JPS6247057B2 - - Google Patents

Info

Publication number
JPS6247057B2
JPS6247057B2 JP55021708A JP2170880A JPS6247057B2 JP S6247057 B2 JPS6247057 B2 JP S6247057B2 JP 55021708 A JP55021708 A JP 55021708A JP 2170880 A JP2170880 A JP 2170880A JP S6247057 B2 JPS6247057 B2 JP S6247057B2
Authority
JP
Japan
Prior art keywords
absorption liquid
absorption
dichloride
carbon monoxide
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55021708A
Other languages
Japanese (ja)
Other versions
JPS56118720A (en
Inventor
Taiji Kamiguchi
Kijiro Arikawa
Hiroyuki Kako
Tetsuichi Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2170880A priority Critical patent/JPS56118720A/en
Publication of JPS56118720A publication Critical patent/JPS56118720A/en
Publication of JPS6247057B2 publication Critical patent/JPS6247057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一酸化炭素(以下、COと記す)の
吸収液に関する。 化学工業や製鉄工業等において、合成用原料ガ
スの製造または省エネルギといつた考えのもと
に、例えばプロセス排ガスからCOを分離、濃縮
して回収することが大きな技術的課題となつてい
る。 COを含有するガス源からCOを分離、濃縮する
方法には、現在、第1銅塩の溶液等の吸収液を使
用する吸収液法、およびこれとは原理的に異る深
冷分離法が知られている。後者の深冷分離法は、
複雑な冷却、熱回収システムから構成されてお
り、操作温度が低温であるため、装置材料として
高価なものを使用する必要があり、また低温を得
るために、動力消費量が大きくなるという欠点が
ある。 一方、吸収液法に使用されるCO吸収液として
は、従来アンモニア性第1銅塩水溶液または塩酸
性第1銅塩水溶液が用いられてきたが、いずれ
も、水溶液単位体積あたりのCO吸収量が小さい
という問題があつた。これらの吸収液において、
CO吸収に直接関与する一価の銅を溶液中に可溶
化させるために、クロロ錯体あるいはアンミン錯
体を形成させているものと考えられる。また最
近、塩化第1銅(以下、CuClと記す)と無水塩
化アルミニウム(以下、AlCl3と記す)の錯体
(CuAlCl4)をトルエンに溶解させたCO吸収液が
開発され、注目をあつめている。この吸収液は溶
液単位体積あたりのCO吸収量が水溶液系のもの
に比べて非常に高いという特長を有する。このた
め実際のCO分離、濃縮プロセスに適用する場
合、吸収塔における操作で高圧、低温を必要とせ
ず、常温、常圧で運転が可能なため、装置に耐圧
材料等を必要としないこと、およびCOの吸収負
荷が大きいため、溶液循環量が小さくて済むなど
の利点を有している。 しかし、上記のような吸収液は、その構成成分
であるAlCl3が水または水蒸気と接触して定量的
に加水分解を受け、それに伴いCO吸収量も低下
するという問題がある。 本発明の目的は、水または水蒸気と接触しても
加水分解を受けにくく、高い一酸化炭素吸収性能
を維持する吸収液を提供することにある。 上記目的を達成するため、本発明の吸収液は、
塩化第1銅とリンの酸素酸誘導体を含むことを特
徴とする。 上記リンの酸素酸誘導体としては、融点が20℃
以下、沸点が100℃以上のリン酸エステルまたは
(および)ホスフインオキシド類が適当である。 本発明の吸収液はスラリ、均一溶液のいずれの
状態でも使用可能であるが、操作の容易性という
観点からは均一溶液の方が好ましい。吸収液中の
塩化第1銅等の分散性を改善するために、本発明
においては一価の銅以外の金属塩を添加すること
が望ましい。このような金属塩としては、Li、
K、Na等のアルカリ金属、Be、Mg、Ca等のア
ルカリ土類金属、Al、Tl等のa族金属、およ
びTi、V、Cr、Mu、Fe、Co、Ni、Mo、Ru、
Rh、Pd、La、等の遷移金属の塩化物、硫酸塩、
硝酸塩が適当であり、特にアルカリ金属塩化物お
よび遷移金属塩化物が好ましく用いられる。 上記各成分の構成比は、塩化第1銅:金属塩:
リンの酸素酸誘導体のモル比で1:0〜3:2〜
20の範囲が適当であり、特に1:0〜2:3〜15
の範囲が好ましい。 本発明において、吸収液中の各成分の分散性を
向上させるために適当な界面活性剤などを添加す
ることができる。本発明の構成成分選択に当つて
は、吸収液の粘度が小さく、安定性がよいこと、
また構成成分がCO含有ガスと接触する際、また
はCOを分離する際に系外に揮散しないものであ
ることが好ましい。 次に、本発明の吸収液を使用してCO含有ガス
中のCOを吸収分離し、濃縮COとして回収する際
の操作条件について説明する。 第1図は、本発明の吸収液を用いたCOの分
離、濃縮プロセスの原理的なフローシートであ
る。図において、CO含有ガスは、必要に応じて
前処理装置1で前処理され、原料ガスライン11
を通じ、吸収塔2に入り、吸収塔内の吸収液と接
触し、COが選択的に吸収される。吸収塔排ガス
は、飛沫同伴成分を適宜除去されたのち、排ガス
ライン21を通じ大気中に放出される。一方、
COを吸収した液は、吸収ライン31から熱交換
器4をへて分離塔3に送られ、ここで昇温または
減圧されることにより、COを放散する。分離塔
からの排ガスは高濃度のCOを含有するが、飛沫
同伴成分を除去した後、ガスライン41をへて回
収され、製品ガスとなる。COを分離した吸収液
は、ライン51から吸収塔2にもどり循環使用さ
れる。 本発明の吸収液を、実際のCO濃縮、分離プロ
セスに適用する場合の操作温度および圧力は、
CO含有ガス中のCO含有割合、接触時間、吸収液
の組成等に応じて変化することができる。一般に
吸収温度を低下させるとCO吸収量は増加する
が、低温生成のための冷却装置が必要となり、ま
た吸収液の粘度が増加し、時には吸収液が凝固す
ることがある。一方、吸収温度を余り高くすると
CO吸収量が小さくなる。上記の点から吸収温度
は一般に10〜80℃とすることが好ましい。さらに
吸収圧力は高い方がCO吸収量が大きくなり、ま
た吸収速度も高くなるが、ガスの圧縮機が必要に
なり、さらに装置を耐圧構造にせねばならず、建
設費が高くなる。このような点から、吸収圧力
は、一般にゲージ圧で0〜20Kg/cm2とすることが
好ましい。 COを吸収した吸収液は、吸収温度よりも温度
を上げ、もしくは圧力を下げることにより、また
は不活性の媒体(例えば水蒸気、ベンゼン蒸気
等)と接触させることにより、さらにはCOの用
途によつては水素ガス等と接触させることによ
り、COを放散し、再生される。上記放散の操作
は単独でも組合せて行つてもよい。放散された
COを補集すれば濃縮COガスを得ることができる
が、これらのガスは燃料または化学合成用原料ガ
スとして有効に使用される。 以下、本発明を実施例により更に詳細に説明す
る。なお、実施例中のガスの体積はいずれも標準
状態(0℃、1atm)の値である。 実施例 1 容積100mlの円筒状ガラス容器に、CuClを9.90
g(0.1モル)およびTiCl3を0.77g(0.005モル)
採取し、トリス(ジメチルアミノ)ホスフインオ
キシド(別名ヘキサメチルホスホルアミド)を
51.5g(0.29モル)添加した後、80℃で5時間加
熱したところ均一溶液が得られた。この溶液を30
℃に冷却したのち、同温度に保ちながら、CO20
%、N280%(容量%)からなる組成のガスを常
圧で連続的に吹き込み、この条件下でのCOの平
衡吸収量を求めた。その結果、本吸収液は1ml当
たり25.6mlのCOを吸収した。比較のために、
CuCl9.9g(0.1モル)を8NのHCl水溶液50mlに溶
解させたもの(従来の塩酸酸性第1銅溶液)の同
一条件下におけるCO平衡吸収量を求めたとこ
ろ、吸収液1ml当たり4.5mlのCOを吸収するにす
ぎなかつた。 実施例 2 実施例1で得られた、平衡量のCOを吸収した
液を、100℃に加熱し、50mmHgの減圧状態にした
ところ、吸収液1ml当たり25.1mlのCOが回収さ
れた。 実施例 3 実施例1で示したものと同一組成の吸収液を新
