JPS6247382B2 - - Google Patents

Info

Publication number
JPS6247382B2
JPS6247382B2 JP55015437A JP1543780A JPS6247382B2 JP S6247382 B2 JPS6247382 B2 JP S6247382B2 JP 55015437 A JP55015437 A JP 55015437A JP 1543780 A JP1543780 A JP 1543780A JP S6247382 B2 JPS6247382 B2 JP S6247382B2
Authority
JP
Japan
Prior art keywords
signal
voltage
transmitting
current
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55015437A
Other languages
Japanese (ja)
Other versions
JPS56114450A (en
Inventor
Seiya Uchida
Kazuyuki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Iwasaki Tsushinki KK
Original Assignee
Nippon Telegraph and Telephone Corp
Iwasaki Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Iwasaki Tsushinki KK filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1543780A priority Critical patent/JPS56114450A/en
Publication of JPS56114450A publication Critical patent/JPS56114450A/en
Publication of JPS6247382B2 publication Critical patent/JPS6247382B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1423Two-way operation using the same type of signal, i.e. duplex for simultaneous baseband signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は1対の信号線を使用した信号伝送方式
に関するものである。 従来の信号伝送方式において、2つの装置間で
1対の信号線を用いて双方向に同時に信号を伝送
するのには一方の装置の信号周波数と他方の装置
の信号周波数に異なるものを用いるいわゆる周波
数分割の方式とか、インピーダンス整合によるい
わゆるハイブリツド回路を用いる方式があつた
が、前者の方式では精密なフイルタを必要とし、
後者の方式では、かなり精密なハイブリツド回路
を必要とした。又、上記いずれの方式において
も、1対の信号線に信号と直流を重畳して信号の
外に一方の装置から他方の装置に直流を供給する
ためには、双方の装置に直流による磁気飽和を防
ぐためにかなり大きいトランスを必要とした。 本発明は、一方の装置からの信号に電圧信号を
用いるとともに他方の装置からの信号に電流信号
を用いることにより、2つの装置の間で双方向に
同時に信号を伝送するために周波数分割やハイブ
リツド回路を用いる必要がなく、また、一方の装
置から他方の装置へトランスを用いないで直流供
給を行うことができる信号伝送方式を提供するも
のである。 以下図面により本発明を詳細に説明する。 第1図aは本発明の原理的構成を示すブロツク
図で、1は電圧信号を送出し電流信号を検出する
形式の送受信装置(以下、単に送受信装置1とい
う)、2は電流信号を送出し電圧信号を検出する
形式の送受信装置(以下、単に送受信装置2とい
う)、3は信号線、4はアース線、10は直流電
源、11は電流検出回路(電流検出手段)、12
は電圧可変回路(電圧応答手段)、13は信号
源、21は電圧検出回路(電圧検出手段)、22
は電流可変回路(電流応答手段)、23は信号源
である。 第1図aの構成の動作原理を第2図および第3
図を参照して説明する。 送受信装置1から送受信装置2へ信号を伝送す
る場合まず、送受信装置2の信号源23は停止し
ているとする。送受信装置1の信号源13により
電圧可変回路12が動作して、信号に応じた電圧
変化を信号線3に発生させる。この様子を第2図
に示す。信号線3に発生した信号電圧は送受信装
置2の電圧検出回路21にて検出され電圧又は電
流信号として取り出される。 送受信装置2から送受信装置1へ信号を伝送す
る場合まず送受信装置1の信号源13は停止して
いるとする。送受信装置2の信号源23により電
流可変回路22が動作して、信号に応じた電流変
化を信号線3に発生させる。この様子を第3図に
示す。信号線3に発生した信号電流は送受信装置
1の電流検出回路11にて検出され電圧又は電流
信号として取り出される。 以上は送受信装置2の信号源23又は送受信装
置1の信号源13が停止している状態で送受信装
置1又は2より送受信装置2又は1に信号線3を
介して信号を伝送する場合であつたが、電圧可変
回路12より信号線3を見たその信号の周波数に
おける交流インピーダンスが充分高い場合には、
信号線3に電圧変化が生じても信号線3には電流
変化が生じない。従つて、送受信装置1より信号
源13の信号(第1の伝送信号)を電圧可変回路
12を通し送受信装置2に伝送しても送受信装置
1の電流検出回路11からは信号源13の第1の
伝送信号に基づく信号は出力されない。 又、信号源23の出力(第2の伝送信号)を信
号線3に伝送するときに電流可変回路22より信
号線3を見た第2の伝送信号の周波数における交
流インピーダンスが充分低い場合は、信号線3に
電流変化が生じても信号源23の信号(第2の伝
送信号)を電流可変回路22を通し送受信装置2
に伝送しても送受信装置2の電圧検出回路21か
らは信号源23の第2の伝送信号に基づく信号は
出力されない。 従つて、電圧可変回路12より信号線3を見た
第1の伝送信号の周波数における交流インピーダ
ンスが充分高く、かつ、電流可変回路22より信
号線3を見た第2の伝送信号の周波数における交
流インピーダンスが充分低い場合には、送受信装
置1及び2は各々の信号源13及び23を同時に
動作させても、それぞれが発生させる信号線3上
の自分自身の信号(第1の伝送信号及び第2の受
信信号)には干渉されずに送受信回路2或いは1
の信号(第2の伝送信号又は第1の伝送信号)を
検出することができる。 又、信号線3の距離が長くなり理想的な伝送路
とみなせない等の原因により電圧可変回路12よ
り信号線3を見た交流インピーダンスが充分高く
ない場合は、信号線3の電圧変化は信号線3の電
流変化となり信号源13の信号を電流検出回路1
1が検出するので、これを補償するために信号源
13と電流検出回路11の間に電流補正回路を挿
入し、信号源13の信号成分を打ち消す。 又、電流可変回路22より信号線を見た交流イ
ンピーダンスが充分低くない場合には、信号線3
の電流変化は信号線3の電圧変化となり、信号源
23の信号を電圧検出回路21が検出するので、
これを補償するために信号源23と電圧検出回路
21の間に電圧補正回路を挿入し、信号源23の
信号成分を打ち消す。 第1図aの構成は第1図bのように変更するこ
とも可能である。この構成においては、電流検出
回路11は低出力インピーダンスにする必要があ
る。 上記の電流補正回路及び電圧補正回路を第1図
aに加えたものを第4図に示す。第4図におい
て、14は電流補正回路、24は電圧補正回路で
ある。 第5図は第1図aの構成に基づく一実施例であ
り、1は電圧信号を送出し電流信号を検出する形
式に送受信装置(以下、単に送受信装置1とい
う)、10は直流電源、11は電流検出回路、1
2は電圧可変回路、13は信号源、110,11
6,120はコンデンサ、112,124,12
5はトランジスタ、111,113,114,1
15,117,121,122,123は抵抗、
118はフオトカプラのフオトトランジスタ、1
19はフオトカプラの発光ダイオード、100は
電流検出回路11の出力端子である。2は電流信
号を送出し電圧信号を検出する形式の送受信装置
(以下、単に送受信装置2という)、20は直流電
源、21は電圧検出回路、22は電流可変回路、
23は信号源、220,215はトランジスタ、
221,222,223,211,212,21
3,214,216は抵抗、224,210,2
17はコンデンサ、200は電圧検出回路21の
出力端子であり、3は信号線、4はアース線であ
る。 次に第5図に基づき動作を説明する。 電圧可変回路12はエミツタフオロアを2段直
結した回路であり、トランジスタ124が活性領
域で動作する様に抵抗121,122によりバイ
アス値が設定され、このバイアス値よりトランジ
スタ124及び125のベース・エミツタ間の順
方向電圧降下分(約1.4V)だけ低い電圧がトラ
ンジスタ125のエミツタ電圧となる。この状態
でコンデンサ120を通しトランジスタ124の
ベースに信号が加えられるとこの信号に応じトラ
ンジスタ125のエミツタ電圧は変化する。 電流検出回路11において、抵抗117はフオ
トトランジスタ118が活性領域で動作する値に
設定されており、発光ダイオード119に流れる
電流が変化すると、この変化に応じフオトトラン
ジスタ118のコレクタ電流が変化し、この電流
変化は低抗117により電圧変化に変換され、こ
の電圧変化はコンデンサ116を通しトランジス
タ112のベースに伝えられる。トランジスタ1
12はバイアス設定用の抵抗114,115と抵
抗111,113とによりA級増幅器となつてい
るのでトランジスタ112のベース電圧変化はト
ランジスタ112のコレクタ電圧変化となりコン
デンサ110を通し出力端子100に出力され
る。 電流可変回路22において、抵抗222及び2
23により設定されるバイアス値よりトランジス
タ220のベース・エミツタ間の順方向電圧降下
分(約0.7V)だけ低い電圧がトランジスタ22
0のエミツタ電圧となり、このエミツタ電圧と抵
抗221で決まる電流がトランジスタ220のコ
レクタ電流となる。この状態でコンデンサ224
を通しトランジスタ220のベースに信号が加え
られると、この信号に応じトランジスタ220の
コレクタ電流は変化する。 電圧検出回路21において、トランジスタ21
5はバイアス設定用の抵抗212,213と抵抗
214,216とによりA級増幅器となつている
ので、信号線3の電圧変化はコンデンサ210及
び抵抗211を通してトランジスタ215のベー
スに伝えられ、トランジスタ215のコレクタよ
りコンデンサ217を通し出力端子200に出力
される。 以上の動作状態で送受信装置1より送受信装置
2に信号を伝送する場合は、信号源13の信号は
〔コンデンサ120→トランジスタ124のベー
ス→トランジスタ124のエミツタ→トランジス
タ125のベース→トランジスタ125のエミツ
タ〕のルートで信号線3,4間に第2図に示す様
な信号電圧の形で現われ、この信号電圧は信号線
3を通しコンデンサ210及び抵抗211を通し
トランジスタ215のベースに伝えられ、トラン
ジスタ215により増幅されコンデンサ217を
通し出力端子200に出力される。 一方、送受信装置2より送受信装置1に信号を
伝送する場合は、信号源23の信号はコンデンサ
224を通しトランジスタ220のベースに伝え
られ、この信号に応じトランジスタ220のコレ
クタ電流が変化し、この変化電流は第3図に示す
様な形で信号電流として 〔トランジスタ220のコレクタ→トランジスタ
220のエミツタ→抵抗221→アース線4→直
流電源10→発光ダイオード119→トランジス
タ125のコレクタ→トランジスタ125のエミ
ツタ→信号線3〕のルートで流れるので、この信
号電流は発光ダイオード119を通しフオトトラ
ンジスタ118のコレクタ上に信号電圧として現
われ、コンデンサ116を通しトランジスタ11
2により増幅されコンデンサ110を通し出力端
子100に信号電圧の形で出力される。 第6図は、第4図に基づく一実施例であり、第
5図において信号線3,4を擬似線路に置き換
え、電流検出回路11と信号源13の間に電流補
正回路14を挿入し、また電圧検出回路21と信
号源23の間に電圧補正回路24を加えたもので
ある。第6図において、30は擬似線路、30
0,301,303,304は抵抗、302はコ
ンデンサ、14は電流補正回路、140,143
はコンデンサ、141,142は抵抗、24は電
圧補正回路、240はインダクタンス、243は
コンデンサ、241,242は抵抗である。その
他の回路は第5図と全く同じである。 次に第6図について動作を説明する。 第5図における信号線3,4が伝送路として理
想的でなく、第6図の擬似線路30の等価回路で
表わすことができ、又、第5図において信号線3
より送受信回路2を見た交流インピーダンスが充
分高くない場合は、第6図において信号源13の
信号に応じてトランジスタ125のエミツタ電圧
が変化し、この電圧変化により 〔抵抗300→コンデンサ302→抵抗301→
直流電源10→発光ダイオード119→トランジ
スタ125のコレクタ→トランジスタ125のエ
ミツタ〕 のルート及び 〔抵抗300→抵抗303→送受信装置2→抵抗
304→抵抗301→直流電源10→発光ダイオ
ード119→トランジスタ125のコレクタ→ト
ランジスタ125のエミツタ〕 のルートで信号源13に基づく信号電流成分が発
光ダイオード119に流れる。従つて、送受信装
置1と送受信装置2の間で双方向に同時に信号伝
送をすると、電流検出回路11の出力端子100
には信号源23の成分の他に信号源13の成分が
出力されるので、出力端子100より信号源13
の成分を取り除くために電流補正回路14にて抵
抗117に流れる電流の中の信号源13の成分を
打ち消す。 電流補正回路14において、コンデンサ143
は直流阻止用であり、抵抗141,142及びコ
ンデンサ140は擬似線路30に基づく信号源1
3の成分及び送受信装置2に基づく信号源13の
成分を打ち消す様に定数を設定する。 又、第5図における信号線3,4が伝送路とし
て理想的でなく、第6図の擬似線路30の等価回
路で表わすことができ、又第5図において信号線
3,4より送受信装置1を見た交流インピーダン
スが充分低くない場合は、第6図において信号源
23の信号に応じてトランジスタ220のコレク
タ電流が変化し、この電流変化により、 〔トランジスタ220のコレクタ→トランジスタ
220のエミツタ→抵抗221→抵抗304→コ
ンデンサ302→抵抗303→トランジスタ22
0のコレクタ〕のルート及び 〔トランジスタ220のコレクタ→トランジスタ
220のエミツタ→抵抗221→抵抗304→抵
抗301→送受信装置1→抵抗300→抵抗30
3→トランジスタ220のコレクタ〕 のルートで信号源23に基づく信号電流が流れ、
この結果トランジスタ220のコレクタに信号源
23に基づく電圧変化が現われる。 従つて、送受信装置1と送受信装置2との間で
双方向に同時に信号伝送をすると電圧検出回路2
1の出力端子200には信号源13の成分の外に
信号源23の成分が出力されるので、出力端子2
00より信号源23の成分を取り除くために電圧
補正回路24にてトランジスタ215のベースに
加えられる電圧の中の信号源23の成分を打ち消
す。 電圧補正回路24において、コンデンサ243
は直流阻止用であり、抵抗241,42及びイン
ダクタンス240は擬似線路30に基づく信号源
23の成分及び送受信装置1に基づく信号源23
の成分を打ち消す様に定数を設定する。 第1図bの構成による回路の具体例としては第
5図において、フオトダイオード119をトラン
ジスタ125のエミツタと信号線3間に移すこと
により実現できる。 次に第6図の回路構成素子に具体的数値例を適
用した場合に、電流検出回路11及び電圧検出回
路21が検出する自装置内の信号源13および信
号源23の成分の算出とこれらを補償する電流補
正回路14および電圧補正回路24の定数の算出
の方法を示し、又、擬似線路30より送受信装置
1および2を見たインピーダンスがそれぞれの検
出回路に及ぼす影響を定量的に説明する。 第1表に第6図の回路構成素子等の記号名称と
数値例を示す。e1,e2の周波数は同一で=1.5K
Hzとする。擬似線路30より送受信回路1を見込
んだインピーダンスををZ1ioとし、トランジスタ
125のエミツタ抵抗をZ125(=3Ω)とする
と、 Z1io≒Z125=3Ω
The present invention relates to a signal transmission system using a pair of signal lines. In conventional signal transmission systems, in order to simultaneously transmit signals in both directions between two devices using a pair of signal lines, the signal frequency of one device is different from the signal frequency of the other device. There were frequency division methods and methods using so-called hybrid circuits based on impedance matching, but the former method required precision filters;
