JPS6246316A - Voltage phase regulating transformer - Google Patents

Voltage phase regulating transformer

Info

Publication number
JPS6246316A
JPS6246316A JP60185843A JP18584385A JPS6246316A JP S6246316 A JPS6246316 A JP S6246316A JP 60185843 A JP60185843 A JP 60185843A JP 18584385 A JP18584385 A JP 18584385A JP S6246316 A JPS6246316 A JP S6246316A
Authority
JP
Japan
Prior art keywords
winding
voltage
phase
tap
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60185843A
Other languages
Japanese (ja)
Inventor
Masaru Ono
小野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60185843A priority Critical patent/JPS6246316A/en
Publication of JPS6246316A publication Critical patent/JPS6246316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To make stable winding unnecessary by composing a tapping winding of a star connection winding for regulating the quadrature component voltage and an open star connection winding for regulating the in-phase component voltage, and connecting them through a thyristor group to which respective two pairs of thyristors are mutually connected reversely and in parallel. CONSTITUTION:At an adjusting transformer 12, a low pressure winding 6 and a regulating winding 14 connected in parallel, a tap winding 15 for regulating the quadrature component voltage and a tap winding 16 for adjusting the in-phase component voltage are wound to the iron core of an adjusting transformer, and both tap windings 15 and 16 are connected by a thyristor group 17 for regulating the quadrature component voltage and a thyristor group 18 for adjusting the in-phase component voltage to which two respective pairs of thyristors are connected mutually reversely and inparallel. One edge (x1, y1 and z1) of an exciting winding 23 is connected to one edge of the thyristor group 18 for regulating the in-phase component voltage of the regulating transformer, and one edge (x2, y2 and z2) is connected to one edge which is not a neutral side of the thyristor group 18 for adjusting the in-phase component voltage and the thyristor group 17 for regulating the quadrature component voltage having 120 deg. voltage phase difference, and further, connected to one edge of the thyristor group 18 for regulating the in-phase component voltage having 120 deg. voltage phase difference respectively.

Description

【発明の詳細な説明】 □ 〔発明の技術分野)                
    i;。
[Detailed description of the invention] □ [Technical field of the invention]
i;.

本発明は高速制御を可能とした電力用の電圧伶    
 1・1 相調整変圧器に関するものである。         
   :〔発明の技術的背景とその問題点〕 電圧位相調整変圧器は電圧変成を行なうと共に1次側と
2次側の電圧位相を変化させて電力系統の潮流制御をも
行なう装置であり、そのタップ切換には機械的接点のタ
ップ切換器が使用されてきた。しかし、従来の機械的動
作をともなうタップ切換器方式では、その切換に必要と
する時間が長く、緊急を要する系統事故時の過渡安定度
を向上させる機能はない。
The present invention enables high-speed control of electric power voltage differences.
1.1 This relates to a phase regulating transformer.
: [Technical background of the invention and its problems] A voltage phase adjustment transformer is a device that transforms voltage and also controls power flow in a power system by changing the voltage phase on the primary and secondary sides. Mechanical contact tap changers have been used for tap changing. However, conventional tap changer systems that involve mechanical operation require a long time for switching, and do not have the ability to improve transient stability in the event of an emergency system fault.

一方、電力系統の増大化に伴い、信頼度の高い効率的な
設備が必要となっており、過渡安定度同士の機能をもi
した電圧位相調整変圧器の実現が望まれるようになった
On the other hand, with the expansion of power systems, highly reliable and efficient equipment is required, and the functions of transient stability are also required.
It has become desirable to realize a voltage phase adjustment transformer with a

近年、シリコン制御整流素子(以後サイリスタと記す)
を含めた半導体技術の著し・い進歩に伴い、さまざまな
分野で9イリスタの適用が広大しており、そのサイリス
ク技術を利用して、サイリスタ制御によるタップ切換を
行なう電圧位相調整変圧器・調整器が研究され、その効
果が認められている。そして最近では電力用高電圧入容
吊器について、その実用化が検討されている。
In recent years, silicon-controlled rectifying elements (hereinafter referred to as thyristors) have been developed.
With the remarkable progress of semiconductor technology including thyristor, the application of 9 iris has expanded in various fields, and the thyristor technology has been used to create voltage phase adjustment transformers and regulators that perform tap switching by thyristor control. The device has been studied and its effectiveness has been recognized. Recently, the practical application of high-voltage container hoists for power use has been studied.

このようなサイリスク式は1サイクル以内の高速制御や
連続切換が可能となり、従来器にはない1h性が得られ
る。すなわち電圧と位相を高速に変化させることにより
、電力潮流を制御して系統事故時などの動態安定度を向
上させる機能を持たせると共に、常時tよループ系の潮
流を能動的に制御することにより、送電線の過負荷解消
や送電n失の低減などの19割をはだすことができる。
Such a cyrisk type enables high-speed control within one cycle and continuous switching, and provides 1-hour performance not found in conventional devices. In other words, by changing the voltage and phase at high speed, it has the function of controlling the power flow and improving dynamic stability in the event of a grid failure, and by actively controlling the power flow of the loop system at all times. , it is possible to eliminate overloads on power transmission lines and reduce power transmission losses by 190%.

