dupont) is suitable because it is migratory. I can't say that. A method for incorporating the main ion-containing substance of the polymer temperature sensitive material into or on the core yarn is to impregnate the core yarn in advance with a main ion-containing substance, such as a phenol low polymer solution, or to impregnate the core yarn with a main ion-containing substance such as a phenol low polymer solution. There are methods of blending fibers and methods of coating the core yarn, and either of these methods can be applied.

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

ナイロン12、100部に対しオキシ安息香酸オク
チルエステルのホルムアルデヒド樹脂15部および
リン系酸化防止剤1部を含む高分子感温体を第1
図のような構造に製線した。芯糸はポリエステ
ル、内巻、外巻電極は銅箔を用いた。外被5には
軟質塩ビ被覆を用い、25mづつに切断し、端末タ
ーミナルをモールドし、温度検知線とした。この
検知線を100℃炉中にて無負荷、AC100V全波、
AC100V半波(内巻(+))、AC100V半波(外巻
(+))の4種の方法で耐熱テストを行なつた。本
検知線のインピーダンス−温度特性は第2図のご
とくであり、初期特性6に比べ、100℃、1000Hr
後の内巻(o)の特性7の変化はきわめて少な
く、一方、外巻(+)の特性8の変化が非常に大
きく、特に直流抵抗がインピーダンスに寄与する
100℃以上の高温部において顕著であることがわ
かる。最も変化の顕著にあらわれる120℃でのイ
ンピーダンスの変化は第3図のようであり、
AC100V全波による特性9、100VAC半波(内巻
(+))での特性10に比べ、外巻(+)の特性1
1は大変経時変化の大きいことがわかる。ただ
し、これらのインピーダンス−温度特性は100℃
の耐熱テスト炉より各測定時間ごとに試料をとり
だし、特性を測定した。
First, a polymer thermosensitive material containing 15 parts of formaldehyde resin of oxybenzoic acid octyl ester and 1 part of phosphorus antioxidant per 100 parts of nylon 12.
The wire was made into the structure shown in the figure. The core yarn was made of polyester, and the inner and outer wound electrodes were made of copper foil. A soft PVC coating was used for the outer sheath 5, which was cut into 25 m pieces, and terminal terminals were molded to form temperature detection wires. This detection wire was placed in a 100℃ furnace with no load, AC100V full wave,
Heat resistance tests were conducted using four methods: AC 100V half wave (inner winding (+)) and AC 100V half wave (outer winding (+)). The impedance-temperature characteristics of this detection line are as shown in Figure 2, and compared to the initial characteristic 6, it is
The change in characteristic 7 of the later inner winding (o) is extremely small, while the change in characteristic 8 of the outer winding (+) is very large, and in particular, DC resistance contributes to impedance.
It can be seen that this is noticeable in high temperature areas of 100°C or higher. The change in impedance at 120℃, where the change is most noticeable, is shown in Figure 3.
Characteristic 9 with 100VAC full wave, characteristic 10 with 100VAC half wave (inner winding (+)), characteristic 1 with outer winding (+)
It can be seen that 1 has a very large change over time. However, these impedance-temperature characteristics are 100℃
Samples were taken out from the heat-resistant test furnace at each measurement time and their characteristics were measured.

ここで無負荷およびAC100V全波の経時変化は
ほぼ同一であつた。このAC100V半波(内巻
(+))の電界は外巻電極を発熱体として使用する
ことに相当する。
Here, the time-dependent changes under no load and AC 100V full wave were almost the same. This AC 100V half-wave (inner winding (+)) electric field corresponds to using the outer winding electrode as a heating element.

この温度検知線を感熱ヒータ線として電気毛布
に配線し、第4図のように回路に接続した。感熱
ヒータ線の左端AはAC全波、右端はAC半波(ヒ
ータONの時)が印加される。この結線では内巻
電極2が信号線、外巻電極4が発熱線として使わ
れている。この回路は交流電源12に接続された
直流電源回路15により温度制御回路13を駆動
し、サイリスタ14をオン、オフする。この場
合、外巻線4が発熱線として利用されるため、サ
イリスタ14がオンのとき高分子感温体3には直
流成分が内巻電極2が(+)側、外巻電極4が
(−)側となつて右端に行く程、すなわちA→B
に行く程、高電界となつて印加されることにな
る。
This temperature detection wire was wired as a thermosensitive heater wire to an electric blanket and connected to a circuit as shown in FIG. AC full wave is applied to the left end A of the thermal heater wire, and AC half wave (when the heater is ON) is applied to the right end. In this connection, the inner-wound electrode 2 is used as a signal line, and the outer-wound electrode 4 is used as a heating line. This circuit drives a temperature control circuit 13 by a DC power supply circuit 15 connected to an AC power supply 12, and turns on and off a thyristor 14. In this case, the outer winding 4 is used as a heating wire, so when the thyristor 14 is on, the polymer temperature sensitive body 3 receives a DC component, with the inner winding electrode 2 on the (+) side and the outer winding electrode 4 on the (-) side. ) side and go to the right end, that is, from A to B.
The further you go, the higher the electric field will be applied.