The latter method required fairly sophisticated hybrid circuitry. In addition, in any of the above methods, in order to superimpose a signal and a direct current on a pair of signal lines and supply a direct current from one device to the other in addition to the signal, both devices must be magnetically saturated by the direct current. A fairly large transformer was required to prevent this. The present invention uses frequency division and hybrid methods to simultaneously transmit signals in both directions between two devices by using a voltage signal as a signal from one device and a current signal as a signal from the other device. The present invention provides a signal transmission method that does not require the use of circuits and can supply direct current from one device to another without using a transformer. The present invention will be explained in detail below with reference to the drawings. FIG. 1a is a block diagram showing the basic configuration of the present invention, in which 1 is a transmitting/receiving device (hereinafter simply referred to as transmitting/receiving device 1) that sends out a voltage signal and detects a current signal, and 2 shows a type of transmitting/receiving device that sends out a current signal and detects a current signal. A transmitting/receiving device for detecting voltage signals (hereinafter simply referred to as transmitting/receiving device 2), 3 is a signal line, 4 is a ground wire, 10 is a DC power supply, 11 is a current detection circuit (current detection means), 12
13 is a signal source; 21 is a voltage detection circuit (voltage detection means); 22
23 is a current variable circuit (current response means) and a signal source. The operating principle of the configuration in Figure 1a is explained in Figures 2 and 3.
This will be explained with reference to the figures. When transmitting a signal from the transmitting/receiving device 1 to the transmitting/receiving device 2, it is assumed that the signal source 23 of the transmitting/receiving device 2 is stopped. The voltage variable circuit 12 is operated by the signal source 13 of the transmitting/receiving device 1 to generate a voltage change on the signal line 3 according to the signal. This situation is shown in FIG. The signal voltage generated on the signal line 3 is detected by the voltage detection circuit 21 of the transmitting/receiving device 2 and extracted as a voltage or current signal. When transmitting a signal from the transmitter/receiver 2 to the transmitter/receiver 1, it is assumed that the signal source 13 of the transmitter/receiver 1 is stopped. The variable current circuit 22 is operated by the signal source 23 of the transmitter/receiver 2 to generate a current change in the signal line 3 according to the signal. This situation is shown in FIG. The signal current generated in the signal line 3 is detected by the current detection circuit 11 of the transmitting/receiving device 1 and extracted as a voltage or current signal. The above is a case where a signal is transmitted from the transmitting/receiving device 1 or 2 to the transmitting/receiving device 2 or 1 via the signal line 3 while the signal source 23 of the transmitting/receiving device 2 or the signal source 13 of the transmitting/receiving device 1 is stopped. However, if the AC impedance at the signal frequency seen from the voltage variable circuit 12 to the signal line 3 is sufficiently high,
Even if a voltage change occurs in the signal line 3, a current change does not occur in the signal line 3. Therefore, even if the signal of the signal source 13 (first transmission signal) is transmitted from the transmitting/receiving device 1 to the transmitting/receiving device 2 through the voltage variable circuit 12, the current detection circuit 11 of the transmitting/receiving device 1 does not transmit the first signal of the signal source 13 A signal based on the transmitted signal is not output. Furthermore, when transmitting the output (second transmission signal) of the signal source 23 to the signal line 3, if the AC impedance at the frequency of the second transmission signal viewed from the variable current circuit 22 to the signal line 3 is sufficiently low, Even if a current change occurs in the signal line 3, the signal from the signal source 23 (second transmission signal) is passed through the variable current circuit 22 to the transmitting/receiving device 2.
Even if the second transmission signal is transmitted from the signal source 23, the voltage detection circuit 21 of the transmitting/receiving device 2 does not output a signal based on the second transmission signal from the signal source 23. Therefore, the AC impedance at the frequency of the first transmission signal viewed from the variable voltage circuit 12 to the signal line 3 is sufficiently high, and the AC impedance at the frequency of the second transmission signal viewed from the variable current circuit 22 to the signal line 3 is sufficiently high. If the impedance is sufficiently low, even if the transmitting/receiving devices 1 and 2 operate their respective signal sources 13 and 23 simultaneously, each of them generates its own signals (the first transmission signal and the second transmission signal) on the signal line 3. (received signal) without being interfered with by the transmitter/receiver circuit 2 or 1.
(second transmission signal or first transmission signal). In addition, if the AC impedance seen from the voltage variable circuit 12 is not high enough due to reasons such as the signal line 3 being too long to be considered as an ideal transmission line, the voltage change on the signal line 3 will be Due to the current change in line 3, the signal from signal source 13 is sent to current detection circuit 1.
1 is detected, so in order to compensate for this, a current correction circuit is inserted between the signal source 13 and the current detection circuit 11 to cancel out the signal component of the signal source 13. Also, if the AC impedance seen from the signal line from the current variable circuit 22 is not low enough, the signal line 3
The current change becomes a voltage change in the signal line 3, and the voltage detection circuit 21 detects the signal from the signal source 23.
In order to compensate for this, a voltage correction circuit is inserted between the signal source 23 and the voltage detection circuit 21 to cancel out the signal component of the signal source 23. The configuration shown in FIG. 1a can also be modified as shown in FIG. 1b. In this configuration, the current detection circuit 11 needs to have low output impedance. FIG. 4 shows a circuit in which the above-described current correction circuit and voltage correction circuit are added to FIG. 1a. In FIG. 4, 14 is a current correction circuit, and 24 is a voltage correction circuit. FIG. 5 shows an embodiment based on the configuration shown in FIG. is the current detection circuit, 1
2 is a voltage variable circuit, 13 is a signal source, 110, 11
6, 120 are capacitors, 112, 124, 12
5 is a transistor, 111, 113, 114, 1
15, 117, 121, 122, 123 are resistances,
118 is a phototransistor of a photocoupler, 1
19 is a light emitting diode of a photocoupler, and 100 is an output terminal of the current detection circuit 11. 2 is a transmitting/receiving device that sends a current signal and detects a voltage signal (hereinafter simply referred to as the transmitting/receiving device 2); 20 is a DC power supply; 21 is a voltage detection circuit; 22 is a variable current circuit;
23 is a signal source, 220 and 215 are transistors,
221, 222, 223, 211, 212, 21
3,214,216 is resistance, 224,210,2
17 is a capacitor, 200 is an output terminal of the voltage detection circuit 21, 3 is a signal line, and 4 is a ground line. Next, the operation will be explained based on FIG. The voltage variable circuit 12 is a circuit in which two stages of emitter followers are directly connected, and a bias value is set by resistors 121 and 122 so that the transistor 124 operates in the active region. The voltage lower by the forward voltage drop (approximately 1.4 V) becomes the emitter voltage of the transistor 125. In this state, when a signal is applied to the base of transistor 124 through capacitor 120, the emitter voltage of transistor 125 changes in response to this signal. In the current detection circuit 11, the resistor 117 is set to a value that allows the phototransistor 118 to operate in the active region, and when the current flowing through the light emitting diode 119 changes, the collector current of the phototransistor 118 changes in accordance with this change. The current change is converted into a voltage change by resistor 117, and this voltage change is transmitted to the base of transistor 112 through capacitor 116. transistor 1