たに調整し、これに2%(容量%)の水を添加し
た後、30℃にて24時間放置した。その後、実施例
1と同一条件でCO平衡吸収量を測定した。その
結果、吸収液1ml当たり25.6mlのCOを吸収し、
水を添加しても性能に全く変化がないことが示さ
れた。 実施例 4 容積100mlの円筒状ガラス容器に、CuClを9.90
g(0.1モル)およびCrCl3、6H2Oを0.67g
(0.0025モル)採取し、トリス(ジメチルアミ
ノ)ホスフインオキシドを51.5g(0.29モル)添
加したところ、均一な溶液が得られた。この吸収
液について実施例1と同一条件でCO平衡吸収量
を測定したところ、吸収液1ml当たり26.5mlの
COを吸収した。 実施例 5 容積100mlの円筒状ガラス容器に、CuClを9.90
g(0.1モル)および35%HCl水溶液を3ml採取
し、トリス(ジメチルアミノ)ホスフインオキシ
ドを51.5g(0.29モル)添加したところ、均一な
溶液が得られた。この吸収液について実施例1と
同一条件でCO平衡吸収量を測定したところ、吸
収液1ml当たり8.6mlのCOを吸収した。 実施例 6 容積100mlの円筒状ガラス容器にCuClを4.45g
(0.05モル)を採取し、トリス(ジメチルアミ
ノ)ホスフインオキシドを51.5g(0.29モル)添
加したところ、スラリ状の吸収液が得られた。こ
の吸収液について実施例1と同一条件でCO平衡
吸収量を測定したところ、吸収液1ml当たり11.2
mlのCOを吸収した。 実施例 7〜14 容積100mlの円筒状ガラス容器に、第1表に示
した組成の吸収液をとり、30℃に保持した。次に
実施例1と同一条件でこれらの吸収液のCO平衡
吸収量を測定した。さらに、平衡量のCOを吸収
した液を100℃に加熱し、50mmHgの減圧状態にし
てCO回収量を求めた。これらの結果を第1表に
示す。
The present invention relates to a carbon monoxide (hereinafter referred to as CO) absorption liquid. In the chemical industry, steel industry, etc., separating, concentrating, and recovering CO from process exhaust gas has become a major technical challenge, with the aim of producing raw material gas for synthesis or saving energy. Currently, methods for separating and concentrating CO from a gas source containing CO include the absorption liquid method, which uses an absorption liquid such as a solution of cuprous salt, and the cryogenic separation method, which is fundamentally different from this method. Are known. The latter cryogenic separation method is
It consists of a complex cooling and heat recovery system, and because the operating temperature is low, it is necessary to use expensive equipment materials, and it also has the disadvantage of increasing power consumption to obtain the low temperature. be. On the other hand, as the CO absorption liquid used in the absorption liquid method, an ammoniacal cuprous salt aqueous solution or a hydrochloric acidic cuprous salt aqueous solution has conventionally been used, but in either case, the amount of CO absorbed per unit volume of the aqueous solution is The problem was that it was small. In these absorption liquids,
It is thought that a chloro complex or ammine complex is formed in order to solubilize monovalent copper, which is directly involved in CO absorption, in the solution. Recently, a CO absorbent solution in which a complex (CuAlCl 4 ) of cuprous chloride (hereinafter referred to as CuCl) and anhydrous aluminum chloride (hereinafter referred to as AlCl 3 ) is dissolved in toluene has been developed and is attracting attention. . This absorption liquid has a feature that the amount of CO absorbed per unit volume of solution is much higher than that of aqueous solutions. Therefore, when applied to actual CO separation and concentration processes, the absorption tower does not require high pressure or low temperature, and can be operated at room temperature and pressure, so the equipment does not require pressure-resistant materials, etc. Since the CO absorption load is large, it has the advantage of requiring only a small amount of solution circulation. However, the above absorption liquid has a problem in that its constituent AlCl 3 comes into contact with water or steam and undergoes quantitative hydrolysis, resulting in a corresponding decrease in the amount of CO absorbed. An object of the present invention is to provide an absorption liquid that is resistant to hydrolysis even when it comes into contact with water or steam and maintains high carbon monoxide absorption performance. In order to achieve the above object, the absorption liquid of the present invention is
It is characterized by containing cuprous chloride and oxyacid derivatives of phosphorus. The above oxyacid derivative of phosphorus has a melting point of 20℃.