電圧位相調整変圧器の従来例の一つとして第7図に示す
ものがあり、主変圧器1と直列変圧器2とから構成され
ている。主変圧器1には高圧主巻線3、同相分電圧調整
用タップ巻線4、中圧巻線5および低圧巻線6とが市り
、タップ巻線4には単相用タップ切換器7が3台取付け
である。直列変圧器2には直角分電圧調整用タップ巻線
8と励磁巻線9および安定巻線10とがあり、タップ巻
線8には三相中性点用タップ切換器11が取付(プであ
る。
One conventional example of a voltage phase adjustment transformer is shown in FIG. 7, and is composed of a main transformer 1 and a series transformer 2. The main transformer 1 has a high-voltage main winding 3, a tap winding 4 for in-phase voltage adjustment, a medium-voltage winding 5, and a low-voltage winding 6, and the tap winding 4 has a single-phase tap changer 7. Three units are installed. The series transformer 2 has a tap winding 8 for quadrature voltage adjustment, an excitation winding 9, and a stabilizing winding 10, and the tap winding 8 is equipped with a three-phase neutral point tap changer 11. be.

このような構成において、同相分電圧調整はタップ切換
器7によって、直角分電圧調整はタップ切換器11によ
って、各々直接切換方式によって切換えているが、タッ
プ切換器7,11は機械的接点を有するものであるので
、前述の高速制御等には対応することはできない。
In such a configuration, the in-phase voltage adjustment is performed by the tap changer 7, and the right-angle voltage adjustment is performed by the tap changer 11, each using a direct switching method, but the tap changers 7 and 11 have mechanical contacts. Therefore, it cannot correspond to the above-mentioned high-speed control, etc.

一方、サイリスタは半導体であるため、その過電流耐量
特性と雷インパルス電圧などの異常電圧に対する耐絶縁
特性が、変圧器巻線に比べ非常に悪い。故に系統事故時
やサイリスクの誤動作時の過渡的な過電流や過電圧に対
しては十分な留意した(′j4成とする必要がある。
On the other hand, since thyristors are semiconductors, their overcurrent withstand characteristics and insulation characteristics against abnormal voltages such as lightning impulse voltages are much worse than transformer windings. Therefore, sufficient attention must be paid to transient overcurrents and overvoltages in the event of a system failure or malfunction of the system risk ('j4 configuration).

そのため、第7図におけるタップ切換器7,11をサイ
リスタ方式に置き換える構成では、サイリスタに流れる
電流は高圧側線路電流であり、発生電圧も高圧巻線の一
部であるため大きくなり、サイリスタの使用個数か非常
に多くなると共に、サイリスタ誤動作時の不具合現象例
えば、サイリスクOFFによる欠相問題が、そのまま系
統に発生し、その運用−ヒの信頼性において問題がおる
。従って、一般的には、このような直接切換方式より、
直列変圧器を使用する間接切換方式の方が有利になるこ
とが多い。
Therefore, in the configuration in which the tap changers 7 and 11 in Fig. 7 are replaced with thyristor type, the current flowing through the thyristor is the high-voltage side line current, and the generated voltage is also a part of the high-voltage winding, so it becomes large, and the thyristor is not used. As the number of thyristors becomes extremely large, malfunctions caused by thyristor malfunctions, for example, phase loss problems due to thyristor turning off, occur directly in the system, causing problems in the reliability of its operation. Therefore, in general, rather than such a direct switching method,
Indirect switching methods using series transformers are often advantageous.

[発明の目的〕 本発明は以上の点に鑑みてサイリスタを使用した間接切
換方式で高速制御や連続切換が可能となり、系統事故時
の動態安定度を面上させ信頼性が高く、かつ、合理的な
構成とした電圧位相調整変圧器を提供することを目的と
する。
[Object of the invention] In view of the above points, the present invention enables high-speed control and continuous switching using an indirect switching method using thyristors, improves dynamic stability in the event of a system fault, and achieves high reliability and rationality. An object of the present invention is to provide a voltage phase adjustment transformer having a similar configuration.