12 is a class A amplifier with bias setting resistors 114 and 115 and resistors 111 and 113, so a change in the base voltage of transistor 112 becomes a change in the collector voltage of transistor 112 and is output to output terminal 100 through capacitor 110. . In the current variable circuit 22, resistors 222 and 2
The voltage lower than the bias value set by transistor 23 by the forward voltage drop between the base and emitter of transistor 220 (approximately 0.7V) is
The emitter voltage becomes 0, and the current determined by this emitter voltage and the resistor 221 becomes the collector current of the transistor 220. In this state, the capacitor 224
When a signal is applied to the base of transistor 220 through , the collector current of transistor 220 changes in response to this signal. In the voltage detection circuit 21, the transistor 21
5 constitutes a class A amplifier with bias setting resistors 212, 213 and resistors 214, 216, so the voltage change on signal line 3 is transmitted to the base of transistor 215 through capacitor 210 and resistor 211, and The signal is output from the collector to the output terminal 200 through the capacitor 217. When transmitting a signal from the transmitting/receiving device 1 to the transmitting/receiving device 2 in the above operating state, the signal from the signal source 13 is [capacitor 120 → base of transistor 124 → emitter of transistor 124 → base of transistor 125 → emitter of transistor 125] A signal voltage as shown in FIG. 2 appears between the signal lines 3 and 4 along the route of , and this signal voltage is transmitted through the signal line 3 to the base of the transistor 215 through the capacitor 210 and the resistor 211. The signal is amplified by , and is output to the output terminal 200 through the capacitor 217 . On the other hand, when transmitting a signal from the transmitting/receiving device 2 to the transmitting/receiving device 1, the signal from the signal source 23 is transmitted to the base of the transistor 220 through the capacitor 224, and the collector current of the transistor 220 changes according to this signal. The current is transmitted as a signal current in the form shown in FIG. Since this signal current flows through the route of the signal line 3], this signal current passes through the light emitting diode 119 and appears as a signal voltage on the collector of the phototransistor 118, passes through the capacitor 116, and appears on the collector of the phototransistor 118.
The signal is amplified by 2, passed through a capacitor 110, and outputted to the output terminal 100 in the form of a signal voltage. FIG. 6 shows an embodiment based on FIG. 4, in which the signal lines 3 and 4 in FIG. 5 are replaced with pseudo lines, and a current correction circuit 14 is inserted between the current detection circuit 11 and the signal source 13. Further, a voltage correction circuit 24 is added between the voltage detection circuit 21 and the signal source 23. In FIG. 6, 30 is a pseudo line;
0, 301, 303, 304 are resistors, 302 are capacitors, 14 are current correction circuits, 140, 143
is a capacitor, 141 and 142 are resistors, 24 is a voltage correction circuit, 240 is an inductance, 243 is a capacitor, and 241 and 242 are resistors. The other circuits are exactly the same as in FIG. Next, the operation will be explained with reference to FIG. The signal lines 3 and 4 in FIG. 5 are not ideal as transmission lines, and can be represented by an equivalent circuit of the pseudo line 30 in FIG.
If the AC impedance seen in the transmitter/receiver circuit 2 is not high enough, the emitter voltage of the transistor 125 changes according to the signal from the signal source 13 in FIG. →
DC power supply 10 → light emitting diode 119 → collector of transistor 125 → emitter of transistor 125] and the route of [resistor 300 → resistor 303 → transmitter/receiver 2 → resistor 304 → resistor 301 → DC power supply 10 → light emitting diode 119 → collector of transistor 125 →emitter of transistor 125] A signal current component based on the signal source 13 flows to the light emitting diode 119 through the route. Therefore, when signals are transmitted simultaneously in both directions between the transmitting/receiving device 1 and the transmitting/receiving device 2, the output terminal 100 of the current detection circuit 11
Since the component of the signal source 13 is outputted in addition to the component of the signal source 23, the signal source 13 is output from the output terminal 100.
In order to remove the component, the current correction circuit 14 cancels out the component of the signal source 13 in the current flowing through the resistor 117. In the current correction circuit 14, the capacitor 143
is for direct current blocking, and resistors 141, 142 and capacitor 140 are for signal source 1 based on pseudo line 30.
The constant is set so as to cancel out the component of signal source 13 based on the transmitting/receiving device 2 and the component of signal source 13 based on transmitting/receiving device 2. Furthermore, the signal lines 3 and 4 in FIG. 5 are not ideal as transmission lines, and can be represented by an equivalent circuit of the pseudo line 30 in FIG. If the AC impedance shown in Fig. 6 is not sufficiently low, the collector current of the transistor 220 changes according to the signal from the signal source 23 in Fig. 6, and this current change causes the following: 221 → Resistor 304 → Capacitor 302 → Resistor 303 → Transistor 22
0 collector] route and [collector of transistor 220 → emitter of transistor 220 → resistor 221 → resistor 304 → resistor 301 → transmitting/receiving device 1 → resistor 300 → resistor 30
3→Collector of transistor 220] A signal current based on the signal source 23 flows through the route,
As a result, a voltage change based on the signal source 23 appears at the collector of the transistor 220. Therefore, if signals are transmitted simultaneously in both directions between the transmitting/receiving device 1 and the transmitting/receiving device 2, the voltage detection circuit 2
In addition to the components of the signal source 13, the components of the signal source 23 are output to the output terminal 200 of the output terminal 2.
In order to remove the component of the signal source 23 from 00, the voltage correction circuit 24 cancels the component of the signal source 23 in the voltage applied to the base of the transistor 215. In the voltage correction circuit 24, the capacitor 243
is for direct current blocking, and resistors 241, 42 and inductance 240 are components of the signal source 23 based on the pseudo line 30 and the signal source 23 based on the transmitting/receiving device 1.
Set a constant to cancel the component of . A specific example of the circuit having the configuration shown in FIG. 1b can be realized by moving the photodiode 119 between the emitter of the transistor 125 and the signal line 3 in FIG. Next, when a specific numerical example is applied to the circuit components shown in FIG. A method of calculating the constants of the current correction circuit 14 and the voltage correction circuit 24 to be compensated will be shown, and the influence of the impedance seen from the pseudo line 30 on the transmitting/receiving devices 1 and 2 on the respective detection circuits will be quantitatively explained. Table 1 shows symbol names and numerical examples of the circuit components shown in FIG. 6. The frequencies of e 1 and e 2 are the same = 1.5K
Hz. Assuming that the impedance looking into the transmitter/receiver circuit 1 from the pseudo line 30 is Z 1io and the emitter resistance of the transistor 125 is Z 125 (=3Ω), Z 1io ≒ Z 125 = 3Ω

