JPS6247052B2 - - Google Patents

Info

Publication number
JPS6247052B2
JPS6247052B2 JP59065694A JP6569484A JPS6247052B2 JP S6247052 B2 JPS6247052 B2 JP S6247052B2 JP 59065694 A JP59065694 A JP 59065694A JP 6569484 A JP6569484 A JP 6569484A JP S6247052 B2 JPS6247052 B2 JP S6247052B2
Authority
JP
Japan
Prior art keywords
gas
treated
liquid
density
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59065694A
Other languages
Japanese (ja)
Other versions
JPS59193114A (en
Inventor
Sho Hashimoto
Kazuto Kusano
Teizo Sensei
Makio Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Fuji Kasei Kogyo Co Ltd
Original Assignee
Fuji Kasei Kogyo Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kasei Kogyo Co Ltd, Sumitomo Metal Industries Ltd filed Critical Fuji Kasei Kogyo Co Ltd
Priority to JP59065694A priority Critical patent/JPS59193114A/en
Publication of JPS59193114A publication Critical patent/JPS59193114A/en
Publication of JPS6247052B2 publication Critical patent/JPS6247052B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明はガス中に含まれる特定成分の湿式除去
法に係り、更に詳しくは堰及び溢流部などを有し
ていない、多孔板もしくは格子板から成る漏れ棚
を少くとも1段以上、装置内に装填した気液接触
装置を用いることによつて、ガス中に含有する特
定成分、即ちガス中に含有する特定ガス成分や特
定固定成分等を湿式的に除去する方法に関する。 従来技術 通常、ガス中に含まれる特定成分を湿式的に除
去する方法としては、充填塔、スプレー塔、及び
泡鐘塔等を用いる方法や、開口比が0.3以下であ
る多孔板を装填した多孔板塔を用いて被処理ガス
と処理液とを向流的に接触させる方法等が一般的
に知られている。 しかしながら充填塔を用いる方法に於ては該充
填塔内に導入された被処理ガスや処理液に偏流が
生じ易く、更に前記の被処理ガスや処理液中に例
えば煤塵などの固形成分を含む場合には該充填塔
内を閉塞して、長期に亘る運転を行なうことがで
きないと云う欠点を有している。又、スプレー塔
に於ても処理液の噴霧にかなりの動力を必要とす
るばかりでなく、処理液の相当量が被処理ガス中
に飛沫して装置外に同伴されてしまつたり、被処
理ガス中に含有する特定成分を効率良く除去する
ことができないと云う欠点を有している。一方、
泡鐘塔や前記の多孔板塔等のような棚段を備えた
装置を用いる方法では圧力損失が大きく、更に各
棚段に於ける段効率が悪いため被処理ガス中に含
有する特定成分の除去を効率良く行なうことがで
きないと云う欠点を有している。しかも塔内に於
ける被処理ガスのガス空塔速度が大要0.3乃至2
m/secの範囲に限定されるので多量のガスを処
理するためには塔径の大きな装置が必要となる。 これに対して内山氏等は特公昭51−31036号公
報に於て、上述の如き欠点を回避するために「25
乃至60%の開口率(開口比として表示すれば0.25
乃至0.6となる)を有する、少くとも1段の漏れ
棚を含んで成る漏れ棚塔を用いて、特公昭51−
31036号の明細書中で定義されている上限点と溢
汪点との間の被処理ガス空塔速度で、吸収液の流
量Lと被処理ガスの流量Gとの比L/Gが0.5以
上となるように被処理ガスと吸収液とを向流的に
接触させることを特徴とする被処理ガス中の特定
ガス成分の吸収及び/又は微細塵の除塵法」を提
案している。ここで内山氏等は前記の上限点に於
けるガス空塔速度をUgnとし、更に前記の溢汪点
に於けるガス空塔速度Ugcと規定した上で、その
計算式を示している。即ち内山氏等の発明は特公
昭51−31036号公報で定義された計算式に基づく
gnとUgcの間をガス空塔速度として採用し、し
かも吸収液の流量Lを104乃至11×104Kg/m2hrの
範囲から選択する方法を提案するものである。 そこで本発明者等は前記の内山氏等の発明に興
味をいだき、かかる発明の確認実験を行なつた。
ところが内山氏等の発明によれば前記の如き欠点
を或る程度までは回避することができるものの、
多量の被処理ガス、例えば10000Nm3/hr以上の
ガスを工業的なる規模で処理する場合に於ては余
り実用的でないことが見い出された。 発明の目的及び構成 本発明はかかる知見に基いて鋭意研究を積み重
ねた結果、成されたもので、更に付言するならば
内山氏等が特公昭51−31036号公報で全く触れて
いない高処理液流量においてガス中に含まれる特
定成分を効率良く、除去する方法を提供するもの
である。 即ち本発明に従つたガス中に含まれる特定成分
の除去方法は、0.3乃至0.6の開口比Fcを有する
漏れ棚を少くとも1段以上装填して成る気液接触
装置の上部より処理液を被処理ガスの流量G
(Kg/m2・hr)に対する該処理液の流量L(Kg/
m2・hr)の比L/Gが0.5以上であり、しかも処
理液の流量Lが11×104超乃至17×104Kg/m2
hr、好ましくは11×104乃至15×104Kg/m2・hrで
あるような割合で供給すると共に該接触装置の下
部より前記被処理ガスを装置内に於けるガス空塔
速度Ugが以下に定義するUgn超から10m/secの
範囲となるように導入することによつて、被処理
ガスと処理液とを向流的に気液接触させることを
特徴とするものである。 発明の具体的説明 本発明で云うところの前記のUgnは次式で与え
られる。尚、以下の式に於て、lは毛管定数
Technical Field The present invention relates to a wet removal method for specific components contained in gas, and more specifically, the present invention relates to a wet removal method for specific components contained in gas, and more specifically, the present invention relates to a wet removal method for specific components contained in gas. The present invention relates to a method for wet-removing specific components contained in gas, ie, specific gas components and specific fixed components contained in gas, by using a gas-liquid contacting device loaded in the device. Conventional technology Normally, wet methods for removing specific components contained in gas include methods using packed towers, spray towers, bubble towers, etc., and methods using a porous plate with an aperture ratio of 0.3 or less. A method of bringing a gas to be treated and a treatment liquid into countercurrent contact using a plate column is generally known. However, in the method using a packed tower, uneven flow tends to occur in the gas to be treated or the treatment liquid introduced into the packed tower, and furthermore, if the gas to be treated or the treatment liquid contains solid components such as soot dust, etc. However, this method has the disadvantage that the inside of the packed column is blocked and cannot be operated for a long period of time. In addition, not only does a spray tower require a considerable amount of power to spray the treatment liquid, but a considerable amount of the treatment liquid is splashed into the gas to be treated and is carried out of the equipment. It has the disadvantage that specific components contained in the gas cannot be efficiently removed. on the other hand,