Hereinafter, phosphoric acid esters and/or phosphine oxides having a boiling point of 100°C or higher are suitable. The absorption liquid of the present invention can be used in either the form of a slurry or a homogeneous solution, but a homogeneous solution is preferable from the viewpoint of ease of operation. In order to improve the dispersibility of cuprous chloride and the like in the absorption liquid, it is desirable in the present invention to add a metal salt other than monovalent copper. Such metal salts include Li,
Alkali metals such as K and Na, alkaline earth metals such as Be, Mg and Ca, group a metals such as Al and Tl, and Ti, V, Cr, Mu, Fe, Co, Ni, Mo, Ru,
Chlorides and sulfates of transition metals such as Rh, Pd, La, etc.
Nitrates are suitable, and alkali metal chlorides and transition metal chlorides are particularly preferably used. The composition ratio of each component above is cuprous chloride:metal salt:
The molar ratio of phosphorus oxygen acid derivatives is 1:0 to 3:2.
A range of 20 is appropriate, especially 1:0 to 2:3 to 15
A range of is preferred. In the present invention, a suitable surfactant or the like may be added to improve the dispersibility of each component in the absorption liquid. When selecting the constituent components of the present invention, it is important to ensure that the absorption liquid has low viscosity and good stability;
Further, it is preferable that the constituent components do not volatilize out of the system when coming into contact with a CO-containing gas or when separating CO. Next, operating conditions for absorbing and separating CO in a CO-containing gas using the absorption liquid of the present invention and recovering it as concentrated CO will be described. FIG. 1 is a basic flow sheet of the CO separation and concentration process using the absorption liquid of the present invention. In the figure, CO-containing gas is pretreated in a pretreatment device 1 as necessary, and a raw material gas line 11
, enters the absorption tower 2, contacts the absorption liquid in the absorption tower, and CO is selectively absorbed. The absorption tower exhaust gas is discharged into the atmosphere through the exhaust gas line 21 after the entrained components are appropriately removed. on the other hand,
The liquid that has absorbed CO is sent from the absorption line 31 through the heat exchanger 4 to the separation column 3, where it is heated or depressurized to release CO. The exhaust gas from the separation tower contains a high concentration of CO, but after removing entrained components, it is recovered through the gas line 41 and becomes a product gas. The absorption liquid from which CO has been separated is returned to the absorption tower 2 through the line 51 and is used for circulation. The operating temperature and pressure when applying the absorption liquid of the present invention to the actual CO concentration and separation process are as follows:
It can be changed depending on the CO content rate in the CO-containing gas, the contact time, the composition of the absorption liquid, etc. In general, lowering the absorption temperature increases the amount of CO absorbed, but requires a cooling device for low-temperature production, increases the viscosity of the absorption liquid, and sometimes causes the absorption liquid to solidify. On the other hand, if the absorption temperature is too high,
The amount of CO absorbed becomes smaller. In view of the above, the absorption temperature is generally preferably 10 to 80°C. Furthermore, the higher the absorption pressure, the greater the amount of CO absorbed and the faster the absorption rate, but a gas compressor is required, and the equipment must also have a pressure-resistant structure, which increases construction costs. From this point of view, the absorption pressure is generally preferably 0 to 20 kg/cm 2 in gauge pressure. The absorption liquid that has absorbed CO can be prepared by raising the temperature or lowering the pressure above the absorption temperature, or by contacting it with an inert medium (e.g. water vapor, benzene vapor, etc.), or depending on the use of CO. By contacting with hydrogen gas etc., CO is released and regenerated. The above-mentioned dispersion operations may be performed alone or in combination. dissipated