【表】【table】

【表】【table】

【表】 擬似線路30より送受信装置2を見込んだイン
ピーダダンスをZ2ioとし、トランジスタ220の
コレクタ抵抗をZ220(100KΩ)とし、かつ、電圧
補正回路24を1つのインピーダンスZ24とした
ときに、Z24はR212R213に比べ充分大きいとする
と、 Z2io≒Z220 (R211+Z24R212R213) ≒R211+R212R213=1.1(KΩ) 送受信装置1より擬似線路30を見込んだインピ
ーダンスをZ1とすると、 送受信装置2より擬似線路30を見込んだインピ
ーダンスをZ2とすると、 出力端子100のe2による電圧成分をV1S
し、電圧補正回路14を1つのインピーダンス
Z14としたときに、Z14はR117に比べ充分大きいと
すると、 (但し、αはフオトカプラの電流変換比率でα
フオトトランジスタ118のコレクタ電流/発光ダイオ
ード119の順方向電流= 0.2) 又、擬似線路30等の影響により出力端子10
0に現われるe1の電圧成分をV1Nとすると、 V1N=e/Z・α・(R114R115R117Z14)・R113/R111 ≒e/Z・α・R117・R113/R1110.12(V) ここで、V1NとV1Sの比をθとすると 従つて送受信装置1および2の間で双方向に同
時に信号を伝送すると第1表の数値例では出力端
子100の出力には信号源23の信号の他に信号
源13の信号が18%含まれることになる。θ
R221とZ1の比に比例するのでZ1即ち送受信
装置1より擬似線路30を見たインピーダンスが
大きいほどθは小さくなることが分かる。又、
1の式よりZ1はほぼZ2ioに等しいので、結
局、θは送受信装置2のインピーダンスが大き
いほど小さいことになる。 又、V1Nを補償するのには電流補正回路14の
定数を以下の様に定めればよい。 前記の電流補正回路14のインピーダンスZ14
であり、電流補正回路14を通し出力端子100
に現われるe1の成分をV1Cとすると V1C≒−R117114115/Z14+R117114115・R113/R111・e1
117/Z14117・R113/R111・e1 従つて、V1C1N=0とすると補償することがで
きるので Z14+R117/α 即ち 従つて R1171/α・(R300R301)−R142=0 R141=1/α・Z2io=5.5(KΩ) C140=αC302=0.00086(μF) となる。 一方、出力端子200のe1による電圧成分をV
2Sとすると 又、擬似線路30等の影響により出力端子20
0に現われるe2の電圧成分をV2Nとすると、 V2N=e/R221・(Z22io)・R21221324/R211・R216/R214 ≒e/R221・Z2・R212213/R211・R216/R214=0.13(V) ここでV2NとV2Sの比をθとすると、 θ=V2N/V2S≒e/e・Z/R22
≒0.21 従つて、送受信装置1および2の間で双方向に
同時に信号を伝送すると、第1表の数値例では出
力端子200の出力には信号源13の信号の外に
信号源23の信号が21%含まれることになる。θ
はZ2とZ221の比に比例するので、Z2即ち
送受信装置2より擬似線路30を見たインピーダ
ンスが小さいほどθは小さくなることが分か
る。又、Z2の式よりZ2はほぼ擬似線路30
の直流抵抗(R300,R301,R303,R304)と送受信装
置1のインピーダンスZ1ioの和に等しいので結
局、θは信号線の距離が短かく、又、送受信装
置1のインピーダンスが小さいほど小さいことに
なる。 又、V2Nを補償するのには電圧補正回路24の
定数を以下の様に定めればよい。 前記の電圧補正回路24のインピーダンスZ24
であり電圧補正回路24を通し出力端子200に
現われるe2の成分をV2Cとすると V2C≒−R212213(R211+Z)/Z24212213(R211+Z)・e2・R
216/R214≒−R212213/Z24・e2・R216/R214 従つてV2N+V2C=0とすると補償することが
できるので 1/Z24=Z/R221・R211 即ち よつて R241=R221・R211/R300+Z1io+R
301 =8.7(KΩ) R242=R221・R211/R303+R304=10
(KΩ) L240=R221・R211・C3020.86(mH) となる。 尚、θとθの積θは、送受信装置1と2の
間で双方向に同時に信号を伝送したときの総合性
能を表わす量と考えることができ、θの値が小さ
い程性能が良いことになる。 θ=θ・θ=(e/e・R221/Z) ・(e/e・Z/R221)=Z
従つて、θは送受信装置2および送受信回路1
より擬似線路30を見込んだインピーダンスの比
で表わされ、結局、θを小さくするのには、送受
信装置2より擬似線路30を見込んだインピーダ
ンスを低くくし、送受信装置1より擬似線路1を
見込んだインピーダンスを高くすればよい。 以上の説明においては伝送信号はアナログ信号
及びデイジタル信号のいずれでもよいが、伝送信
号をデイジタル信号に限つた場合は、第1図に基
づく他の実施例として第7図の構成方法がある。 第7図において、1は電圧駆動電流検出形送受
信装置(以下単に送受信装置1という)、10は
直流電源、11は電流検出回路、12は電圧可変
回路、13は矩形波の信号源、410,424,
426はトランジスタ、411,413,41
5,420,425は抵抗、414はコンデン
サ、416はフオトカプラのフオトトランジス
タ、417はフオトカプラの発光ダイオード、4
12,421,422,423はダイオード、1
00は電流検出回路の出力端子である。また、2
は電流駆動電圧検出形の送受信装置(以下、単に
送受信装置2という)、20は直流電源、21は
電圧検出回路、22は電流可変回路、23は矩形
波の信号源、520,514はトランジスタ、5
21,522,511,512,515は抵抗、
510はコンデンサ、513はダイオード、20
0は電圧検出回路21の出力端子であり、3は信
号線、4はアース線である。 次に第7図の実施例の動作を説明する。信号源
13のデイジタル信号により、トランジスタ42
6はオン・オフのスイツチング動作をし、トラン
ジスタ424はトランジスタ426がオンのとき
オンとなり、オフのときオフとなる。トランジス
タ424がオンのときは直流電源10の電圧より
発光ダイオード417の順方向電圧(約1V)と
トランジスタ424の飽和電圧(約0.1V)を差
し引いた値の電圧がトランジスタ424のコレク
タに発生する。 一方、トランジスタ424がオフのときは直流
電源10の電圧より発光ダイオード417の順方
向電圧(約1V)とダイオード421,422,
423の順方向電圧(合計で約2V)を差し引い
た値の電圧がダイオード423のカソードに発生
する。 従つて結局、信号線3,4間には信号源13の
矩形波信号に応じほぼダイオード421,42
2,423の順方向電圧で決まる振幅のデイジタ
ル波電圧信号が発生する。 この矩形波電圧信号は〔信号線3→コンデンサ
510→抵抗511→ダイオード513→トラン
ジスタ514のベース〕のルートでトランジスタ
514のベースに伝わり、トランジスタ514は
信号に応じオン・オフのスイツチング動作をし、
出力端子200に矩形波電圧として出力される。
この様子を第8図に示す。 一方、信号源23の矩形波信号によりトランジ
スタ520はオフと活性領域の間のスイツチング
動作をし、活性領域にあるときは信号源23の電
圧と抵抗521で決まる電流がトランジスタ52
0のコレクタを流れ、又オフのときは電流が流れ
ないことで発生するトランジスタ520のコレク
タの矩形波電流は〔トランジスタ520のコレタ
→トランジスタ520のエミツタ→抵抗521→
アース線4→直流電源10→発光ダイオード41
7→トランジスタ424がオンのときはトランジ
スタ424、トランジスタ424がオフのときは
ダイオード421,422,423→信号線3→
トランジスタ520のコレクタ〕のルートで流れ
るので、この矩形波電流は発光ダイオード417
を通し、フオトトランジスタ416をオフと活性
領域の間でスイツチング動作させ、抵抗415に
よりフオトトランジスタ416のコレクタ電圧変
化となりコンデンサ414及びダイオード412
を通し、この電圧変化がトランジスタ410のベ
ースに伝えられ、トランジスタ410はオン・オ
フのスイツチング動作をし出力端子100に矩形
波電圧として出力される。この様子を第9図に示
す。 尚、前記で説明した如く、信号線3の距離が長
い等のためトランジスタ424のコレクタより信
号線を見た交流インピーダンスが充分高くない場
合は、信号源13に基づく信号成分がフオトトラ
ンジスタ416のコレクタに電流変化として現わ
れる。又、トランジスタ520のコレクタより信
号線3を見た交流インピーダンスが充分低くない
場合は、信号源23に基づく信号成分がダイオー
ド513のカソード側に電圧変化として現われ
る。 送受信装置1及び送受信装置2の間で双方向に
同時に信号を伝送する場合、上記の自分自身の回
路の信号成分を除去するのに前述の如く第6図の
電流補正回路14及び電圧補正回路24をそれぞ
れ第7図のフオトトランジスタ416のコレクタ
と信号源13及びダイオード513のカソードと
信号源23の間に加える構成もあるが、デイジタ
ル信号の場合に自分自身の信号源に基づく信号成
分が他の送受信装置からの信号成分より小さく適
当なスレシヨールドレベルを設定すれば自分自身
の信号と他の送受信装置からの信号を弁別できる
場合には、第7図に示される如く、ダイオード4
12或はダイオード513によりトランジスタ4
10或はトランジスタ514のスレシヨールドレ
ベルを上げ、自分自身の信号成分ではトランジス
タ410或はトランジスタ514はオンはせず、
他の送受信装置の信号のみでオンさせることがで
きる。 又、前記電流補正回路14及び電圧補正回路2
4を用いる方法と前記スレシヨールドレベルの設
定の方法を組み合わせて信号の弁別能力を上げる
ことも可能である。 以上、第1図および第4図の説明において装置
1および装置2の間で双方向に同時に信号を伝送
するいわゆる全2重通信の場合について述べてき
たが、両装置間において双方向に同時には信号の
伝送は行わず、一方の装置が信号を送信をしてい
る間は他方の装置は信号を送信しないいわゆる半
2重通信の場合には、前述した如く信号線等が理
想的でなく自装置からの送信信号で自装置の信号
検出回路(第1図における電流検出回路11ない
し、電圧検出回路12)が信号を検出したとして
も、信号検出回路に接続される制御回路は自装置
が信号を送信中であることを識別して誤動作を防
ぐことができるのは周知の事実である。この場合
は、第4図における電流補正回路14および電圧
補正回路24を必要としないことは明白である。 次に今迄述べた回路方式を用いて信号伝送と同
時に送受信装置1より送受信装置2に直流を供給
する構成について述べる。 第10図は第5図の送受信装置2の直流電源2
0の代りにインダクタンスを用いた電源回路を加
えた一実施例であり、第10図において26は電
源回路、25は電源回路26の出力である電源
線、600はインダタンス、601はコンデン
サ、602は抵抗、603はツエナダイオードで
ある。その他の回路は第5図と同じなので説明は
省略する。 次にこの実施例の動作を説明する。 信号線3上の電圧波形は第2図に示される様に
信号電圧と直流電圧が重畳されており、この直流
電圧は前述の如く直流電源10と抵抗121,1
22で設定されるトランジスタ124のバイアス
値よりトランジスタ124及び125のベース・
エミツタ間の順方向電圧降下分(約1.4V)だけ
低い電圧に等しい。 電源回路26のインダクタンス600は信号線
3上の電流成分の中、信号成分を阻止し直流成分
のみを取り出す働きをし、コンデンサ601は電
源線25に接続される負荷(送受信装置2及び送
受信装置2側の他の回路)による電源線25の変
動を吸収する働きをしている。抵抗602及びツ
エナダイオード603は省くことも可能であるが
電源線25に接続される負荷が大きく変動しコン
デンサ601で吸収しきれない場合でも信号線3
に流れる直流を一定に保つためのものである。他
の回路動作は第5図と同じなので説明は省略す
る。 以上の説明により、第5図の直流電源20の代
りに第10図の電源回路26を用いて送受信装置
2及び送受信装置2側の他の回路は送受信装置1
より直流の供給を受けて動作し、合わせて信号の
送受信も行えることが分かる。 第11図は第5図の送受信装置2の直流電源2
0の代りに安定化電源を用いた電源回路を加えた
一実施例であり、第11図において26は電源回
路、25は電源回路26の出力である電源線、7
00,704は抵抗、701はトランジスタ、7
02,705はツエナダイオード、703,70
6はコンデンサである。他の回路は第5図と同じ
なので説明は省略する。 第11図の実施例の動作を説明する。信号線3
上の電圧は前述の通り信号電圧と直流電圧が重畳
されたものであるが、この重畳電圧は抵抗70
0、ツエナダイオード702、コンデンサ703
により安定化され、トランジスタ701のベース
にはツエナダイオード702で決まる直流電圧が
印加され、この直流電圧よりトランジスタ701
のベース・エミツタ間の順方向電圧降下分(約
0.7V)低い直流電圧がトランジスタ701のエ
ミツタに出力され、抵抗704を通し電源線25
に出力される。コンデンサ706は電源線25に
接続される負荷(送受信装置2及び送受信装置2
側の他の回路)による電源線25の変動を吸収す
る働きをしている。抵抗704、ツエナダイオー
ド705は省くことも可能であるが、電源線25
に接続される負荷が大きく変動し、コンデンサ7
06で吸収しきれない場合でも信号線3に流れる
直流を一定に保つためのものである。 他の回路動作は第5図と同じなので説明は省略
する。 以上の説明により、第5図の直流電源20の代
りに第11図の電源回路26を用いて送受信装置
2及び送受信装置2側の他の回路は送受信装置1
より直流の供給を受けて動作し、合わせて信号の
送受信も行えることが分かる。 以上説明したように本発明によれば、一対の信
号線を用いて2つの装置間で双方向に同時に信号
伝送ができかつ、一方の装置から他方の装置への
直流供給もできるので例えばボタン電話装置等に
本方式を用いるとケーブルの少対化に貢献し、そ
の経済効果は非常に大きい。
[Table] When the impedance looking into the transmitting/receiving device 2 from the pseudo line 30 is Z 2io , the collector resistance of the transistor 220 is Z 220 (100KΩ), and the voltage correction circuit 24 is one impedance Z 24 , Assuming that Z 24 is sufficiently larger than R 212 R 213 , Z 2io ≒ Z 220 (R 211 + Z 24 R 212 R 213 ) ≒ R 211 + R 212 R 213 = 1.1 (KΩ) Estimating the pseudo line 30 from the transmitting/receiving device 1 If the impedance is Z1 , then If the impedance looking into the pseudo line 30 from the transmitting/receiving device 2 is Z2 , then The voltage component due to e 2 of the output terminal 100 is V 1S , and the voltage correction circuit 14 is one impedance.
Assuming that Z 14 is sufficiently larger than R 117 , (However, α is the current conversion ratio of the photocoupler.
Collector current of phototransistor 118/forward current of light emitting diode 119 = 0.2) Also, due to the influence of pseudo line 30 etc., output terminal 10
If the voltage component of e 1 appearing at 0 is V 1N , then V 1N = e 1 /Z 1・α・(R 114 R 115 R 117 Z 14 )・R 113 /R 111 ≒e 1 /Z 1・α・R 117・R 113 /R 111 0.12 (V) Here, if the ratio of V 1N and V 1S is θ 1 , Therefore, when signals are transmitted simultaneously in both directions between transmitting and receiving devices 1 and 2, in the numerical example in Table 1, the output of output terminal 100 includes 18% of the signal from signal source 13 in addition to the signal from signal source 23. It turns out. θ 1 is
Since it is proportional to the ratio of R 221 and Z 1 , it can be seen that the larger Z 1 , that is, the impedance seen from the transmitting/receiving device 1 to the pseudo line 30, the smaller θ 1 becomes. or,