Methods using devices equipped with trays, such as the bubble tower or the above-mentioned perforated plate column, have a large pressure loss, and furthermore, the efficiency of each tray is low. It has the disadvantage that it cannot be removed efficiently. Moreover, the superficial velocity of the gas to be treated in the column is approximately 0.3 to 2.
m/sec, so in order to process a large amount of gas, a device with a large column diameter is required. On the other hand, Mr. Uchiyama et al. published a document titled ``25
An aperture ratio of 60% to 60% (expressed as an aperture ratio of 0.25)
Using a leakage shelf tower comprising at least one stage of leakage shelf with a leakage ratio of 0.6 to 0.6
At the superficial velocity of the gas to be treated between the upper limit point and the overflow point defined in the specification of No. 31036, the ratio L/G of the flow rate L of the absorption liquid and the flow rate G of the gas to be treated is 0.5 or more. A method for absorbing specific gas components in a gas to be treated and/or removing fine dust is proposed, which is characterized by bringing the gas to be treated and an absorption liquid into contact with each other in a countercurrent manner so as to achieve the following. Here, Mr. Uchiyama et al. define the gas superficial velocity at the upper limit point as U gn and the gas superficial velocity at the overflow point as U gc , and show the calculation formula. . That is, the invention of Mr. Uchiyama et al. adopts a gas superficial velocity between Ugn and Ugc based on the calculation formula defined in Japanese Patent Publication No. 51-31036, and also sets the flow rate L of the absorption liquid to 104 to 11×. We propose a method for selecting from a range of 10 4 Kg/m 2 hr. Therefore, the present inventors became interested in the above-mentioned invention of Mr. Uchiyama et al., and conducted experiments to confirm this invention.
However, according to the invention of Mr. Uchiyama et al., although the above-mentioned drawbacks can be avoided to a certain extent,
It has been found that this method is not very practical when treating a large amount of gas to be treated, for example, gas of 10,000 Nm 3 /hr or more on an industrial scale. Purpose and Structure of the Invention The present invention has been achieved as a result of intensive research based on the above knowledge, and I would like to add that the high-throughput liquid, which is not mentioned at all in Japanese Patent Publication No. 31036/1983, The present invention provides a method for efficiently removing specific components contained in gas at a certain flow rate. That is, in the method for removing specific components contained in gas according to the present invention, a processing liquid is introduced from the upper part of a gas-liquid contacting device equipped with at least one stage of leakage shelves having an opening ratio F c of 0.3 to 0.6. Flow rate G of gas to be treated
(Kg/m 2・hr) vs. flow rate L (Kg/m2・hr) of the processing liquid
m 2・hr) ratio L/G is 0.5 or more, and the flow rate L of the processing liquid is more than 11×10 4 to 17×10 4 Kg/m 2
hr, preferably 11×10 4 to 15×10 4 Kg/m 2 ·hr, and the gas to be treated is supplied from the lower part of the contacting device at a gas superficial velocity U g in the device. The gas to be treated and the treatment liquid are brought into gas-liquid contact in a countercurrent manner by introducing the gas at a rate from more than Ugn defined below to 10 m/sec. DETAILED DESCRIPTION OF THE INVENTION In the present invention, the above-mentioned U gn is given by the following equation. In addition, in the following formula, l is the capillary constant