By collecting CO, concentrated CO gas can be obtained, and these gases are effectively used as fuel or raw material gas for chemical synthesis. Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that the volumes of gases in the examples are all values under standard conditions (0° C., 1 atm). Example 1 9.90 ml of CuCl was placed in a cylindrical glass container with a volume of 100 ml.
g (0.1 mol) and 0.77 g (0.005 mol) of TiCl3
Tris(dimethylamino)phosphine oxide (also known as hexamethylphosphoramide)
After adding 51.5 g (0.29 mol), the mixture was heated at 80° C. for 5 hours to obtain a homogeneous solution. Add this solution to 30
After cooling to ℃, while maintaining the same temperature, CO20
%, N 2 80% (volume %) was continuously blown in at normal pressure, and the equilibrium absorption amount of CO under these conditions was determined. As a result, this absorption liquid absorbed 25.6 ml of CO per ml. For comparison,
When we calculated the equilibrium CO absorption amount under the same conditions for 9.9 g (0.1 mol) of CuCl dissolved in 50 ml of 8N HCl aqueous solution (conventional cuprous hydrochloric acid solution), we found that 4.5 ml of CO per 1 ml of absorption liquid. It was nothing more than absorbing. Example 2 When the liquid obtained in Example 1 that had absorbed an equilibrium amount of CO was heated to 100°C and reduced to 50 mmHg, 25.1 ml of CO was recovered per ml of the absorbed liquid. Example 3 An absorption liquid having the same composition as that shown in Example 1 was newly prepared, 2% (volume %) of water was added thereto, and the mixture was left at 30° C. for 24 hours. Thereafter, the CO equilibrium absorption amount was measured under the same conditions as in Example 1. As a result, 25.6ml of CO was absorbed per ml of absorption liquid,
It was shown that the addition of water did not change the performance at all. Example 4 CuCl was added at 9.90 ml in a cylindrical glass container with a volume of 100 ml.
g (0.1 mol) and 0.67 g of CrCl 3 , 6H 2 O
(0.0025 mol) was collected, and 51.5 g (0.29 mol) of tris(dimethylamino)phosphine oxide was added to obtain a homogeneous solution. When the equilibrium CO absorption amount of this absorption liquid was measured under the same conditions as in Example 1, it was found that 26.5 ml of CO was absorbed per ml of absorption liquid.
Absorbed CO. Example 5 CuCl was added at 9.90 ml in a cylindrical glass container with a volume of 100 ml.
When 51.5 g (0.29 mol) of tris(dimethylamino)phosphine oxide was added to the solution, a homogeneous solution was obtained. When the CO equilibrium absorption amount of this absorption liquid was measured under the same conditions as in Example 1, 8.6 ml of CO was absorbed per 1 ml of the absorption liquid. Example 6 4.45g of CuCl in a cylindrical glass container with a volume of 100ml
(0.05 mol) was collected and 51.5 g (0.29 mol) of tris(dimethylamino)phosphine oxide was added to obtain a slurry-like absorption liquid. When the CO equilibrium absorption amount of this absorption liquid was measured under the same conditions as in Example 1, it was found to be 11.2 per ml of absorption liquid.
ml of CO was absorbed. Examples 7 to 14 An absorbing liquid having the composition shown in Table 1 was placed in a cylindrical glass container with a volume of 100 ml and maintained at 30°C. Next, the CO equilibrium absorption amount of these absorption liquids was measured under the same conditions as in Example 1. Furthermore, the liquid that had absorbed the equilibrium amount of CO was heated to 100°C and reduced to 50 mmHg to determine the amount of CO recovered. These results are shown in Table 1.