Since Z 1 is approximately equal to Z 2io according to the formula for N 1 , it follows that θ 1 becomes smaller as the impedance of the transmitting/receiving device 2 becomes larger. Further, in order to compensate for V 1N , the constant of the current correction circuit 14 may be determined as follows. Impedance Z 14 of the current correction circuit 14
teeth The output terminal 100 is passed through the current correction circuit 14.
Letting the component of e 1 appearing in V 1C be V 1C ≒-R 117 R 114 R 115 /Z 14 +R 117 R 114 R 115・R 113 /R 111・e 1
R 117 /Z 14 R 117・R 113 /R 111・e 1 Therefore, if V 1C V 1N = 0, it can be compensated, so Z 14 +R 117 Z 1 /α, that is Therefore, R 117 1/α·(R 300 R 301 )−R 142 =0 R 141 =1/α·Z 2io =5.5 (KΩ) C 140 =αC 302 =0.00086 (μF). On the other hand, the voltage component due to e 1 of the output terminal 200 is V
Assuming 2S Also, due to the influence of the pseudo line 30 etc., the output terminal 20
If the voltage component of e 2 appearing at 0 is V 2N , then V 2N = e 2 /R 221・(Z 2 Z 2io )・R 212 R 213 Z 24 /R 211・R 216 /R 214 ≒e 2 /R 221・Z 2・R 212 R 213 /R 211・R 216 /R 214 = 0.13 (V) Here, if the ratio of V 2N and V 2S is θ 2 , then θ 2 = V 2N /V 2S ≒e 2 / e 1・Z 2 /R 22
1
≒ 0.21 Therefore, when signals are transmitted simultaneously in both directions between transmitting and receiving devices 1 and 2, in the numerical example of Table 1, the output of output terminal 200 includes the signal of signal source 23 in addition to the signal of signal source 13. will be included in 21%. θ
2 is proportional to the ratio of Z 2 and Z 221 , it can be seen that the smaller Z 2 , that is, the impedance seen from the transmitting/receiving device 2 to the pseudo line 30, the smaller θ 2 becomes. Also, from the formula of Z 2 , Z 2 is almost the pseudo line 30
Since it is equal to the sum of the DC resistance of The smaller it is, the smaller it is. Further, in order to compensate for V 2N , the constants of the voltage correction circuit 24 may be determined as follows. Impedance Z 24 of the voltage correction circuit 24
teeth If the component of e 2 that passes through the voltage correction circuit 24 and appears at the output terminal 200 is V 2C , then V 2C ≒-R 212 R 213 (R 211 +Z 2 )/Z 24 R 212 R 213 (R 211 +Z 2 )・e 2・R
216 /R 214 ≒ -R 212 R 213 /Z 24・e 2・R 216 /R 214 Therefore, if V 2N +V 2C = 0, it can be compensated, so 1/Z 24 = Z 2 /R 221・R 211 i.e. Therefore, R 241 = R 221・R 211 /R 300 +Z 1io +R
301 = 8.7 (KΩ) R 242 = R 221・R 211 /R 303 +R 304 =10
(KΩ) L 240 = R 221・R 211・C 302 0.86 (mH). Note that the product θ of θ 1 and θ 2 can be considered as a quantity representing the overall performance when signals are transmitted simultaneously in both directions between the transmitting and receiving devices 1 and 2, and the smaller the value of θ, the better the performance. It turns out. θ=θ 1・θ 2 = (e 1 /e 2・R 221 /Z 1 )・(e 2 /e 1・Z 2 /R 221 )=Z 2 /
Z 1 Therefore, θ is the transmitting/receiving device 2 and the transmitting/receiving circuit 1
It is expressed as a ratio of impedances considering the pseudo line 30, and in order to reduce θ, the impedance considering the pseudo line 30 should be lower than that of the transmitting/receiving device 2, and the impedance considering the pseudo line 1 should be lower than that of the transmitting/receiving device 1. Just make the impedance higher. In the above description, the transmission signal may be either an analog signal or a digital signal, but when the transmission signal is limited to a digital signal, there is a configuration method shown in FIG. 7 as another embodiment based on FIG. 1. In FIG. 7, 1 is a voltage-driven current detection type transmitting/receiving device (hereinafter simply referred to as the transmitting/receiving device 1), 10 is a DC power supply, 11 is a current detection circuit, 12 is a voltage variable circuit, 13 is a rectangular wave signal source, 410, 424,
426 is a transistor, 411, 413, 41
5, 420, 425 are resistors, 414 are capacitors, 416 are photo transistors of photo couplers, 417 are light emitting diodes of photo couplers, 4
12,421,422,423 are diodes, 1
00 is the output terminal of the current detection circuit. Also, 2
20 is a DC power supply, 21 is a voltage detection circuit, 22 is a variable current circuit, 23 is a rectangular wave signal source, 520 and 514 are transistors, 5
21,522,511,512,515 are resistances,
510 is a capacitor, 513 is a diode, 20
0 is an output terminal of the voltage detection circuit 21, 3 is a signal line, and 4 is a ground line. Next, the operation of the embodiment shown in FIG. 7 will be explained. The digital signal from the signal source 13 causes the transistor 42 to
The transistor 424 is turned on when the transistor 426 is on, and turned off when the transistor 426 is off. When the transistor 424 is on, a voltage equal to the voltage of the DC power supply 10 minus the forward voltage of the light emitting diode 417 (approximately 1 V) and the saturation voltage of the transistor 424 (approximately 0.1 V) is generated at the collector of the transistor 424. On the other hand, when the transistor 424 is off, the forward voltage of the light emitting diode 417 (approximately 1V) and the diodes 421, 422,
A voltage is generated at the cathode of diode 423 less the forward voltage of 423 (approximately 2V in total). Therefore, in the end, diodes 421 and 42 are connected between the signal lines 3 and 4 depending on the rectangular wave signal from the signal source 13.
A digital wave voltage signal with an amplitude determined by the forward voltage of 2,423 is generated. This rectangular wave voltage signal is transmitted to the base of the transistor 514 via the route [signal line 3 → capacitor 510 → resistor 511 → diode 513 → base of transistor 514], and transistor 514 performs an on/off switching operation according to the signal.
It is output to the output terminal 200 as a rectangular wave voltage.
This situation is shown in FIG. On the other hand, the rectangular wave signal from the signal source 23 causes the transistor 520 to perform a switching operation between off and active regions, and when it is in the active region, the current determined by the voltage of the signal source 23 and the resistor 521 flows to the
The rectangular wave current in the collector of the transistor 520 that flows through the collector of the transistor 520 and is generated because no current flows when it is off is [collector of the transistor 520 → emitter of the transistor 520 → resistor 521 →
Earth wire 4 → DC power supply 10 → Light emitting diode 41
7→Transistor 424 when transistor 424 is on, diodes 421, 422, 423 when transistor 424 is off→signal line 3→
Since the square wave current flows through the route of the collector of the transistor 520, this rectangular wave current flows through the light emitting diode 417.
, the phototransistor 416 is switched between the off and active regions, and the collector voltage of the phototransistor 416 changes due to the resistor 415, causing the capacitor 414 and the diode 412 to change.
This voltage change is transmitted to the base of the transistor 410, which performs an on/off switching operation and is outputted to the output terminal 100 as a rectangular wave voltage. This situation is shown in FIG. As explained above, if the AC impedance seen from the collector of the transistor 424 to the signal line is not sufficiently high due to the long distance of the signal line 3, etc., the signal component based on the signal source 13 will be transferred to the collector of the phototransistor 416. appears as a change in current. Further, if the AC impedance seen from the collector of the transistor 520 to the signal line 3 is not sufficiently low, a signal component based on the signal source 23 appears as a voltage change on the cathode side of the diode 513. When transmitting signals simultaneously in both directions between the transmitting/receiving device 1 and the transmitting/receiving device 2, the current correction circuit 14 and voltage correction circuit 24 shown in FIG. 6 are used to remove the signal component of the own circuit. There is also a configuration in which the signal components are added between the collector of the phototransistor 416 and the signal source 13 and the cathode of the diode 513 and the signal source 23 in FIG. If it is possible to distinguish between the own signal and the signal from another transmitter/receiver by setting an appropriate threshold level smaller than the signal component from the transmitter/receiver, as shown in FIG.