【式】であり、gは重力の加速度(m/ sec2)、σは処理液の表面張力(Kg/sec2)を示し
ている。 (a) 多孔板から成る漏れ棚を使用し、処理液の密
度ρl(Kg/m3)に対する被処理ガスの密度ρg
(Kg/m3)の比ρg/ρlが0.838×10-3以上であ
る場合。 Ugn=49.14Fc 0.7・(ρ/ρ×103-0.5・(L/G)-〓・√・ …(1) (b) 多孔板から成る漏れ棚を使用し、処理液の密
度ρl(Kg/m3)に対する被処理ガスの密度ρg
(Kg/m3)の比ρg/ρlが0.838×10-3未満であ
る場合。 Ugn=40.92Fc 0.7・(ρ/ρ×103-1.535・(L/G)-〓・√・ …(2) (c) 格子板から成る漏れ棚を使用し、処理液の密
度ρl(Kg/m3)に対する被処理ガスの密度ρg
(Kg/m3)の比ρg/ρlが1.20×10-3以上である
場合。 Ugn=67.8Fc・(ρ/ρ×103-0.576・(L/G)-0.23・√・ …(3) (d) 格子板から成る漏れ棚を使用し、処理液の密
度ρl(Kg/m3)に対する被処理ガスの密度ρg
(Kg/m3)の比ρg/ρlが1.20×10-3未満である
場合。 Ugn=76.7Fc・(ρ/ρ×103-1.255・(L/G)-0.23・√・ …(4) 前記の本発明方法に於て使用される漏れ棚を少
くとも1段以上装填して成る気液接触装置は堰及
び溢流部などを有していない、多孔板もしくは格
子板から成る漏れ棚を1段乃至7段更に好ましく
は3段乃至5段、0.3乃至1.5m、好ましく0.5乃至
1.2mの間隔をおいて装置内に装填した気液接触
装置であることが望ましい。又、前記漏れ棚の開
口比Fcは0.3乃至0.6更に好ましくは0.32乃至0.52
の範囲より選択することが望ましく、更にその孔
径としては4乃至30mmの範囲から選択することが
望ましい。この場合、前記漏れ棚の開口比を0.3
より小さくすると装置内に於ける被処理ガスのガ
ス空塔速度Ugを少くとも3m/sec以上とするこ
とができなくなるので装置の大型化が必要とな
り、又、前記開口比を0.6より大きくすると、処
理液の相当量が被処理ガス中に飛散して装置外に
同伴され易くなるのでどうしても処理液の量を必
要以上に多大に使用することが要求される。更に
開口比が0.6以上の漏れ棚を工業的なる規模で作
ることは製作上の問題から極めて困難である。 又、本発明方法による、前記の被処理ガスの流
量Gに対する処理液の流量Lの比L/Gは処理液
の流量Lが11×104超乃至17×104Kg/m2・hrの場
合は少くとも3.0以上、好ましくは3.5乃至20の範
囲から選択することが望ましい。L/Gを3.0未
満とすると、圧力損失が増大するばかりでなく気
液接触効率が著しく低下する。 更に本発明方法による、前記のガス空塔速度は
gnより10m/secの範囲から選択することが望
まれるがその上限は同様に8m/sec、更に好ま
しくは6m/secとすることが望ましい。この場
合、前記のガス空塔速度を10m/sec以上とした
のでは圧力損失が増大してしまうばかりでなく処
理液が被処理ガス中に飛沫して装置外に同伴され
易くなるので安定な運転を連続して行なうことが
できない。 尚、本発明方法に於て処理される被処理ガスと
しては硫黄酸化物、窒素酸化物及び/又は煤塵な
どの有害成分又は種々の有臭成分からなる特定成
分を含む排ガス、もしくは酸性ガス成分及び/又
はアンモニアなどの特定成分を含むコーク炉ガス
等を挙げることができるが、本発明はこれらの被
処理ガスの処理にのみ適用されるものでなく、ガ
ス中に含有する特定成分、例えば特定ガス成分や
特定固形成分等を除去する必要がある場合には全
て適用される。更に本発明はガスを冷却又は加熱
する際にも使用できる。しかしながら本発明は排
ガス中に含有する前記の如き有害成分を除去する
場合に特に適している。この場合、前記の被処理
ガスを処理するための処理液としては被処理ガス
中に含有する、除去すべき特定成分の性状に合致
したものを使用しなければならないが、少くとも
前記の特定成分を化学的に吸収することのできる
吸収液、もしくはそれを物理的に除去することの
できる洗浄液であると云うことができる。例えば
排ガス中に含有する硫黄酸化物及び/又は窒素酸
化物を除去する場合に於てはアルカリ金属、アル
カリ土類金属又はアンモニアの水酸化物、更には
それらの炭酸塩や亜硫酸塩などの吸収剤、例え
ば、水酸化ナトリウム、炭酸ナトリウム、水酸化
カリウム、炭酸カリウム、炭酸マグネシウム、水
酸化マグネシウム、炭酸カルシウム及び水酸化カ
ルシウムの群から選ばれた1種又は2種以上の吸
収剤の水溶液又は水懸濁液等が吸収液として用い
られる。又、コークス炉ガス中に含有する硫化水
素等の酸性ガス成分を除去する場合にはアンモニ
ア水が用いられ、更に該ガス中に含有するアンモ
ニアを除去する場合には硫酸、リン酸、石炭酸、
酢酸、蓚酸及び酸性リン酸アンモニウムの群から
選ばれた吸収剤の水溶液等が吸収液として用いら
れる。一方、排ガス中に含有する煤塵などの固形
成分を除去する場合には水もしくは界面活性剤を
含む水が洗浄液として用いられるが該ガス中に含
有する硫黄酸化物及び/又は窒素酸化物を除去す
るために用いられた前記の如き吸収液も所謂洗浄
液として作用するのでかかる特定成分を同時に除
去するような場合は洗浄液として前記の水を必ら
ずしも使用しなければならないと云うことではな
い。 実施例 以下、実施例に従つて本発明を更に説明する。 実施例 1 開口比0.3乃至0.6の多孔板から成る漏れ棚を4
段装填した、塔径5600mmの気液接触装置を用いる
と共に被処理ガスの流量Gに対する処理液の流量
Lの比L/Gを常に一定に保ちつつ、供給水の流
量Lを11×104Kg/m2・hrから18×104Kg/m2・hr
の範囲で順次変化させながら空気と水とを向流的
に接触させ、当該装置から排出される空気中に含
まれる水の量、漏れ棚4段に於ける全圧力損失、
及び装置内に於けるガス空塔速度を測定した。 この結果に基いて供給水の量(Kg)に対する排
出空気中に含まれる水(Kg)の量の割合を算出し
たところ次の第1表に示す通りであつた。ただし
第1表に示す算出結果並びに測定結果は開口比
0.32及び0.52の漏れ棚を用いると共に供給水の流
量Lとして、12.2×104Kg/m2・hr、16×104Kg/
m2・hr及び18×104Kg/m2・hrを採用した場合の
ものである。
[Formula] where g is the acceleration of gravity (m/sec 2 ), and σ is the surface tension of the treatment liquid (Kg/sec 2 ). (a) Using a leakage shelf made of a perforated plate, the density of the gas to be treated ρ g with respect to the density of the treatment liquid ρ l (Kg/m 3 )
When the ratio ρ gl of (Kg/m 3 ) is 0.838×10 -3 or more. U gn = 49.14F c 0.7・(ρ gl ×10 3 ) -0.5・(L/G) - 〓・・ …(1) (b) Using a leakage shelf made of a perforated plate Then, the density of the gas to be treated ρ g with respect to the density of the processing liquid ρ l (Kg/m 3 )