(発明のW要) 本発明による電圧位相調整変圧器はタップ巻線を直角分
電圧調整用の星形結線のものと、同相分電圧調整用の開
放星形結線のものとで構成し、それらの接続は各々2組
のサイリスタを互に逆並列接続したサイリスタ群を介し
て行ない、直角分電圧調整成分と同相分電圧調整成分の
ベタ1〜ル和の電圧が1台の直列変圧器の励磁巻線に加
わるようにし、そして従来器では必要でめった安定巻線
を不要とすることを特徴とするものである。
(Key Points of the Invention) The voltage phase adjustment transformer according to the present invention has a tap winding having a star connection for quadrature voltage adjustment and an open star connection for in-phase voltage adjustment. The connection is made through a thyristor group in which two sets of thyristors are connected in antiparallel to each other, and the voltage of the sum of the quadrature voltage adjustment component and the in-phase voltage adjustment component is used to excite one series transformer. It is characterized in that it is added to the winding, and eliminates the need for a stable winding, which is required in the conventional device and is rare.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第1図から第6図に示す実施例について説
明する。第1図は第7図に示す従来のものと同一部分は
同符号をつけてあり、その構成における大きな相違は調
整変圧器12を追加し、直列変圧器2の安定巻線10が
なくなり、そしてタップ切換器をサイリスタに変更した
ことである。
The present invention will be described below with reference to embodiments shown in FIGS. 1 to 6. In FIG. 1, the same parts as in the conventional one shown in FIG. 7 are given the same reference numerals, and the major differences in the configuration are that a regulating transformer 12 is added, the stabilizing winding 10 of the series transformer 2 is eliminated, and The tap changer was changed to a thyristor.

主変圧器1には星形結線である高圧主巻線3と中圧巻線
5および三角結線の低圧巻線6が主変圧器用鉄心(図示
しない)に巻装されている。
The main transformer 1 includes a high-voltage main winding 3 and a medium-voltage winding 5 having a star-shaped connection, and a low-voltage winding 6 having a triangular connection, which are wound around a main transformer iron core (not shown).

直列変圧器2には高圧主査線3と直列接続された直列巻
線13と、単相3個からなる励la巻線23が直列変圧
器用鉄心(図示しない)に巻装されている。
The series transformer 2 includes a series winding 13 connected in series with the high-voltage main scan line 3, and an excitation la winding 23 consisting of three single-phase windings, which are wound around a series transformer iron core (not shown).

調整変圧器12には低圧巻線6と並列接続された調整巻
線14と直角分電圧調整用タップ巻線15と同相分電圧
調整用タップ巻線16が、調整変圧器用鉄心(図示しな
い)に巻装され、両タップ巻線15゜16は、各々2組
のサイリスタを互に逆並列接続した直角分電圧調整用サ
イリスタ群17と同相分電圧調整用サイリスタ群18に
より、各々接続されるようにしである。
In the regulating transformer 12, a regulating winding 14 connected in parallel with the low voltage winding 6, a quadrature voltage regulating tap winding 15, and an in-phase voltage regulating tap winding 16 are connected to a regulating transformer iron core (not shown). Both tap windings 15 and 16 are connected by a quadrature voltage adjustment thyristor group 17 and an in-phase voltage adjustment thyristor group 18, each of which has two sets of thyristors connected in antiparallel to each other. It is.

励磁巻線23の一端(Xl、’J1.Z1)は調整変圧
器の同相分電圧調整用サイリスタ群18の一端に接続さ
れ、前記励磁巻線23の他の一端(x2゜Vz、Zz)
は前記同相分電圧調整用サイリスタ群18と120度の
電圧位相差のある直角分電圧調整用サイリスタ群17の
中性点側でない一端に、更に、120度の電圧位相差の
ある同相分電圧調整用サイリスタ8¥18の一端に各々
接続する。
One end of the excitation winding 23 (Xl, 'J1.Z1) is connected to one end of the in-phase voltage adjustment thyristor group 18 of the regulating transformer, and the other end of the excitation winding 23 (x2°Vz, Zz)
is the in-phase voltage adjusting thyristor group 18 and the quadrature voltage adjusting thyristor group 17 which has a voltage phase difference of 120 degrees. Connect each to one end of the thyristor 8¥18 for use.

第2図はタップコイル19.20.21とサイリスタ群
22の接続を示したものでおる。サイリスタ群22は2
組のサイリスタを互に逆並列に接続して、信号パルスに
より両者をそれぞれ一方向に導通させ、また信号を停止
することにより、両者が不導通となるように構成しであ
る。タップコイル19.20゜21の誘起電圧比が1=
3二〇となるにようにしておき、次表に示すように各サ
イリスタ■〜@のON。
FIG. 2 shows the connections between the tap coils 19, 20, and 21 and the thyristor group 22. The thyristor group 22 is 2
A set of thyristors is connected in antiparallel to each other, and both are made conductive in one direction by a signal pulse, and are made non-conductive by stopping the signal. The induced voltage ratio of tap coil 19.20°21 is 1=
320, and turn on each thyristor ■ to @ as shown in the following table.

OFF制御により、サイリスタ群22の端子に、βに発
生ずる電圧Eを+138−0〜−13eのタップ点数2
7点に調整するものである。
By OFF control, the voltage E generated at β is applied to the terminal of the thyristor group 22 with two tap points from +138-0 to -13e.
This will be adjusted to 7 points.

以下余白 ○:サイリリス ON ×:サイリスタ OFF タップコイル19.20の2個でサイリスタ■〜■の場
合には、端子に、ffに発生する電圧Eを+4e〜O〜
−4eのタップ点数9点に調整できる。
Below margin: ○: Thyristor ON
-4e can be adjusted to 9 tap points.