内巻ヒータの場合、外巻ヒータの場合の毛布の
温度制御の経時変化を測定したところ、上記のテ
ストと同様に外巻ヒータ、すなわち内巻(+)の
交流半波極性による変化がきわめて少なく、極部
過熱に対して特に昇温が少なく安全度が高いこと
が判明した。
In the case of the inner-wound heater, when we measured the change over time in the temperature control of the blanket in the case of the outer-wound heater, we found that, as in the above test, there was very little change due to the AC half-wave polarity of the outer-wound heater, that is, the inner-wound (+). It was found that the temperature rise is particularly small against extreme overheating, and the safety level is high.

本発明はこのように高分子感温体層中の主イオ
ンの極性と同極性の電界を内側電極に印加するこ
とにより、高信頼性、長寿命の温度検知装置を提
供するものであり、工業的価値の大なるものであ
る。
As described above, the present invention provides a highly reliable and long-life temperature sensing device by applying an electric field with the same polarity as the main ion in the polymer temperature sensitive layer to the inner electrode. It is of great value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における温度検知線構造の一例
を示す図である。第2図は本発明の実施例におけ
る温度検知線のインピーダンス−温度特性を示
す。6は初期特性、7,8は各々AC100V半波
(内巻(+))、(外巻(+))における100℃、1000
時間後の特性である。第3図は本発明の実施例に
おける温度検知線の120℃でのインピーダンスの
経時変化である。9はAC100V全波負荷、10,
11は各々AC100V半波(内巻(+))、(外巻
(+))負荷での100℃耐熱テストの結果を示して
いる。第4図は温度検知線を用いた電気毛布配線
図である。 1……芯糸、2……内側電極導体、3……高分
子感温体層、4……外側電極導体。
FIG. 1 is a diagram showing an example of a temperature detection line structure according to the present invention. FIG. 2 shows the impedance-temperature characteristics of the temperature detection line in the embodiment of the present invention. 6 is the initial characteristic, 7 and 8 are AC100V half wave (inner winding (+)), (outer winding (+)) at 100℃, 1000
This is the characteristic after time. FIG. 3 shows the change over time in the impedance of the temperature detection line at 120° C. in the embodiment of the present invention. 9 is AC100V full wave load, 10,
11 shows the results of a 100°C heat resistance test under AC100V half-wave (inner winding (+)) and (outer winding (+)) loads, respectively. FIG. 4 is a wiring diagram of an electric blanket using temperature detection wires. DESCRIPTION OF SYMBOLS 1... Core thread, 2... Inner electrode conductor, 3... Polymer temperature sensitive layer, 4... Outer electrode conductor.

Claims (1)