12 or transistor 4 by diode 513
The threshold level of transistor 10 or transistor 514 is raised, and the transistor 410 or transistor 514 is not turned on by its own signal component.
It can be turned on only by a signal from another transmitting/receiving device. Further, the current correction circuit 14 and the voltage correction circuit 2
It is also possible to improve the signal discrimination ability by combining the method using 4 and the method of setting the threshold level. Above, in the explanation of FIGS. 1 and 4, we have described the case of so-called full-duplex communication in which signals are transmitted simultaneously in both directions between device 1 and device 2. In the case of so-called half-duplex communication, in which no signal is transmitted, and one device is transmitting a signal while the other device is transmitting a signal, the signal line etc. is not ideal and self-contained as described above. Even if the signal detection circuit (current detection circuit 11 or voltage detection circuit 12 in FIG. 1) of the own device detects a signal transmitted from the device, the control circuit connected to the signal detection circuit will detect that the own device is receiving the signal. It is a well-known fact that it is possible to prevent malfunctions by identifying that a message is being transmitted. In this case, it is clear that the current correction circuit 14 and voltage correction circuit 24 shown in FIG. 4 are not required. Next, a configuration will be described in which direct current is supplied from the transmitting/receiving device 1 to the transmitting/receiving device 2 at the same time as signal transmission using the circuit system described so far. Figure 10 shows the DC power supply 2 of the transmitting/receiving device 2 in Figure 5.
This is an embodiment in which a power supply circuit using an inductance is added instead of 0, and in FIG. The resistor 603 is a Zener diode. Since the other circuits are the same as those in FIG. 5, their explanation will be omitted. Next, the operation of this embodiment will be explained. The voltage waveform on the signal line 3 is a signal voltage and a DC voltage superimposed as shown in FIG.
Based on the bias value of transistor 124 set at 22, the base of transistors 124 and 125 is
Equal to the voltage lower by the forward voltage drop (approximately 1.4V) between the emitters. The inductance 600 of the power supply circuit 26 functions to block the signal component and take out only the DC component among the current components on the signal line 3, and the capacitor 601 functions to block the signal component and take out only the DC component among the current components on the signal line 3. It functions to absorb fluctuations in the power supply line 25 caused by other circuits on the side. It is possible to omit the resistor 602 and the Zener diode 603, but even if the load connected to the power supply line 25 fluctuates greatly and cannot be absorbed by the capacitor 601, the signal line 3
This is to keep the direct current flowing through the pipe constant. Other circuit operations are the same as those in FIG. 5, so explanations will be omitted. According to the above explanation, the power supply circuit 26 shown in FIG. 10 is used instead of the DC power supply 20 shown in FIG.
It can be seen that it operates by receiving a direct current supply and can also send and receive signals. Figure 11 shows the DC power supply 2 of the transmitting/receiving device 2 in Figure 5.
This is an embodiment in which a power supply circuit using a stabilized power supply is added instead of 0, and in FIG.
00,704 is a resistor, 701 is a transistor, 7
02,705 is a zener diode, 703,70
6 is a capacitor. Since the other circuits are the same as those in FIG. 5, their explanation will be omitted. The operation of the embodiment shown in FIG. 11 will be explained. Signal line 3
The above voltage is the signal voltage and DC voltage superimposed as described above, but this superimposed voltage is applied to the resistor 70.
0, Zener diode 702, capacitor 703
A DC voltage determined by a Zener diode 702 is applied to the base of the transistor 701, and from this DC voltage, the transistor 701
Forward voltage drop between base and emitter (approx.
A low DC voltage (0.7V) is output to the emitter of the transistor 701 and is passed through the resistor 704 to the power supply line 25.
is output to. A capacitor 706 is connected to a load connected to the power supply line 25 (the transmitting/receiving device 2 and the transmitting/receiving device 2).
It functions to absorb fluctuations in the power supply line 25 caused by other circuits on the side. Although it is possible to omit the resistor 704 and the Zener diode 705, the power line 25
The load connected to capacitor 7 fluctuates greatly, and capacitor 7
This is to keep the direct current flowing through the signal line 3 constant even if it cannot be completely absorbed by the signal line 3. Other circuit operations are the same as those in FIG. 5, so explanations will be omitted. According to the above explanation, the power supply circuit 26 of FIG. 11 is used instead of the DC power supply 20 of FIG.
It can be seen that it operates by receiving a direct current supply and can also send and receive signals. As explained above, according to the present invention, signals can be transmitted simultaneously in both directions between two devices using a pair of signal lines, and direct current can also be supplied from one device to the other, such as a button telephone. When this method is used in equipment, etc., it contributes to reducing the number of cable pairs, and the economic effect is very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bは本発明の原理を示すブロツク
図、第2図は第1図の信号源13に基づく信号線
3上の電圧波形図、第3図は第1図の信号源23
に基づく信号線3上の電流波形図、第4図は第1
図に電流補正回路及び電圧補正回路を付加した本
発明の原理を示すブロツク図、第5図は第1図a
の構成に基づく本発明の一実施例を示す回路図、
第6図は第4図の構成に基づく本発明の一実施例
を示す回路図、第7図はデイジタル伝送の場合の
第1図aの構成に基づく本発明の他の実施例を示
す回路図、第8図は第7図の信号源13に基づく
信号線3上の電圧波形及び出力端子200の波形
を示す図、第9図は第7図の信号源23に基づく
信号線3上の電流波形及び出力端子100の波形
を示す図、第10図は第5図の直流電源20をイ
ンダクタンスによる電源回路に置き換えた場合の
本発明の実施例を示す回路図、第11図は第5図
の直流電源20を安定化電源による電源回路に置
き換えた場合の本発明の実施例を示す回路図であ
る。
1a and b are block diagrams showing the principle of the present invention, FIG. 2 is a voltage waveform diagram on the signal line 3 based on the signal source 13 of FIG. 1, and FIG. 3 is a diagram of the signal source 23 of FIG.
Figure 4 is a current waveform diagram on signal line 3 based on
Figure 5 is a block diagram illustrating the principle of the present invention with the addition of a current correction circuit and a voltage correction circuit.
A circuit diagram showing an embodiment of the present invention based on the configuration of
FIG. 6 is a circuit diagram showing one embodiment of the present invention based on the configuration of FIG. 4, and FIG. 7 is a circuit diagram showing another embodiment of the present invention based on the configuration of FIG. 1a in the case of digital transmission. , FIG. 8 is a diagram showing the voltage waveform on the signal line 3 based on the signal source 13 of FIG. 7 and the waveform of the output terminal 200, and FIG. 9 is a diagram showing the current on the signal line 3 based on the signal source 23 of FIG. 10 is a circuit diagram showing an embodiment of the present invention in which the DC power supply 20 in FIG. 5 is replaced with a power supply circuit using inductance, and FIG. FIG. 2 is a circuit diagram showing an embodiment of the present invention in which the DC power supply 20 is replaced with a power supply circuit using a stabilized power supply.