この構成であ、ると、タップコイル数が少なくても、タ
ップ点数が多くとれる利点がある。
With this configuration, there is an advantage that a large number of tap points can be obtained even if the number of tap coils is small.

第1図は直角分電圧調整用のタップ巻線15とサイリス
タ群17にはタップコイル数2個を、同相分電圧調整用
のタップ巻線16とサイリスタ群18にはタップコイル
数3個を各々適用した場合を示している。
In Figure 1, two tap coils are used for the tap winding 15 and thyristor group 17 for quadrature voltage adjustment, and three tap coils are used for the tap winding 16 and thyristor group 18 for in-phase voltage adjustment. The case where it is applied is shown.

次に本発明の作用効果について説明する。第3図から第
5図は電圧と位相が調整できることを説明する誘起電圧
のベクトル図であり、第1図より必要な部分のみをぬき
出し示したものである。まず第3図は同相分電圧調整用
サイリスタ群18の発生電圧が零であり、直角分電圧調
整用サイリスタ群17の発生電圧だけが生じ、その電圧
で励磁巻線23を励磁し、直列巻線13には直角分電圧
Eiのみを発生している状態を示す。
Next, the effects of the present invention will be explained. FIGS. 3 to 5 are vector diagrams of induced voltage to explain that voltage and phase can be adjusted, and only necessary parts are extracted and shown from FIG. 1. First, in FIG. 3, the voltage generated by the thyristor group 18 for in-phase voltage adjustment is zero, and only the voltage generated by the thyristor group 17 for quadrature voltage adjustment is generated, and this voltage excites the excitation winding 23, and the series winding 13 shows a state in which only the quadrature component voltage Ei is generated.

この場合の高圧側に発生する電圧E、は、その大きざが
Wで7で位相差θはtan  Ei/EmI となる。1目し[lnは^圧主巻線の電l:Eとする。
In this case, the voltage E generated on the high voltage side has a magnitude difference W of 7, and a phase difference θ of tan Ei/EmI. 1st position [ln is the electric current of the main winding l:E.

次に第4図は直角分電圧調整用サイリスク群17の発生
電圧が零であり、同相分電圧調整用サイリスク群18の
発生電圧だけが生じ、その電圧で励磁巻線23を励磁し
、直列巻線13には同相分電圧Evのみを発生している
状態を示1゛。
Next, in FIG. 4, the voltage generated by the quadrature component voltage adjustment thyrisk group 17 is zero, and only the voltage generated by the in-phase voltage adjustment thyrisk group 18 is generated, and the excitation winding 23 is excited by this voltage, and the series winding Line 13 shows a state in which only the common-mode voltage Ev is generated.

この場合の高圧側に発生Jる電圧E3は、その人きさが
(E  十EII、)で位相差θは零である。
In this case, the voltage E3 generated on the high voltage side has a characteristic (E 1 EII) and a phase difference θ of zero.

■ 第5図は直角分電圧調整用サイリスタ群17と同相分電
圧調整用サイリスタ群18の両方に発生電圧か生じ、そ
の合成電圧で励磁巻線23を励磁し直列でいる状態を示
す。
(2) FIG. 5 shows a state in which a voltage is generated in both the quadrature voltage adjustment thyristor group 17 and the in-phase voltage adjustment thyristor group 18, and the excitation winding 23 is excited by the combined voltage so that they are connected in series.

tan−1E・/(E  +E  )となる。tan-1E・/(E +E).

l        mV このように同相分電圧と直角分電圧を別々の直列変圧器
に印加するのではなく、1台の直列変圧器に印加1−る
方法であり、サイリスタのON、 OFF制御によりサ
イリスタ群17.18の端子に、、ff間の電圧Eの大
きさと極性を調整し、直列巻線13に発生づる電圧Et
の大きさと位相を変化させることにより、高圧側に発生
する電圧E、の大きさと位相差θを任意に調整づること
ができる。
l mV In this way, instead of applying the in-phase voltage and the quadrature voltage to separate series transformers, they are applied to one series transformer, and the thyristor group 17 is controlled by ON/OFF control of the thyristors. By adjusting the magnitude and polarity of the voltage E between .18 and ff, the voltage Et generated in the series winding 13 is
By changing the magnitude and phase of E, the magnitude and phase difference θ of the voltage E generated on the high voltage side can be adjusted as desired.

次に、4ノイリスクに流れる電流と印加電圧について説
明する。
Next, the current flowing through the 4-Noisrisk circuit and the applied voltage will be explained.

サイリスタの過電流耐量は、定沿の負荷電流や過負荷電
流ではなく、系統短絡時に発生づるλ0絡電流によって
決定される場合が多いが、本発明による第1図に示づ場
合には高圧主巻線3すなわら直列巻線13に流れる高圧
側短絡電流が励ra巻線23に変成され、サイリスタ群
17.18に流れる。サイリスタに流れる短絡電流の大
きさは直列巻線13と励磁巻線23の巻数比に比例する
The overcurrent capability of a thyristor is often determined not by the constant load current or overload current, but by the λ0 circuit current that occurs when the system is short-circuited. The high-voltage side short-circuit current flowing through the winding 3, that is, the series winding 13, is transformed into the excitation winding 23 and flows through the thyristor groups 17 and 18. The magnitude of the short-circuit current flowing through the thyristor is proportional to the turns ratio between the series winding 13 and the excitation winding 23.