(Kg/m 3 ) when the ratio ρ gl is less than 0.838×10 -3 . U gn = 40.92F c 0.7・(ρ gl ×10 3 ) -1 . 535・(L/G) - 〓・√・ …(2) (c) Using a leaky shelf made of lattice plate Then, the density of the gas to be treated ρ g with respect to the density of the processing liquid ρ l (Kg/m 3 )
When the ratio ρ gl of (Kg/m 3 ) is 1.20×10 -3 or more. U gn = 67.8F c・(ρ gl ×10 3 ) -0 . 576・(L/G) -0. , the density of the gas to be treated ρ g relative to the density of the processing liquid ρ l (Kg/m 3 )
(Kg/m 3 ) when the ratio ρ gl is less than 1.20×10 -3 . U gn =76.7F c・(ρ gl ×10 3 ) -1 . 255・(L/G) -0 . 23・√・ ...(4) Leakage used in the above method of the present invention A gas-liquid contact device loaded with at least one shelf has one to seven stages, more preferably three to five stages, of leakage shelves made of perforated plates or lattice plates that do not have weirs or overflow parts. Step, 0.3 to 1.5m, preferably 0.5 to 1.5m
Preferably, it is a gas-liquid contact device loaded into the device with a spacing of 1.2 m. Further, the aperture ratio F c of the leakage shelf is 0.3 to 0.6, more preferably 0.32 to 0.52.
It is desirable to select the hole diameter from the range of 4 to 30 mm. In this case, the opening ratio of the leakage shelf is set to 0.3
If the aperture ratio is made smaller, it becomes impossible to make the gas superficial velocity U g of the gas to be treated in the device at least 3 m/sec or more, so the device needs to be enlarged, and if the aperture ratio is made larger than 0.6, Since a considerable amount of the processing liquid is likely to scatter in the gas to be processed and be carried out of the apparatus, it is necessary to use a larger amount of the processing liquid than necessary. Furthermore, it is extremely difficult to produce a leaky shelf with an aperture ratio of 0.6 or more on an industrial scale due to manufacturing problems. Further, according to the method of the present invention, the ratio L/G of the flow rate L of the treatment liquid to the flow rate G of the gas to be treated is such that the flow rate L of the treatment liquid is from more than 11×10 4 to 17×10 4 Kg/m 2 ·hr. In this case, it is desirable to select at least 3.0 or more, preferably from the range of 3.5 to 20. When L/G is less than 3.0, not only the pressure loss increases but also the gas-liquid contact efficiency decreases significantly. Further, according to the method of the present invention, it is preferable that the gas superficial velocity is selected from a range of 10 m/sec from Ugn , and the upper limit thereof is likewise 8 m/sec, more preferably 6 m/sec. In this case, if the gas superficial velocity is set to 10 m/sec or more, not only will the pressure loss increase, but the processing liquid will easily splash into the gas to be processed and be entrained outside the equipment, resulting in stable operation. cannot be performed consecutively. The gas to be treated in the method of the present invention includes exhaust gas containing specific components such as harmful components such as sulfur oxides, nitrogen oxides, and/or soot dust, or various odorous components, or acid gas components and Examples include coke oven gas containing specific components such as ammonia, etc.; however, the