【表】 以上、本発明によれば、COを含有する各種の
ガス源からCOを効率良く、かつ安定して吸収す
ることができる。すなわち、本発明の吸収液は水
に対して安定で、しかもCO吸収量が非常に高い
ため、従来のように水分除去のための前処理が不
要になり、また吸収塔の操作で高圧、低温を必要
とせず、常圧、常温で運動することができる。し
かもCO吸収負荷を大きくとることができるた
め、溶液循環量が小さくて済み、効率および経済
性の高いCO分離、濃縮プロセスとすることがで
きる。
[Table] As described above, according to the present invention, CO can be efficiently and stably absorbed from various gas sources containing CO. In other words, the absorption liquid of the present invention is stable against water and has a very high CO absorption amount, so there is no need for pretreatment to remove water as in the past, and the absorption tower can be operated at high pressure and low temperature. You can exercise at normal pressure and temperature without the need for Furthermore, since the CO absorption load can be increased, the amount of solution circulation can be small, making it possible to achieve a highly efficient and economical CO separation and concentration process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の吸収液を用いた一酸化炭素
分離、濃縮プロセスの一実施例を示すフローシー
トである。 2……吸収塔、3……分離塔、4……熱交換
器、11……ガス供給ライン。
FIG. 1 is a flow sheet showing an example of a carbon monoxide separation and concentration process using the absorption liquid of the present invention. 2... Absorption tower, 3... Separation tower, 4... Heat exchanger, 11... Gas supply line.