Claims (1)

【特許請求の範囲】 1 1対の信号線を介して対向する第1の送受信
装置と第2の送受信装置との間で双方向の信号伝
送を行う方式において、前記第1の送受信装置に
は前記信号線に第1の伝送信号のレベルに応じた
電圧出力を出す低出力インピーダンスの電圧応答
手段と前記信号線の電流変化に応じた出力を出す
電流検出手段とを備え、前記第2の送受信装置に
は第2の伝送信号のレベルに応じた電流出力を前
記信号線に出す高出力インピーダンスの電流応答
手段と前記信号線の電圧変化に応じた出力を出す
高入力インピーダンスの電圧検出手段とを備え、
前記第1の送受信装置から前記信号線を見た前記
第1の伝送信号の周波数におけるインピーダンス
が高インピーダンスとなりまた前記第2の送受信
装置から前記信号線を見た前記第2の伝送信号の
周波数におけるインピーダンスが低インピーダン
スとなるように設定され、前記電流検出手段の出
力には前記電圧応答手段に基く前記第1の伝送信
号の成分が前記電流応答手段に基く前記第2の伝
送信号の成分より充分小さくまた前記電圧検出手
段の出力には前記電流応答手段に基く前記第2の
伝送信号の成分が前記電圧応答手段に基く前記第
1の伝送信号の成分より充分小さくなるように構
成されたことを特徴とする信号伝送方式。 2 前記電圧応答手段は前記信号線に直接接続さ
れ、前記電流検出手段は前記電圧応答手段を介し
て前記信号線に接続されたことを特徴とする特許
請求の範囲第1項記載の信号伝送方式。 3 1対の信号線を介して対向する第1の送受信
装置と第2の送受信装置との間で双方向の信号伝
送を行う方式において、前記第1の送受信装置に
は前記信号線に第1の伝送信号のレベルに応じた
電圧出力を出す低出力インピーダンスの電圧応答
手段と前記信号線の電流変化に応じた出力を出す
電流検出手段とを備え、前記第2の送受信装置に
は第2の伝送信号のレベルに応じた電流出力を前
記信号線に出す高出力インピーダンスの電流応答
手段と前記信号線の電圧変化に応じた出力を出す
高入力インピーダンスの電圧検出手段とを備え、
また、前記第1の送受信装置には前記第1の伝送
信号による前記1対の信号線間の電圧変化を前記
電流検知手段が検知しないようにする電流補正回
路を備えるとともに、前記第2の送受信装置には
前記第2の伝送信号による前記1対の信号線を介
する電流変化を前記電圧検知回路が検知しないよ
うにする電圧補正回路を備えたことを特徴とする
信号伝送方式。 4 前記電圧応答手段は前記信号線に直接接続さ
れ、前記電流検出手段は前記電圧応答手段を介し
て前記信号線に接続されたことを特徴とする特許
請求の範囲第3項記載の信号伝送方式。 5 1対の信号線を介して対向する第1の送受信
装置と第2の送受信装置との間で双方向の信号伝
送を行う方式において、前記第1の送受信装置に
は前記信号線に第1の伝送信号のレベルに応じた
電圧出力を出す低出力インピーダンスの電圧応答
手段と前記信号線の電流変化に応じた出力を出す
電流検出手段とを備え、前記第2の送受信装置に
は第2の伝送信号のレベルに応じた電流出力を前
記信号線に出す高出力インピーダンスの電流応答
手段と前記信号線の電圧変化に応じた出力を出す
高入力インピーダンスの電圧検出手段とを備え、
前記第1の送受信装置から前記信号線を見た前記
第1の伝送信号の周波数におけるインピーダンス
が高インピーダンスとなりまた前記第2の送受信
装置から前記信号線を見た前記第2の伝送信号の
周波数におけるインピーダンスが低インピーダン
スとなるように設定され、前記電流検出手段の出
力には前記電圧応答手段に基く前記第1の伝送信
号の成分が前記電流応答手段に基く前記第2の伝
送信号の成分より充分小さくまた前記電圧検出手
段の出力には前記電流応答手段に基く前記第2の
伝送信号の成分が前記電圧応答手段に基く前記第
1の伝送信号の成分より充分小さくなるように構
成され、また、前記第1の送受信装置には前記1
対の信号線間に一定の直流電圧を重畳する直流電
源を備えるとともに、前記第2の送受信装置には
前記1対の信号線から前記一定の直流電流を取り
出して必要な直流電源とする直流取り出し手段を
備えたことを特徴とする信号伝送方式。 6 前記電圧応答手段は前記信号線に直接接続さ
れ、前記電流検出手段は前記電圧応答手段を介し
て前記信号線に接続されたことを特徴とする特許
請求の範囲第5項記載の信号伝送方式。
[Claims] 1. In a method for performing bidirectional signal transmission between a first transmitting/receiving device and a second transmitting/receiving device facing each other via a pair of signal lines, the first transmitting/receiving device includes: The second transmitting/receiving means is provided with a low output impedance voltage response means for outputting a voltage output according to the level of the first transmission signal on the signal line, and a current detection means for outputting an output according to a current change in the signal line. The device includes a high output impedance current response means that outputs a current output to the signal line according to the level of the second transmission signal, and a high input impedance voltage detection means that outputs an output according to the voltage change of the signal line. Prepare,
The impedance at the frequency of the first transmission signal when looking at the signal line from the first transmitter/receiver is high impedance, and the impedance at the frequency of the second transmission signal when looking at the signal line from the second transmitter/receiver The impedance is set to be low impedance, and the component of the first transmission signal based on the voltage response means is more sufficient for the output of the current detection means than the component of the second transmission signal based on the current response means. Furthermore, the output of the voltage detection means is configured such that the component of the second transmission signal based on the current response means is sufficiently smaller than the component of the first transmission signal based on the voltage response means. Characteristic signal transmission method. 2. The signal transmission system according to claim 1, wherein the voltage response means is directly connected to the signal line, and the current detection means is connected to the signal line via the voltage response means. . 3. In a method for performing bidirectional signal transmission between a first transmitting/receiving device and a second transmitting/receiving device facing each other via a pair of signal lines, the first transmitting/receiving device has a first transmitting/receiving device connected to the signal line. The second transmitting/receiving device includes a low output impedance voltage response means that outputs a voltage according to the level of the transmission signal, and a current detecting means that outputs an output according to the current change of the signal line, and the second transmitting/receiving device includes a second comprising a high output impedance current response means that outputs a current output to the signal line according to the level of the transmission signal, and a high input impedance voltage detection means that outputs an output according to the voltage change of the signal line,
Further, the first transmitting/receiving device includes a current correction circuit that prevents the current detecting means from detecting a voltage change between the pair of signal lines due to the first transmission signal, and the second transmitting/receiving device 1. A signal transmission system, characterized in that the device includes a voltage correction circuit that prevents the voltage detection circuit from detecting a change in current through the pair of signal lines caused by the second transmission signal. 4. The signal transmission system according to claim 3, wherein the voltage response means is directly connected to the signal line, and the current detection means is connected to the signal line via the voltage response means. . 5. In a method for performing bidirectional signal transmission between a first transmitting/receiving device and a second transmitting/receiving device facing each other via a pair of signal lines, the first transmitting/receiving device has a first transmitting/receiving device connected to the signal line. The second transmitting/receiving device includes a low output impedance voltage response means that outputs a voltage according to the level of the transmission signal, and a current detecting means that outputs an output according to the current change of the signal line, and the second transmitting/receiving device includes a second comprising a high output impedance current response means that outputs a current output to the signal line according to the level of the transmission signal, and a high input impedance voltage detection means that outputs an output according to the voltage change of the signal line,
The impedance at the frequency of the first transmission signal when looking at the signal line from the first transmitter/receiver is high impedance, and the impedance at the frequency of the second transmission signal when looking at the signal line from the second transmitter/receiver The impedance is set to be low impedance, and the component of the first transmission signal based on the voltage response means is more sufficient for the output of the current detection means than the component of the second transmission signal based on the current response means. and the output of the voltage detection means is configured such that a component of the second transmission signal based on the current response means is sufficiently smaller than a component of the first transmission signal based on the voltage response means, and The first transmitting/receiving device includes the first transmitting/receiving device.
The second transmitting/receiving device is equipped with a DC power source that superimposes a constant DC voltage between the pair of signal lines, and the second transmitting/receiving device is provided with a DC output that extracts the constant DC current from the pair of signal lines to obtain a necessary DC power source. A signal transmission method characterized by comprising means. 6. The signal transmission system according to claim 5, wherein the voltage response means is directly connected to the signal line, and the current detection means is connected to the signal line via the voltage response means. .
JP1543780A 1980-02-13 1980-02-13 Signal transmission system Granted JPS56114450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1543780A JPS56114450A (en) 1980-02-13 1980-02-13 Signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1543780A JPS56114450A (en) 1980-02-13 1980-02-13 Signal transmission system