present invention is not only applicable to the treatment of these gases, but also includes specific components contained in the gas, such as specific gases. This applies to all cases where it is necessary to remove components or specific solid components. Additionally, the present invention can be used to cool or heat gases. However, the present invention is particularly suitable for removing the above-mentioned harmful components contained in exhaust gas. In this case, the treatment liquid for treating the gas to be treated must match the properties of the specific components to be removed contained in the gas to be treated, but at least the specific components mentioned above must be used. It can be said that it is an absorption liquid that can chemically absorb it, or a cleaning liquid that can physically remove it. For example, when removing sulfur oxides and/or nitrogen oxides contained in exhaust gas, absorbents such as alkali metal, alkaline earth metal or ammonia hydroxides, and their carbonates and sulfites are used. For example, an aqueous solution or suspension of one or more absorbents selected from the group of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, magnesium carbonate, magnesium hydroxide, calcium carbonate, and calcium hydroxide. A turbid liquid or the like is used as the absorption liquid. In addition, when removing acidic gas components such as hydrogen sulfide contained in coke oven gas, ammonia water is used, and when further removing ammonia contained in the gas, sulfuric acid, phosphoric acid, carbolic acid,
An aqueous solution of an absorbent selected from the group of acetic acid, oxalic acid, and acidic ammonium phosphate is used as the absorbing liquid. On the other hand, when removing solid components such as soot and dust contained in exhaust gas, water or water containing a surfactant is used as a cleaning liquid, but it does not remove sulfur oxides and/or nitrogen oxides contained in the gas. Since the above-mentioned absorbing liquid used for this purpose also acts as a so-called cleaning liquid, it is not necessarily necessary to use the above-mentioned water as a cleaning liquid when such specific components are to be removed at the same time. Examples The present invention will be further described below with reference to Examples. Example 1 Four leaky shelves made of perforated plates with an aperture ratio of 0.3 to 0.6
Using a stage-loaded gas-liquid contactor with a column diameter of 5600 mm, and while keeping the ratio L/G of the flow rate L of the processing liquid to the flow rate G of the gas to be treated constant, the flow rate L of the feed water was 11×10 4 Kg. /m 2・hr to 18×10 4 Kg/m 2・hr
The amount of water contained in the air discharged from the device, the total pressure loss in the four leakage shelves,
and the gas superficial velocity within the device was measured. Based on this result, the ratio of the amount of water (Kg) contained in the discharged air to the amount of supplied water (Kg) was calculated, and the results were as shown in Table 1 below. However, the calculation results and measurement results shown in Table 1 are based on the aperture ratio.
Using leakage shelves of 0.32 and 0.52, and supply water flow rate L, 12.2×10 4 Kg/m 2・hr, 16×10 4 Kg/
m 2・hr and 18×10 4 Kg/m 2・hr are used.