一方、サイリスタの絶縁耐量は定常の誘起電圧ではなく
、線路端子に雷インパルス電圧が印加された場合に、移
行してくる電圧によって決定される場合が多く、第1図
に示す場合には直列巻線13から励磁巻線23に移行し
てくる分と調整巻線14h)らタップ巻線15.16に
移行してくる分とがあるが、前者は直列巻線13が中性
点側にあるので、その値は小ざくでき、後者は低圧回路
なので、その電圧値か低いことになり、使用されるサイ
リスタの直列個数を少なくできる。
On the other hand, the dielectric strength of a thyristor is often determined not by the steady induced voltage but by the voltage that shifts when a lightning impulse voltage is applied to the line terminal. There is a part that moves from the wire 13 to the excitation winding 23, and a part that moves from the adjustment winding 14h) to the tap winding 15.16, but in the former, the series winding 13 is on the neutral point side. Therefore, its value can be reduced, and since the latter is a low voltage circuit, its voltage value is low, and the number of thyristors used in series can be reduced.

励磁巻線23とタップ巻線15.16の巻回数を大ぎく
すると、移行電圧は大きくなるが、通電電流は小さくな
り、逆に巻回数を少なくすると移行電圧tよ小ざく、通
電電流は大きくなる。このような関係から、それらの巻
回数を決定する場合には、使用するサイリスタが最適と
なるように選定できるという大きな利点がある。
If the number of turns of the excitation winding 23 and the tap winding 15, 16 is increased, the transition voltage will increase, but the conducting current will become smaller; conversely, if the number of turns is decreased, the transition voltage will be smaller than t, but the conducting current will become larger. Become. Based on this relationship, when determining the number of turns, there is a great advantage that the thyristor to be used can be optimally selected.

又、サイリスタの誤動作ONによるタップコイル短絡が
万一発生したとしても、調整変圧器12の巻線インピー
ダンスを直接切換方式に比へ、比較的容易に大きくする
ことができるので、横流を小さくでき、その横流によっ
てサイリスタの並列個数が決定される場合には、その分
だけサイリスタの使用個数が減る。
In addition, even if a tap coil short circuit occurs due to a malfunction of the thyristor, the winding impedance of the regulating transformer 12 can be relatively easily increased compared to the direct switching system, so the cross current can be reduced. When the number of parallel thyristors is determined by the cross current, the number of thyristors used is reduced by that amount.

サイリスク群17.18が接続されている回路は系統に
直接接続されておらず、絶縁レベルを自由に選ぶ事がで
きる・ので、最近の高性能非直線性抵抗素子を用いた避
雷器でサイリスタ群を保護すればサイリスク群への移行
電圧を更に小さくでき、サイリスタの直列接続個数を低
減できる利点もおる。
The circuit to which the thyristor group 17.18 is connected is not directly connected to the grid, and the insulation level can be freely selected. Therefore, the thyristor group can be connected to the thyristor group using a surge arrester using a recent high-performance nonlinear resistance element. If protected, the transition voltage to the thyristor group can be further reduced, and the number of series-connected thyristors can also be reduced.

このように通電電流と印加電圧が小ざくなれば使用され
るサイリスタの総個数が低減できその装置の小形化、低
価格化ができる。
If the applied current and applied voltage are reduced in this way, the total number of thyristors used can be reduced, and the device can be made smaller and lower in price.

そしてサイリスクの誤動作OFFにより励磁巻線23の
開放状態が万一発生したとしても直列巻線13は常に接
続されているので直接切換方式のように、サイリスタの
OFFによる系統回路の一時聞敢という不具合現象の発
生はなくなる。
Even if the excitation winding 23 is opened due to a malfunction of the thyristor turning OFF, the series winding 13 is always connected, so unlike the direct switching method, the problem is that the system circuit is temporarily interrupted when the thyristor is turned OFF. The phenomenon will no longer occur.

第7図の直列変圧器2によれば、本来タップ巻線8とタ
ップ切換器11および励v11巻線9だけのゼ4成でよ
いが、三角結線を持たないため、零相インピーダンスを
小さくしたり、励磁電流中の3倍調波成分を循環させる
役目の巻線が余分に必要となリ、電圧位相調整機能に必
要でない安定巻線10が必要であった。
According to the series transformer 2 shown in Fig. 7, it would originally be necessary to have only the tap winding 8, the tap changer 11, and the excitation V11 winding 9, but since it does not have a triangular connection, it is possible to reduce the zero-sequence impedance. In addition, an extra winding is required to circulate the third harmonic component in the excitation current, and a stable winding 10 that is not required for the voltage phase adjustment function is required.