Publications (2)

Publication Number Publication Date
JPS56114450A JPS56114450A (en) 1981-09-09
JPS6247382B2 true JPS6247382B2 (en) 1987-10-07

Family

ID=11888770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1543780A Granted JPS56114450A (en) 1980-02-13 1980-02-13 Signal transmission system

Country Status (1)

Country Link
JP (1) JPS56114450A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2535926A1 (en) * 1982-11-10 1984-05-11 Despres Robert Method and device for grouping all the dialogue and supply functions on a single bifilar line.
JPS62127137U (en) * 1986-01-31 1987-08-12
JP4148910B2 (en) * 2004-03-15 2008-09-10 株式会社小糸製作所 Signal transmission system and vehicle lamp
JP4526297B2 (en) * 2004-04-23 2010-08-18 ニッタン株式会社 Transmission system
JP5660467B2 (en) * 2012-02-22 2015-01-28 株式会社デンソー Communication device
JP2014053807A (en) * 2012-09-07 2014-03-20 Asahi Kasei Electronics Co Ltd System, device and method for power line communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160884A (en) * 1974-11-22 1976-05-27 Daifuku Machinery Works SHINGODENSOSOCHI
JPS51130838A (en) * 1975-05-10 1976-11-13 Kyosan Electric Mfg Co Ltd Information transmission system
JPS5489411A (en) * 1977-12-27 1979-07-16 Komatsu Mfg Co Ltd Data transmission system using both voltage and current signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160884A (en) * 1974-11-22 1976-05-27 Daifuku Machinery Works SHINGODENSOSOCHI
JPS51130838A (en) * 1975-05-10 1976-11-13 Kyosan Electric Mfg Co Ltd Information transmission system
JPS5489411A (en) * 1977-12-27 1979-07-16 Komatsu Mfg Co Ltd Data transmission system using both voltage and current signals

Also Published As

Publication number Publication date
JPS56114450A (en) 1981-09-09

Similar Documents

Publication Publication Date Title
USRE42590E1 (en) Telephone line coupler
US5280526A (en) Transformer-less hybrid circuit
CA1144243A (en) Fiber optic signal conditioning circuit
US3530260A (en) Transistor hybrid circuit
US4592069A (en) Line powered modem
US4621170A (en) Means of transmitting signals along a line while also providing a direct voltage source
JPS6247382B2 (en)
JPH0851496A (en) Hybrid circuit and modem containing no transformer
US4727535A (en) Telephone network coupler
WO1997002662A1 (en) A data access arrangement having improved transmit-receive separation
US3476879A (en) Line relay for d.c. telegraph systems
US4119806A (en) Subscriber's line equipment for a telephone exchange
US6272220B1 (en) Electronically switched optically coupled line interface
US4776007A (en) Solid state trunk circuit
US4278847A (en) Transformerless hybrid circuits
US4491700A (en) Hybrid circuit in a telephone subscriber interface circuit
US2936367A (en) Transistor transceiver
JPS584856B2 (en) transmission circuit device
US2131388A (en) Apparatus for communication systems
WO1988006386A1 (en) Telephone network coupler
US3501703A (en) Circuit arrangement for a single or multi-frequency signal receiver,operating with a speech immunity circuit and limiting the signals received
US3952252A (en) Noise suppressor for telecommunication system
US4412353A (en) Mixing circuit
NO167884B (en) CONNECTION STEP TO AA CONNECT A SIGNAL PROCESSING DEVICE TO A TRANSMISSION LINE.
NL7903797A (en) FORK SHIFT.