【特許請求の範囲】 1 内側電極導体上に高分子感温体層を設け、さ
らに外側電極用導体を設けてなる温度検知線にお
いて、前記高分子感温層中の主イオンの極性と同
極性の電界が前記外側電極用導体に印加されるこ
とを特徴とする温度検知装置。 2 高分子感温体層に温度検知のための交流電圧
が印加され、外側電極用導体の長さ方向に、発熱
源としての交流半波電圧が印加されることを特徴
とする特許請求の範囲第1項記載の温度検知装
置。 3 高分子感温体が、フエノール基含有添加物を
含むポリアミド組成物であることを特徴とする特
許請求の範囲第1項または第2項記載の温度検知
装置。 4 高分子感温体が、イオンラジカル含有電子伝
導性高分子組成物であり、主イオンがイオンラジ
カルであることを特徴とする特許請求の範囲第1
項または第2項記載の温度検知装置。 5 主イオンが7・7・8・8−テトラシアノキ
ノジメタン陰イオンラジカルであることを特徴と
する特許請求の範囲第4項記載の温度検知装置。 6 内巻電極用導体が芯糸上にスパイラルに巻か
れていることを特徴とする特許請求の範囲第1項
記載の温度検知装置。 7 芯糸が高分子感温体の非移行性材料よりなる
ことを特徴とする特許請求の範囲第6項記載の温
度検知装置。 8 芯糸がポリエステル繊維であることを特徴と
する特許請求の範囲第7項記載の温度検知装置。 9 芯糸内あるいは芯糸上に高分子感温体層中の
主イオン含有物質が予め含有されていることを特
徴とする特許請求の範囲第6項記載の温度検知装
置。
[Scope of Claims] 1. In a temperature detection wire formed by providing a polymer temperature-sensitive layer on an inner electrode conductor and further providing an outer electrode conductor, the polarity is the same as the polarity of the main ions in the polymer temperature-sensitive layer. A temperature sensing device characterized in that an electric field of: is applied to the outer electrode conductor. 2. Claims characterized in that an AC voltage for temperature detection is applied to the polymer thermosensitive layer, and an AC half-wave voltage as a heat generation source is applied in the length direction of the outer electrode conductor. 1. Temperature detection device according to item 1. 3. The temperature sensing device according to claim 1 or 2, wherein the polymer temperature sensing body is a polyamide composition containing a phenol group-containing additive. 4. Claim 1, characterized in that the polymer temperature sensitive body is an electronically conductive polymer composition containing ion radicals, and the main ions are ion radicals.
The temperature sensing device according to item 1 or 2. 5. The temperature sensing device according to claim 4, wherein the main ion is a 7,7,8,8-tetracyanoquinodimethane anion radical. 6. The temperature sensing device according to claim 1, wherein the inner-wound electrode conductor is spirally wound on the core yarn. 7. The temperature sensing device according to claim 6, wherein the core yarn is made of a non-migration material of a polymer thermosensitive material. 8. The temperature sensing device according to claim 7, wherein the core yarn is polyester fiber. 9. The temperature sensing device according to claim 6, wherein the main ion-containing substance in the polymeric temperature sensitive layer is contained in or on the core yarn in advance.
JP8729381A 1981-06-05 1981-06-05 Temperature detecting device Granted JPS57201827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8729381A JPS57201827A (en) 1981-06-05 1981-06-05 Temperature detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8729381A JPS57201827A (en) 1981-06-05 1981-06-05 Temperature detecting device

Publications (2)

Publication Number Publication Date
JPS57201827A JPS57201827A (en) 1982-12-10
JPS6248173B2 true JPS6248173B2 (en) 1987-10-13

Family

ID=13910757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8729381A Granted JPS57201827A (en) 1981-06-05 1981-06-05 Temperature detecting device

Country Status (1)

Country Link
JP (1) JPS57201827A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623036U (en) * 1985-06-24 1987-01-09
FI98567C (en) * 1993-09-29 1997-07-10 Vaisala Oy Impedance sensor, especially for radio probe use, as well as a method for producing a sensor

Also Published As

Publication number Publication date
JPS57201827A (en) 1982-12-10

Similar Documents

Publication Publication Date Title
JP3037525B2 (en) Fever sheet
DK228483A (en) HEATING ELEMENT
US4707686A (en) Over temperature sensing system for power cables
CN104484973B (en) A kind of composite cable heat fire detector
US4565455A (en) Heat regulating sensor tape
JPS6248173B2 (en)
SE8304042D0 (en) TAPE HEATER WITH ELECTRICAL DEVICES INCLUDING LEADING POLYMER COMPOSITIONS
JP2013098138A (en) Cord-shaped heat generation line device
JP2013134851A (en) Cord type heating wire device
JP2013038005A (en) Cord-like heating wire
DE2429482A1 (en) Temperature measuring and monitoring device - uses temperature sensitive resistor as sensor insulated by shrinkable sleeve
JP2015026458A (en) Temperature control device for warming
JPH0115127Y2 (en)
JPH06124805A (en) High-molecular temperature sensing element
US2785142A (en) Core composition for fire detector element
JP2743832B2 (en) Polymer thermosensor and thermosensor using the same
JPH0425679B2 (en)
JPS59206754A (en) Detecting element of organic molecule
JPH0547459A (en) Heat sensitive heater wire
KR930024026A (en) Heat treatment method and apparatus of wire type conductive polymer
JP2001214017A (en) Polymer temperature sensor and temperature sensing element produced by using the same
JPS63219102A (en) Ptc resistance material
JPH0855708A (en) High molecular temperature-sensitive material and heat-sensitive heater wire
JPS6235482A (en) Temperature controller
WO1993005523A1 (en) A ptc device with three terminals