Claims (1)

【特許請求の範囲】 1 塩化第1銅とリンの酸素酸誘導体とを含むこ
とを特徴とする一酸化炭素の吸収液。 2 特許請求の範囲第1項において、前記吸収液
は、さらに一価の銅以外の金属塩を含むことを特
徴とする一酸化炭素の吸収液。 3 特許請求の範囲第1項または第2項におい
て、リンの酸素酸誘導体が、リン酸エステルまた
は(および)ホスフインオキシド類であることを
特徴とする一酸化炭素の吸収液。 4 特許請求の範囲第1項または第2項におい
て、前記一価の銅以外の金属塩は、アルカリ金属
塩化物、アルカリ土類塩化物、二塩化銅、塩化亜
鉛、塩化ランタン、一塩化タリウム、三塩化チタ
ン、二塩化スズ、三塩化バナジウム、二塩化鉄、
三塩化鉄、二塩化コバルト、二塩化ニツケル、三
塩化クロム、硫酸クロム、および硝酸クロムから
なる群から選ばれた少くとも一種の化合物である
ことを特徴とする一酸化炭素の吸収液。
[Scope of Claims] 1. A carbon monoxide absorption liquid characterized by containing cuprous chloride and an oxyacid derivative of phosphorus. 2. The carbon monoxide absorption liquid according to claim 1, wherein the absorption liquid further contains a metal salt other than monovalent copper. 3. The carbon monoxide absorption liquid according to claim 1 or 2, characterized in that the oxygen acid derivative of phosphorus is a phosphoric acid ester or (and) a phosphine oxide. 4. In claim 1 or 2, the monovalent metal salt other than copper is an alkali metal chloride, an alkaline earth chloride, copper dichloride, zinc chloride, lanthanum chloride, thallium monochloride, Titanium trichloride, tin dichloride, vanadium trichloride, iron dichloride,
A carbon monoxide absorption liquid characterized by being at least one compound selected from the group consisting of iron trichloride, cobalt dichloride, nickel dichloride, chromium trichloride, chromium sulfate, and chromium nitrate.
JP2170880A 1980-02-25 1980-02-25 Absorption liquid for carbon monoxide Granted JPS56118720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2170880A JPS56118720A (en) 1980-02-25 1980-02-25 Absorption liquid for carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2170880A JPS56118720A (en) 1980-02-25 1980-02-25 Absorption liquid for carbon monoxide

Publications (2)

Publication Number Publication Date
JPS56118720A JPS56118720A (en) 1981-09-17
JPS6247057B2 true JPS6247057B2 (en) 1987-10-06

Family

ID=12062552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2170880A Granted JPS56118720A (en) 1980-02-25 1980-02-25 Absorption liquid for carbon monoxide

Country Status (1)

Country Link
JP (1) JPS56118720A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950462A (en) * 1987-09-30 1990-08-21 Babcock-Hitachi Kabushiki Kaisha Process for absorbing CO

Also Published As

Publication number Publication date
JPS56118720A (en) 1981-09-17

Similar Documents

Publication Publication Date Title
CA1260228A (en) Production process of chlorine
Rouwenhorst et al. Beyond Haber-Bosch: the renaissance of the Claude process
US4287170A (en) Nitrogen and oxygen via chemical air separation
CN103209942A (en) Process for producing trans-1,3,3,3-tetrafluoropropene
JPS59182205A (en) Catalytic process for manufacture of sulfur from h2s-containing gas
EP0170914B1 (en) Oxygen/nitrogen production with molten alkali salts
JPS59152205A (en) Steam reforming of methanol
AU2019381947B2 (en) Nitrogen oxide absorbent slurry, preparation method therefor and use method thereof
JPS6260128B2 (en)
US5639436A (en) Exothermic two-stage process for catalytic oxidation of hydrogen chloride
KR880003161A (en) Gas generation process with cascade heat recovery
US4565685A (en) Air separation with temperature and pressure swing
WO2022028236A1 (en) Method for synthesizing difluoromethane by means of gas phase catalysis
Doumani et al. Recovery of sulfur from sulfur dioxide in waste gases
JPS6247057B2 (en)
JPS6252609B2 (en)
US2447323A (en) Oxygen absorbent media
JPS6247058B2 (en)
US4988488A (en) Iron aluminides and nickel aluminides as materials for chemical air separation
CA1249420A (en) Hydrogen production
JPH0673564A (en) Treatment of nickel-containing waste etchant
JPS6247059B2 (en)
US2908546A (en) Method of reducing the hydride content of acetylene generated from calcium carbide
CN101412654B (en) Preparation of 1,1-difluoroethane and fluorating catalyst
US2142694A (en) Process for reducing chromium compounds