しかし本発明の第1図の構成にすれば、直列変圧器2に
は、安定巻線を有しないが、次の理由により、これが不
要であり大きな利点となる。
However, with the configuration of FIG. 1 of the present invention, although the series transformer 2 does not have a stabilizing winding, this is not necessary for the following reason, which is a great advantage.

直角分電圧調整用サイリスタ群17だけが電圧を誘起し
ている場合の第3図では励磁巻線23が三角結線されて
いるので、この回路に零相電流が流れるので安定巻線は
不要である。
In Figure 3, when only the quadrature voltage adjustment thyristor group 17 is inducing voltage, the excitation winding 23 is triangularly connected, so a zero-sequence current flows through this circuit, so a stabilizing winding is not required. .

次に同相分電圧調整用サイリスタ群18だけが電圧を誘
起している場合の第4図では励磁巻線23と同相分電圧
調整用タップ巻線16が単相回路を構成している関係で
、零相電流は励磁巻線23と同相分電圧調整用タップ巻
線16の間を循環し、更に、調整変圧器12の三角結線
され調整巻線14を循環する零相電流で、前記同相分電
圧調整用タップ巻線16の電流を打潤すので、安定巻線
は不要となる。
Next, in FIG. 4 when only the in-phase voltage adjustment thyristor group 18 induces a voltage, the excitation winding 23 and the in-phase voltage adjustment tap winding 16 constitute a single-phase circuit. The zero-sequence current circulates between the excitation winding 23 and the in-phase voltage adjustment tap winding 16, and further circulates through the triangularly connected adjustment winding 14 of the adjustment transformer 12. Since the current in the adjustment tap winding 16 is balanced, a stabilizing winding is not required.

同相分と直角分の電圧調整用サイリスタ群17゜18の
両者共電圧を誘起している場合の第5図では、零相電流
は、例えば、励磁巻線(×1)→同相分電圧調整用タッ
プ巻線(x 1−yz )→励磁巻線     fjl
ol (yl−yl)→同相分電圧調整用タップ巻線    
  ・1(Vl−22)−励磁巻線(Zz  Zl)→
同相     :・:分電圧調整用タップ巻線(zl−
x・)−励!i巻     °″1線(x2)→励磁巻
線(×1)の回路を流れ、同     □”□“□相分
電圧調整用タラプ巻線16に流れる零相電流を、三角結
線された調整巻線14の循環零相電流で打消     
1’llすため、安定巻線が不要となる。      
      ;□iお、:、3−c、11よえ、ようヶ
ヶイ、ユ。1.   奢′i 残電圧位相調整変圧器0適用は大きな点力系統0   
  、]連系用であり、その電圧が高く単器容口が非常
に     7・1°1 大きいので、その据付場所までの輸送方法が問題   
  :j・;j となることである。貨車あるいはトレーラ輸送が   
  i、1り 必要となる場合には単相器単位で製作し、輸送料   
  ;;1限9.対処し工いる場合が多い。は周知。と
、う、Iあ6am(7)よう□やヵ、sv+ 1fK(
7)1!#ffi!=l (!:    ::次のこと
がわかる。                  」:
′l 主変圧器1は高圧主巻線3、中圧巻線5、低圧    
 ゛1巻線6だけで、複雑なタップ巻線やタップ切換装
哨 置がないので単相器3台構成にすれば、より大き   
  、、1な容量まで適用できる。
In Fig. 5, when voltage is induced in both the in-phase and quadrature voltage adjustment thyristor groups 17 and 18, the zero-sequence current is, for example, excitation winding (x 1) → in-phase voltage adjustment Tap winding (x 1-yz) → excitation winding fjl
ol (yl-yl) → Tap winding for in-phase voltage adjustment
・1 (Vl-22) - Excitation winding (Zz Zl) →
In-phase :・:Tap winding for dividing voltage adjustment (zl-
x・)-Encouragement! The zero-sequence current that flows through the circuit of the i-winding °''1 wire (x2) → excitation winding (x1) and the same □"□"□phase voltage adjustment ramp winding 16 is transferred to the triangularly connected adjustment winding. Cancelled by circulating zero-sequence current in line 14
1'll, eliminating the need for a stable winding.
;□iOh, :, 3-c, 11 Yoe, Yogai, Yu. 1. Deluxe residual voltage phase adjustment transformer 0 is applicable to large point power system 0
, ] for grid connection, and the voltage is high and the single container size is very large, so the transportation method to the installation location is a problem.
:j・;j. freight car or trailer transportation
i. If one is required, we will manufacture it in units of single-phase units, and shipping charges will apply.
;; 1st period 9. It often takes some effort to deal with it. is well known. To, U, IA6am (7) Yo□Yaka, sv+ 1fK(
7)1! #ffi! =l (!: ::You can see the following. ”:
'l The main transformer 1 has a high voltage main winding 3, a medium voltage winding 5, and a low voltage main winding.
゛Since there is only 1 winding 6 and there is no complicated tap winding or tap switching device sentry, if you configure 3 single-phase generators, it will be larger.
,, can be applied up to a capacity of 1.