【表】 前記の第1表に示す結果並びにその他の実験結
果から本発明者は処理液の流量Lが17×104Kg/
m2・hrを越える範囲では供給水量に対する排出空
気中に含まれる水の割合が0.2(Kg/Kg)以上と
なり、又、圧力損失が増大して、しかも圧力損失
の振動が大きくなつてしまうので安定なる運転を
行なうことができないことを確認した。尚、最も
安定なる運転を行なうためには15×104Kg/m2
hr以下であることが望まれる。 更に11×104Kg/m2・hr超乃至17×104Kg/m2
hrの範囲の処理液の流量Lに対するガス空塔速度
を実施例1の場合と同様に求めたところ、少くと
も先に定義したUgnから10m/sec、好ましくは
gnから8m/sec、更に好ましくはUgnから6
m/secの範囲から選択すべきであることが認め
られた。 又、処理液の流量Lが11×104超乃至17×104
Kg/m2・hrの範囲になる場合の被処理ガスの流量
Gに対する処理液の流量Lの比L/Gを求めたと
ころ少くとも3以上、好ましくは3.5乃至20の範
囲から選択すべきであることが認められた。 実施例 2 孔径8.5mm、開口比0.32の多孔板から成る漏れ
棚を4段装填した、塔径5600mmの気液接触装置の
下部より、1330ppmの二酸化硫黄(SO2)を含む
ボイラー排ガス378000m3/hrを導入すると共に該
装置の上部より0.19mol/の炭酸カルシウム
(CaCO3)を含有する吸収液130400Kg/m2・hrを
流下させて前記のボイラー排ガスと該吸収液とを
向流的に接触させ、当該接触装置から排出される
排ガス中の二酸化硫黄濃度を測定した。この結果
から脱硫率を求めたところ95.5%であることが認
められた。ただし、この場合の装置内に於けるガ
ス空塔速度Ugは4.27m/secであり、被処理排ガ
スの流量Gに対する吸収液の流量Lの比L/Gは
7.8(Kg/Kg)であつた。 又、前記漏れ棚4段に於ける全圧力損失を測定
したところ、それは196mmH2Oであることが認め
られた。しかも被処理ガス中に同伴されて装置外
に持ち出される吸収液は殆んど認められず、長期
に亘つて安定なる運転を維持して行くことが可能
であることが確認された。 なお、前記特公昭51−31036号公報によれば、
上限点Ugnと溢汪点Ugcとの間の空塔速度で操作
されることになつている。然るに、特公昭51−
31036号公報によれば、液流量11×104Kg/m2・hr
以上ではUgcは定義されておらず、液流量11×
104Kg/m2・hrでUgn=Ugcとなる。即ち、液流
量11×104Kg/m2・hr以上では操作範囲が存在し
ないこととなる。参考までに、特公昭51−31036
号公報の計算式に基づいて本実施例条件でのUgn
を算出すれば1.5m/secとなる。
[Table] Based on the results shown in Table 1 above and other experimental results, the inventor determined that the flow rate L of the processing liquid was 17×10 4 Kg/
In the range exceeding m2・hr, the ratio of water contained in the discharged air to the amount of water supplied will be more than 0.2 (Kg/Kg), and the pressure loss will increase, and the vibration of the pressure loss will become large. It was confirmed that stable operation could not be performed. In addition, for the most stable operation, 15×10 4 Kg/m 2 .
It is desirable that it be less than hr. Furthermore, over 11×10 4 Kg/m 2・hr to 17×10 4 Kg/m 2
When the gas superficial velocity for the flow rate L of the treatment liquid in the range of hr was determined in the same manner as in Example 1, it was at least 10 m/sec from U gn defined earlier, preferably 8 m/sec from U gn , and further Preferably U gn to 6
It was recognized that the choice should be made from a range of m/sec. In addition, the flow rate L of the processing liquid is over 11×10 4 to 17×10 4
The ratio L/G of the flow rate L of the processing liquid to the flow rate G of the gas to be processed when the range is Kg/m 2 hr is found to be at least 3 or more, preferably from the range of 3.5 to 20. One thing was recognized. Example 2 378,000 m 3 / of boiler exhaust gas containing 1,330 ppm sulfur dioxide (SO 2 ) was collected from the bottom of a gas-liquid contactor with a column diameter of 5,600 mm, which was equipped with four stages of leakage shelves made of perforated plates with a pore diameter of 8.5 mm and an opening ratio of 0.32. At the same time as introducing hr, 130400 kg/m 2 hr of absorption liquid containing 0.19 mol/calcium carbonate (CaCO 3 ) is allowed to flow down from the upper part of the device to bring the boiler exhaust gas and the absorption liquid into countercurrent contact. The sulfur dioxide concentration in the exhaust gas discharged from the contact device was measured. When the desulfurization rate was determined from this result, it was found to be 95.5%. However, in this case, the gas superficial velocity U g in the device is 4.27 m/sec, and the ratio L/G of the flow rate L of the absorption liquid to the flow rate G of the exhaust gas to be treated is
It was 7.8 (Kg/Kg). Furthermore, when the total pressure loss in the four leakage shelves was measured, it was found to be 196 mmH 2 O. In addition, almost no absorption liquid was found to be carried out of the apparatus along with the gas to be treated, and it was confirmed that stable operation could be maintained over a long period of time. According to the above-mentioned Japanese Patent Publication No. 51-31036,
It is to be operated at a superficial velocity between the upper limit point U gn and the overflow point U gc . However, the special public service in 1977-
According to Publication No. 31036, the liquid flow rate is 11×10 4 Kg/m 2・hr
Above, U gc is not defined and the liquid flow rate is 11×
At 10 4 Kg/m 2・hr, U gn = U gc . In other words, there is no operating range when the liquid flow rate is 11×10 4 Kg/m 2 ·hr or more. For reference, Tokuko Sho 51-31036
U gn under the conditions of this example based on the calculation formula in the publication.
If calculated, it becomes 1.5m/sec.

