JPS6247337B2 - - Google Patents

Info

Publication number
JPS6247337B2
JPS6247337B2 JP55020076A JP2007680A JPS6247337B2 JP S6247337 B2 JPS6247337 B2 JP S6247337B2 JP 55020076 A JP55020076 A JP 55020076A JP 2007680 A JP2007680 A JP 2007680A JP S6247337 B2 JPS6247337 B2 JP S6247337B2
Authority
JP
Japan
Prior art keywords
shield
curvature
insulating container
electric field
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55020076A
Other languages
Japanese (ja)
Other versions
JPS56118228A (en
Inventor
Satoru Shioiri
Iwao Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2007680A priority Critical patent/JPS56118228A/en
Publication of JPS56118228A publication Critical patent/JPS56118228A/en
Publication of JPS6247337B2 publication Critical patent/JPS6247337B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 本発明は真空バルブに係り、特に中間シールド
と固定シールドとを改良した真空バルブに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum valve, and more particularly to a vacuum valve with an improved intermediate shield and fixed shield.

一般に真空しや断器のシールドは、電流しや断
時に電極間で発生する金属蒸気が、絶縁容器の内
面に付着するのを防止するために大きな役割を果
している。
In general, the shield of a vacuum shield or disconnector plays a major role in preventing metal vapor generated between the electrodes from adhering to the inner surface of the insulating container when the current is disconnected.

しかしながらこの種の放電はシールドから絶縁
容器を介して沿面放電を生じるために、真空バル
ブのユニツト電圧の向上をさまたげている。
However, this type of discharge causes a creeping discharge from the shield through the insulating container, thereby hindering the improvement of the unit voltage of the vacuum bulb.

第1図に従来の真空しや断器の構造の一例を示
す。図中1は接点、2は電極でこの部分で電流の
しや断が行なわれる。3は固定通電軸で先端固定
側蓋板4を貫通して一方の電極2に取着してい
る。5は可動通電軸でベローズ6を介して可動側
蓋板7を気密に貫通し、先端を他方の電極2に取
着している。8は中間シールドで、電流しや断
時、接点1の間で発生したアークが直接、絶縁容
器9の内面に接触するのを防いでいる。この中間
シールド8は、絶縁容器9を2個並設してその中
間を支持することにより、両接点から電気的に絶
縁されている。10は端部シールドで絶縁容器9
の封着部を電界緩和するために設けられている。
FIG. 1 shows an example of the structure of a conventional vacuum breaker. In the figure, 1 is a contact point, and 2 is an electrode, at which current flow is interrupted. Reference numeral 3 denotes a fixed current-carrying shaft that passes through the fixed end cover plate 4 and is attached to one electrode 2. Reference numeral 5 denotes a movable current-carrying shaft that airtightly penetrates the movable side cover plate 7 via a bellows 6, and its tip is attached to the other electrode 2. An intermediate shield 8 prevents the arc generated between the contacts 1 from directly contacting the inner surface of the insulating container 9 when the current is interrupted. This intermediate shield 8 is electrically insulated from both contacts by arranging two insulating containers 9 side by side and supporting the middle. 10 is an end shield and an insulating container 9
It is provided to relieve the electric field at the sealed portion.