そして直列変圧器2と調整変圧器12は分割されている
ので輸送は容易である。さらに、サイリスタの点検や万
一故障した場合などには主変圧器1だけによる運転も可
能である。
Since the series transformer 2 and the regulating transformer 12 are separated, transportation is easy. Furthermore, operation using only the main transformer 1 is also possible for inspection of the thyristor or in the unlikely event of a failure.

変形例としては第1図において、直列巻線13を高圧巻
線側から中圧巻線側に移す方式および中圧巻線5がなく
、高圧と低圧の2巻線変圧器にも同様に適用し得ること
はいうまでもない。
As a modified example, in FIG. 1, the method of moving the series winding 13 from the high-voltage winding side to the medium-voltage winding side and the absence of the medium-voltage winding 5 can be similarly applied to a two-winding high-voltage and low-voltage transformer. Needless to say.

そして容Φが比較的小さく、あるいは据付場所が海上輸
送で可能な場合には第6図に示すようにタップ巻線15
.16をも主変圧器用鉄心に巻装し、調整巻線14すな
わち調整変圧器12を省略することが可能であり、発電
所の昇圧用変圧器などにも適用することができる。
If the volume Φ is relatively small or the installation location is possible by sea transportation, tap winding 15 as shown in FIG.
.. 16 is also wound around the main transformer core, and the adjustment winding 14, that is, the adjustment transformer 12, can be omitted, and can also be applied to step-up transformers in power plants.

第2図に示すようなタップコイルをサイリスタ群の構成
については、そのタップコイルの誘起電圧比を1:2:
4:8にする方法も周知のところであり、そのようなコ
イル構成にしても適用できる。
For the configuration of a thyristor group using tap coils as shown in Figure 2, the induced voltage ratio of the tap coils is 1:2:
A method of setting the ratio to 4:8 is also well known and can be applied to such a coil configuration.

尚サイ゛斥夕方式t、:′、t・0゛まま1記述lき5
[,1ように、点弧角制御無しのタップ切換式のほかに
     1.:り 点弧角制御を行なう点弧角制御式がある。点弧角   
  、i制御式は第2図における3個のタップコイル1
9.l:1で 20、21に相当する1個のタップコイルにして、サ 
    ・、1イリスタは■〜■のような4セツトから
なるサイ     ”1′・[ リスク群の端子に、β間の電圧Eの大きさと極性   
  ・′:、1 をサイリスタの点弧角制御で調整するものである。  
  [、・1この方式はタップ切換式に比ベサイリスタ
制御     i)l か複雑となり、歪波形による高調波の発生もある   
  ;jl か、タップ巻線の構成が単純化し、サイリスタ群   
  [1との接続方法が簡単になる利点がある。これに
も本発明を全く同様に適用できることは明白である。
In addition, the evening ceremony t, :', t・0゛1 description 1 left 5
In addition to the tap switching type without firing angle control as shown in [,1]. : There is a firing angle control formula that controls the firing angle. firing angle
, i control formula is the three tap coils 1 in FIG.
9. With l:1, make one tap coil corresponding to 20 and 21, and
・, 1 iris register consists of 4 sets such as ■~■.
・':, 1 is adjusted by controlling the firing angle of the thyristor.
[,・1 This method is more complicated than the tap-switching type thyristor control, and harmonics may be generated due to the distorted waveform.
;jl Or, the configuration of the tap winding is simplified and the thyristor group
[This has the advantage of simplifying the connection method with 1. It is clear that the present invention can be applied to this case in exactly the same way.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、従来の電圧位相調整変圧
器の作用を有すると共に、電圧と位相調整をサイリスタ
制御により行なうことができるので、高速制御や連続切
換が可能となり、系統事故時の動態安定度向上に役立ち
、かつ無接点化によ     (5,(る保守の簡素化
および高頓度動作も可能となり信     i□11□
l 頼性向上になる。また直列変圧器の励磁巻線と、調整変
圧器のタップ巻線、調整巻線とで零相回路が偶成てき直
列変圧器に安定巻線が不要となる。
As described above, according to the present invention, it has the function of a conventional voltage phase adjustment transformer, and voltage and phase adjustment can be performed by thyristor control, so high-speed control and continuous switching are possible, and in the event of a system fault. It helps improve dynamic stability, and the non-contact structure simplifies maintenance and enables high-speed operation.
l Improves reliability. Further, the excitation winding of the series transformer, the tap winding of the regulating transformer, and the regulating winding form a zero-phase circuit, so that the series transformer does not require a stabilizing winding.