Claims (1)

【特許請求の範囲】 1 0.3乃至0.6の開口比Fcを有する漏れ棚を少
くとも1段以上装填して成る気液接触装置の上部
より処理液を被処理ガスの流量G(Kg/m2・hr)
に対する該処理液の流量L(Kg/m2・hr)の比
L/Gが3以上であり、しかも処理液の流量Lが
11×104超乃至17×104Kg/m2・hrであるような割
合で供給すると共に該接触装置の下部より前記被
処理ガスを装置内に於けるガス空塔速度Ugが以
下に定義するUgn(m/sec)超から10(m/
sec)までの範囲となるように導入することによ
つて被処理ガスと処理液とを向流的に気液接触さ
せることを特徴とするガス中に含まれる特定成分
の湿式除去法。 (a) 多孔板から成る漏れ棚を使用し、処理液の密
度ρl(Kg/m3)に対する被処理ガスの密度ρg
(Kg/m3)の比ρg/ρlが0.838×10-3以上であ
る場合: Ugn=49.14Fc 0.7・(ρ/ρ×103-0.5・(L/G)-〓・√・ (b) 多孔板から成る漏れ棚を使用し、処理液の密
度ρl(Kg/m3)に対する被処理ガスの密度ρg
(Kg/m3)の比ρg/ρlが0.838×10-3未満であ
る場合: Ugn=40.92Fc 0.7・(ρ/ρ×103-1.535・(L/G)-〓・√・ (c) 格子板から成る漏れ棚を使用し、処理液の密
度ρl(Kg/m3)に対する被処理ガスの密度ρg
(Kg/m3)の比ρg/ρlが1.20×10-3以上である
場合: Ugn=67.8Fc・(ρ/ρ×103-0.576・(L/G)-0.23・√・ (d) 格子板から成る漏れ棚を使用し、処理液の密
度ρl(Kg/m3)に対する被処理ガスの密度ρg
(Kg/m3)の比ρg/ρlが1.20×10-3未満である
場合: Ugn=76.7Fc・(ρ/ρ×103-1.255・(L/G)-0.23・√・ (上式に於て、lは毛管定数【式】 であり、gは重力の加速度(m/sec2)であ
り、σは処理液の表面張力(Kg/sec2)であ
る。)
[Scope of Claims] 1. The processing liquid is supplied from the upper part of the gas-liquid contacting device, which is equipped with at least one stage of leakage shelves having an opening ratio F c of 0.3 to 0.6, at a flow rate G (Kg/m 2 ) of the gas to be processed.・hr)
The ratio L/G of the flow rate L (Kg/m 2 hr) of the treatment liquid to the flow rate L of the treatment liquid is 3 or more, and
The gas to be treated is supplied from the lower part of the contacting device at a rate of more than 11×10 4 to 17×10 4 Kg/m 2 hr, and the gas superficial velocity U g in the device is below. Define U gn (m/sec) from >10 (m/sec)
A wet removal method for specific components contained in a gas, which is characterized by bringing the gas to be treated and the treatment liquid into countercurrent gas-liquid contact by introducing the gas so that the gas is introduced so as to have a temperature within the range of sec). (a) Using a leakage shelf made of a perforated plate, the density of the gas to be treated ρ g with respect to the density of the treatment liquid ρ l (Kg/m 3 )
When the ratio ρ gl of (Kg/m 3 ) is 0.838×10 -3 or more: U gn =49.14F c 0.7・(ρ g / ρ l ×10 3 ) -0.5・( L/G) - 〓・√・ (b) Using a leakage shelf made of a perforated plate, the density of the gas to be treated ρ g with respect to the density of the treatment liquid ρ l (Kg/m 3 )
When the ratio ρ gl of (Kg/m 3 ) is less than 0.838×10 -3 : U gn =40.92F c 0 . 7・(ρ gl ×10 3 ) -1 . 535・( L/G) - 〓・√・ (c) Using a leakage shelf made of a grid plate, calculate the density of the gas to be treated ρ g with respect to the density of the treatment liquid ρ l (Kg/m 3 )
When the ratio ρ gl of (Kg/m 3 ) is 1.20×10 -3 or more: U gn =67.8F c・(ρ gl × 10 3 ) -0.576・(L/G ) -0 . 23・√・ (d) Using a leakage shelf made of a grid plate, calculate the density ρ g of the gas to be treated relative to the density ρ l (Kg/m 3 ) of the treatment liquid.
When the ratio ρ gl of (Kg/m 3 ) is less than 1.20×10 -3 : U gn =76.7F c・(ρ gl ×10 3 ) −1 . 255・(L/G ) -0 . 23・√・ (In the above formula, l is the capillary constant [formula], g is the acceleration of gravity (m/sec 2 ), and σ is the surface tension of the processing liquid (Kg/sec 2 ).)
JP59065694A 1984-04-04 1984-04-04 Wet removing method of specific component contained in gas Granted JPS59193114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59065694A JPS59193114A (en) 1984-04-04 1984-04-04 Wet removing method of specific component contained in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065694A JPS59193114A (en) 1984-04-04 1984-04-04 Wet removing method of specific component contained in gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51159924A Division JPS6018206B2 (en) 1976-12-27 1976-12-27 Wet removal method for specific components contained in gas