第1図に示すように、中間シールド8と端部シ
ールド10の近傍に絶縁容器9が介在しているた
め、放電は、シールド8,10から絶縁容器9を
介して進展する。この為、絶縁破壊電圧は低い事
が知られている。これは第2図aに示すように、
中間シールド8に正の電圧が加わると、陰極の端
部シールド10から放出した電子は、絶縁容器9
に衝突しここで2次電子を放出する。なお第2図
図示点線は各シールド8,10の表面の電界強度
である。この時の衝突エネルギーと2次電子放出
効率δEを第3図に示す。このδE曲線に従つて
端部シールド10から放出された電子は、2次電
子を放出する。この2次電子なだれは、第2図b
に示す絶縁容器内面の電界強度分布によつて電子
増殖し、ついには絶縁破壊に到る。このように絶
縁容器内面の電界強度が高いため破壊電圧が低く
なつている。
As shown in FIG. 1, since the insulating container 9 is interposed near the intermediate shield 8 and the end shield 10, the discharge progresses from the shields 8 and 10 via the insulating container 9. For this reason, it is known that the dielectric breakdown voltage is low. This is shown in Figure 2a,
When a positive voltage is applied to the intermediate shield 8, the electrons emitted from the cathode end shield 10 are transferred to the insulating container 9.
collides with and releases secondary electrons. Note that the dotted lines in FIG. 2 indicate the electric field strength on the surface of each shield 8, 10. The collision energy and secondary electron emission efficiency δE at this time are shown in FIG. Electrons emitted from the end shield 10 according to this δE curve emit secondary electrons. This secondary electron avalanche is shown in Figure 2b.
Due to the electric field intensity distribution on the inner surface of the insulating container shown in Figure 1, electrons multiply and eventually lead to dielectric breakdown. Since the electric field strength on the inner surface of the insulating container is thus high, the breakdown voltage is low.

近年、真空バルブのユニツト電圧の高電圧化が
進められているが、上記の理由で高電圧化の際に
大きな問題となつている。
In recent years, the unit voltage of vacuum valves has been increased to a higher voltage, but for the reasons mentioned above, increasing the voltage has become a major problem.

本発明は上記の事情に鑑みてなされたもので、
中間および端部シールドの曲率半径をγ,γ
,γとし、中間シールドと端部シールド間の
間隙長をdとすると曲率半径γ,γ,γは γ=2.5d〜4.0d γ=0.4d〜0.7d γ=0.1d〜0.2d の関係を満足し、絶縁容器の表面に対して曲率半
径γ,γの順序で離れるように延ばし、曲率
半径γを固定及び端部シールドの内側に配置し
て構成することにより、耐電圧性能の優れた真空
バルブを提供することを目的とするものである。
The present invention was made in view of the above circumstances, and
Let the radius of curvature of the intermediate and end shields be γ 1 , γ
2 , γ 3 , and the gap length between the intermediate shield and the end shield is d, the radius of curvature γ 1 , γ 2 , γ 3 is γ 1 = 2.5d to 4.0d γ 2 = 0.4d to 0.7d γ 3 = It satisfies the relationship of 0.1d to 0.2d, extends away from the surface of the insulating container in the order of radius of curvature γ 2 and γ 1 , and has radius of curvature γ 3 fixed and arranged inside the end shield. By doing so, the purpose is to provide a vacuum valve with excellent withstand voltage performance.

以下本発明の一実施例を第4図に示す截断面図
を参照して詳細に説明する。図中1は接点、2は
電極でこの部分で電流のしや断を行なう。3は固
定通電軸で先端を固定側蓋板4を気密に貫通して
電極2の一方に取着されている。5は可動通電軸
で先端をベローズ6を介して可動側蓋板7を気に
貫通し、他方の電極2に取着している。8は中間
シールドで、電流しや断時、接点1の間で発生し
たアークが直接絶縁容器9の内面に接触するのを
防いでいる。この中間シールド8は、絶縁容器9
を2個並設して、その中間を支持することによ
り、両接点から電気的に絶縁されている。10は
端部シールドで絶縁容器9の封着部を電界緩和す
るために設けられている。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the cross-sectional view shown in FIG. In the figure, 1 is a contact, and 2 is an electrode, at which the current is interrupted. Reference numeral 3 denotes a fixed current-carrying shaft whose tip end passes through the fixed side cover plate 4 in an airtight manner and is attached to one side of the electrode 2. Reference numeral 5 denotes a movable current-carrying shaft whose tip passes through the movable cover plate 7 via the bellows 6 and is attached to the other electrode 2. An intermediate shield 8 prevents the arc generated between the contacts 1 from directly contacting the inner surface of the insulating container 9 when the current is interrupted. This intermediate shield 8 includes an insulating container 9
By arranging two in parallel and supporting the middle, it is electrically insulated from both contacts. Reference numeral 10 denotes an end shield, which is provided to relieve the electric field at the sealed portion of the insulating container 9.

なお中間シールド8と端部シールド10の端部
をその曲率半径がγ,γ,γの順に同一方
向に小さくなるようにし、中間シールド8と端部
シールド10間の間隙長をdとすると、 γ=2.5d〜4.0d γ=0.4d〜0.7d γ=0.1d〜0.2d の関係を満足し、絶縁容器9の表面に対して曲率
半径γ,γの順序で離れるようにのばしてい
る。また曲率半径γを中間シールド8と端部シ
ールド10の内側に配置している。
Note that the radius of curvature of the ends of the intermediate shield 8 and the end shield 10 is made to decrease in the same direction in the order of γ 1 , γ 2 , and γ 3 , and the gap length between the intermediate shield 8 and the end shield 10 is d. Then, the following relationships are satisfied: γ 1 = 2.5d to 4.0d γ 2 = 0.4d to 0.7d γ 3 = 0.1d to 0.2d, and the radius of curvature is in the order of γ 2 and γ 1 with respect to the surface of the insulating container 9. Stretching out as if to leave. Further, the radius of curvature γ 3 is arranged inside the intermediate shield 8 and the end shield 10.

このようにすれば第5図aに示す中間シールド
8と端部シールド10の断面図のように同図破線
で示すような電界強度分布になる。したがつて絶
縁容器9の内面の電界強度分布は第5図bに曲線
アで示すように、曲線イで示す従来の電界強度分
布に比して著るしく均一化し、低く抑えることが
できる。このように絶縁容器9の内面の電界強度
を均一化することによりその最大電界強度Emax
も低くすることができる。第6図は中間シールド
8と端部シールド10との曲率半径γ,γ
絶縁容器9の内面の最大電界強度Emaxとの関係
を示す図である。なお実際の真空バルブでは端部
シールド10の曲率半径γは組立てを容易にす
るために、電極径よりも中間シールドの内径を大
きくする必要があり、このためγ<0.7d程度と
しなければならない。したがつて第6図に示すよ
うに絶縁容器9の内面の最大電界強度Emaxとγ
/d関係はγ/d≒3で最大電界強度Emax
は最小になる。なお第6図に示すEmax3は真空
バルブを系統に適用する場合に裕度を持つた破壊
電界強度である。すなわちγ/dを2.5〜4.0の
範囲とし、r2を0.4d〜0.7dとすれば絶縁容器9の
内面の最大電界強度はEmax3以下とすることが
でき最大電界強度を従来のものに比して大幅に低
くすることができる。
If this is done, the electric field intensity distribution will be as shown by the broken line in the cross-sectional view of the intermediate shield 8 and the end shield 10 shown in FIG. 5a. Therefore, the electric field intensity distribution on the inner surface of the insulating container 9, as shown by curve A in FIG. 5B, can be made significantly more uniform and lower than the conventional electric field intensity distribution shown by curve A. By making the electric field strength on the inner surface of the insulating container 9 uniform in this way, the maximum electric field strength Emax
can also be lowered. FIG. 6 is a diagram showing the relationship between the radii of curvature γ 1 and γ 2 of the intermediate shield 8 and the end shield 10 and the maximum electric field strength Emax on the inner surface of the insulating container 9. In addition, in an actual vacuum valve, the radius of curvature γ 2 of the end shield 10 must be set to about γ 2 <0.7d because the inner diameter of the intermediate shield needs to be larger than the electrode diameter in order to facilitate assembly. No. Therefore, as shown in FIG. 6, the maximum electric field strength Emax and γ on the inner surface of the insulating container 9 are
1 /d relationship is γ 1 /d≒3 and the maximum electric field strength Emax
becomes the minimum. Note that Emax3 shown in Fig. 6 is the breakdown electric field strength with a margin when applying the vacuum valve to the system. In other words, if γ 1 /d is set in the range of 2.5 to 4.0 and r 2 is set to 0.4d to 0.7d, the maximum electric field strength on the inner surface of the insulating container 9 can be lower than Emax3, and the maximum electric field strength can be compared to the conventional one. can be significantly lowered.