Publications (2)

Publication Number Publication Date
JPS59193114A JPS59193114A (en) 1984-11-01
JPS6247052B2 true JPS6247052B2 (en) 1987-10-06

Family

ID=13294376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065694A Granted JPS59193114A (en) 1984-04-04 1984-04-04 Wet removing method of specific component contained in gas

Country Status (1)

Country Link
JP (1) JPS59193114A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657176A (en) * 1985-11-25 1987-04-14 Eiwa Sangyo Kabushiki Kaisha Collapsible box including bag and attached lid
JP4560194B2 (en) * 1999-10-07 2010-10-13 久夫 小嶋 Impurity removing device in liquid and impurity removing method in liquid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131036A (en) * 1974-09-07 1976-03-16 Nippon Doaachetsuku Seizo Kk JISHAKURYOHAN JIDOHIKIDO
JPS51135876A (en) * 1975-05-19 1976-11-25 Hisashi Uchiyama Wet gas absorption and dust removal process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131036A (en) * 1974-09-07 1976-03-16 Nippon Doaachetsuku Seizo Kk JISHAKURYOHAN JIDOHIKIDO
JPS51135876A (en) * 1975-05-19 1976-11-25 Hisashi Uchiyama Wet gas absorption and dust removal process

Also Published As

Publication number Publication date
JPS59193114A (en) 1984-11-01

Similar Documents

Publication Publication Date Title
JP6917337B2 (en) Methods of controlling aerosol formation during absorption in ammonia desulfurization
CN1326767C (en) Nox, Hg, and SO2 removal using ammonia
KR930008109B1 (en) Wet-type exit gas purifying method and apparatus
US4102982A (en) Process for treating stack gases
US4085194A (en) Waste flue gas desulfurizing method
JP3757437B2 (en) Activated carbon catalytic reactor, flue gas desulfurization apparatus and desulfurization method using the same
JP3335725B2 (en) Exhaust gas treatment method and apparatus
US4337231A (en) Removal of sulfur dioxide from exhaust gas
JPH06263433A (en) Production of sodium carbonate aqueous solution
JPS6247052B2 (en)
US4269806A (en) Scrubber for removal of sulfur dioxide from exhaust gas
JP3486696B2 (en) Desulfurization method using gas containing sulfurous acid gas as gas to be treated
JP2003144849A (en) Exhaust gas desulfurization system and method therefor
JP3380046B2 (en) Wet exhaust gas desulfurization method and apparatus
JPH0810643A (en) Flue gas desulfurization method
JP2004337776A (en) Exhaust gas treating apparatus
JPH11347351A (en) Flue gas desulfurization device
JPS6018206B2 (en) Wet removal method for specific components contained in gas
JP2000070666A (en) Method for flue gas desulfurization
JP2013234223A (en) Method and apparatus for desulfurizing coke oven gas
JP3693778B2 (en) Method and apparatus for controlling carbonate concentration in slurry
KR830001364B1 (en) Wet process for removing specific component from gas
KR820000842B1 (en) Plate column for use in the removal of fases
JPH03278814A (en) Acidic gas treating device
JPH0663353A (en) Wet flue gas desulfurizer and its method