また曲率半径γはγ=2.5d〜4.0d,γ
0.4d〜0.7dとするとγと同様な理由から組立を
容易にするために電極径よりも中間シールドの内
径を大きくする必要があり、このためγ<0.2d
程度にしなければならない。なお中間シールド8
と端部シールド10との内側の曲率半径γと中
間シールドの内側表面の最大電界強度との関係を
第7図に示す。すなわちγ/dを0.1以下とす
ると急激に最大電界強度が高くなる。また真空ギ
ヤツプの裕度を持つ破壊電界強度をEmax4と
し、γ/dを0.1以上にすると破壊電界強度は
Emax4以下となり、したがつてγは0.1d〜0.2d
となる。
Moreover, the radius of curvature γ 3 is γ 1 = 2.5d to 4.0d, γ 2 =
If 0.4d to 0.7d, for the same reason as γ 2 , it is necessary to make the inner diameter of the intermediate shield larger than the electrode diameter to facilitate assembly, and therefore γ 3 <0.2d.
It has to be moderate. Furthermore, intermediate shield 8
FIG. 7 shows the relationship between the inner radius of curvature γ 3 of the end shield 10 and the maximum electric field strength on the inner surface of the intermediate shield. That is, when γ 3 /d is set to 0.1 or less, the maximum electric field strength increases rapidly. Also, let Emax4 be the breakdown electric field strength with a margin of vacuum gap, and if γ 3 /d is 0.1 or more, the breakdown electric field strength will be
Emax4 or less, therefore γ3 is 0.1d~0.2d
becomes.

しかして上述のように中間シールドおよび端部
シールドの曲率を設定することにより絶縁容器9
の内面の電界強度を均一化し、最大電界強度を低
くでき、耐電圧性能を向上し高電圧化に適した真
空バルブを得られる。
However, by setting the curvature of the intermediate shield and the end shield as described above, the insulating container 9
The electric field strength on the inner surface of the valve can be made uniform, the maximum electric field strength can be lowered, the withstand voltage performance can be improved, and a vacuum valve suitable for high voltage applications can be obtained.

以上詳述したように本発明によれば中間シール
ドと端部シールドの耐圧を向上し、耐電圧性能が
優れ高電圧化に適する真空バルブを提供すること
ができる。
As described in detail above, according to the present invention, it is possible to improve the withstand voltage of the intermediate shield and the end shield, and provide a vacuum valve with excellent withstand voltage performance and suitable for high voltage applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の真空バルブの一例を示す縦断面
図、第2図a,bは上記従来例の中間シールドと
端部シールドの断面図および絶縁容器内面の電界
強度の分布図、第3図は2次電子放出効率と電子
衝突エネルギーの関係を示すグラフ、第4図は本
発明の一実施例の縦断面図、第5図a,bは上記
実施例の中間シールドと端部シールドの断面図お
よび絶縁容器内面の電界強度の分布図、第6図は
シールドの外側の曲率半径と最大電界強度との関
係を示すグラフ、第7図はシールドの内側の曲率
半径と最大電界強度との関係を示すグラフであ
る。 1…接点、2…電極、3,5…通電軸、4,7
…蓋板、8…中間シールド、9…絶縁容器、10
…端部シールド。
Fig. 1 is a vertical cross-sectional view showing an example of a conventional vacuum valve, Fig. 2 a and b are cross-sectional views of the intermediate shield and end shield of the above-mentioned conventional example, and a distribution diagram of electric field strength on the inner surface of the insulating container. Fig. 3 is a graph showing the relationship between secondary electron emission efficiency and electron collision energy, FIG. 4 is a longitudinal cross-sectional view of an embodiment of the present invention, and FIGS. 5 a and b are cross-sections of the intermediate shield and end shield of the above embodiment. Fig. 6 is a graph showing the relationship between the radius of curvature on the outside of the shield and the maximum electric field strength, and Fig. 7 is a graph showing the relationship between the radius of curvature on the inside of the shield and the maximum electric field strength. This is a graph showing. 1... Contact, 2... Electrode, 3, 5... Current-carrying shaft, 4, 7
…Lid plate, 8…Intermediate shield, 9…Insulating container, 10
…End shield.

Claims (1)

【特許請求の範囲】 1 両端を蓋板で密閉した真空容器内に一対の電
極を接離可能に配置し少なくとも一方の電極を上
記蓋板を気密に貫通する通電棒を介して接離駆動
するとともに上記真空容器内に上記電極を包囲す
る中間シールドおよび上記蓋板に取着した固定シ
ールドを設けたものにおいて、上記中間シールド
および固定シールドの端部を曲率半径γ,γ
,γの順に同一方向に曲率半径が次第に小さ
くなるように形成しかつ曲率半径γ,γの部
分では絶縁容器内壁から次第に離れ曲率半径γ
の部分では絶縁容器内壁に近づくようにし、上記
中間シールドと固定シールドとの間隙をdとした
ときに γ=2.5d〜4.0d γ=0.4d〜0.7d γ=0.1d〜0.2d としたことを特徴とする真空バルブ。
[Scope of Claims] 1. A pair of electrodes are arranged so as to be able to come into contact and be separated from each other in a vacuum container whose both ends are sealed with a lid plate, and at least one electrode is driven into contact and separation via an energized rod that passes through the lid plate in an airtight manner. In addition, an intermediate shield surrounding the electrode and a fixed shield attached to the lid plate are provided in the vacuum container, and the ends of the intermediate shield and the fixed shield have curvature radii γ 1 , γ
2 and γ 3 in the same direction so that the radius of curvature gradually decreases in the same direction, and the radius of curvature γ 1 and γ 2 gradually move away from the inner wall of the insulating container, and the radius of curvature γ 3
The part should be close to the inner wall of the insulating container, and when the gap between the intermediate shield and the fixed shield is d, γ 1 = 2.5d to 4.0d γ 2 = 0.4d to 0.7d γ 3 = 0.1d to 0.2d A vacuum valve characterized by:
JP2007680A 1980-02-20 1980-02-20 Vacuum valve Granted JPS56118228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007680A JPS56118228A (en) 1980-02-20 1980-02-20 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007680A JPS56118228A (en) 1980-02-20 1980-02-20 Vacuum valve

Publications (2)

Publication Number Publication Date
JPS56118228A JPS56118228A (en) 1981-09-17
JPS6247337B2 true JPS6247337B2 (en) 1987-10-07

Family

ID=12017001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007680A Granted JPS56118228A (en) 1980-02-20 1980-02-20 Vacuum valve

Country Status (1)

Country Link
JP (1) JPS56118228A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292225B2 (en) * 2009-08-26 2013-09-18 株式会社東芝 Mold vacuum valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110369A (en) * 1974-07-15 1976-01-27 Hitachi Ltd SHINKU SHADANKI

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54171762U (en) * 1978-05-25 1979-12-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110369A (en) * 1974-07-15 1976-01-27 Hitachi Ltd SHINKU SHADANKI

Also Published As

Publication number Publication date
JPS56118228A (en) 1981-09-17

Similar Documents

Publication Publication Date Title
US2014809A (en) Electron discharge tube
US1933329A (en) Electric discharge device
US1893887A (en) Electron tube
US4020304A (en) Two-material vapor shield for vacuum-type circuit interrupter
US3979634A (en) Travelling-wave tube with an improved electron gun
JPS6247337B2 (en)
JPS596587Y2 (en) vacuum valve
US1956396A (en) Trigger tube
US2020393A (en) Gas discharge tube
US3555222A (en) Vacuum switch with cylindrical guide means and annular field deflector means
JPH0652645B2 (en) Vacuum valve
US2078123A (en) Electric discharge device
US5025190A (en) Glow discharge lamp
JPH0610948B2 (en) Vacuum valve
JPS6226131B2 (en)
JP3130722B2 (en) Vacuum valve
JPH069130B2 (en) Vacuum valve
US2449256A (en) External anode power amplifier and oscillator tube
US3358173A (en) Beam generating system for electron tubes with a high breakdown strength
US2093002A (en) Electric discharge tube
SU1274881A1 (en) Electron-beam gun
US1613612A (en) Electron-discharge device
US1811051A (en) Electron discharge tube
JP2758286B2 (en) Microwave tube electron gun assembly
US2333145A (en) Electric discharge device