そしてサイリスクの使用個数も低減でき、輸送も便利で
あるサイリスタ制御式の電圧位相調整変圧器を提供でき
る。
Furthermore, it is possible to provide a thyristor-controlled voltage phase adjustment transformer that can reduce the number of thyristors used and is convenient to transport.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるサイリスタ制御式電圧位相調整変
圧器の一実施例を示す結線図、第2図は周知であるタッ
プコイルとサイリスタ群の構成を示す図、第3図、第4
図、第5図は本発明による電圧位相調整の原理を示V電
圧ベクトル図、第6図は本発明による他の一実施例を示
1結線図、第7図(ま従来の電圧位相調整変圧器の結線
図である。 119.主変圧器    2・・−直列変圧器12・・
・調整変圧器   3・・・高圧主巻線5・・・中圧巻
線    6・・・低圧巻線4.16・・・同、相分電
圧調整用タップ巻線8.15・・・直角分電圧調整用タ
ップ谷線7.11・・・機械的接点を有するタップ切換
器9.23・・・励磁巻線  10・・・安定巻線13
・・・直列巻線    14・・・調整巻線17、18
・・・直角分、同相分の電圧調整用サイリスタ群 19、20.21・・・]コイル22・・・サイリスク
群代理人 弁理士 則 近 憲 1も 同  三俣弘文 第  1 図 第  2 図 第3図 V (E′“0・0“0)   第  4 図第  5 図
Fig. 1 is a wiring diagram showing an embodiment of the thyristor-controlled voltage phase adjustment transformer according to the present invention, Fig. 2 is a diagram showing the configuration of a well-known tap coil and thyristor group, Figs.
Figure 5 shows the principle of voltage phase adjustment according to the present invention.V voltage vector diagram, Figure 6 shows another embodiment according to the invention. 119. Main transformer 2...-Series transformer 12...
・Adjustment transformer 3...High voltage main winding 5...Medium voltage winding 6...Low voltage winding 4.16...Same, phase voltage adjustment tap winding 8.15...Right angle component Voltage adjustment tap valley wire 7.11... Tap changer with mechanical contacts 9.23... Excitation winding 10... Stability winding 13
...Series winding 14...Adjustment winding 17, 18
... Thyristor group for adjusting the voltage of right-angle and in-phase components 19, 20, 21...] Coil 22... Thyrisk group agent Patent attorney Ken Nori Chika 1 Same as Hirofumi Mitsumata No. 1 Figure 2 Figure 3 Figure V (E'"0・0"0) Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも星形結線の高圧主巻線と三角結線の低
圧巻線を備えた主変圧器、前記高圧主巻線に直列接続さ
れる直列巻線および単相3個からなる励磁巻線を備えた
直列変圧器、および前記低圧巻線と並列接続され三角結
線される調整巻線、星形結線される直角分電圧タップ巻
線および開放星形結線される同相分電圧タップ巻線を備
えた調整変圧器とから構成される電圧位相調整変圧器に
おいて、前記タップ巻線は各々2組のサイリスタを互に
逆並列接続したサイリスタ群により接続され、前記同相
分電圧タップ巻線の一端を前記励磁巻線の一端に接続し
、その励磁巻線の他の一端を前記同相分電圧タップ巻線
と異なる相の直角分タップ巻線の一端と、さらに、他の
もう一つの異なる相の同相分電圧タップ巻線の一端とに
接続したことを特徴とする電圧位相調整変圧器。
(1) A main transformer equipped with at least a star-connected high-voltage main winding and a triangular-connected low-voltage winding, a series winding connected in series with the high-voltage main winding, and an excitation winding consisting of three single-phase windings. an adjusting winding connected in parallel with the low-voltage winding and triangularly connected, a star-connected right-angle voltage tap winding, and an open star-connected in-phase voltage tap winding. In the voltage phase adjustment transformer, each of the tap windings is connected by a thyristor group in which two sets of thyristors are connected in anti-parallel to each other, and one end of the in-phase voltage tap winding is excited. The other end of the excitation winding is connected to one end of the winding, and the other end of the excitation winding is connected to one end of the quadrature tap winding of a phase different from the in-phase voltage tap winding, and another in-phase voltage tap winding of a different phase. A voltage phase adjustment transformer characterized in that it is connected to one end of a tap winding.
(2)星形結線の高圧主巻線、三角結線の低圧巻線およ
び星形結線・開放星形結線される各タップ巻線を備えた
主変圧器と、前記高圧主巻線に直列接続される直列巻線
、単相3個からなる励磁巻線を備えた直列変圧器とから
構成されることを特徴とした特許請求の範囲第1項記載
の電圧位相調整変圧器。
(2) A main transformer equipped with a star-connected high-voltage main winding, a triangular-connected low-voltage winding, and star-connected/open star-connected tap windings connected in series to the high-voltage main winding. 2. The voltage phase adjustment transformer according to claim 1, wherein the voltage phase adjusting transformer is comprised of a series transformer having a series winding, and a series transformer having three single-phase excitation windings.
JP60185843A 1985-08-26 1985-08-26 Voltage phase regulating transformer Pending JPS6246316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60185843A JPS6246316A (en) 1985-08-26 1985-08-26 Voltage phase regulating transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60185843A JPS6246316A (en) 1985-08-26 1985-08-26 Voltage phase regulating transformer

Publications (1)

Publication Number Publication Date
JPS6246316A true JPS6246316A (en) 1987-02-28

Family

ID=16177847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60185843A Pending JPS6246316A (en) 1985-08-26 1985-08-26 Voltage phase regulating transformer

Country Status (1)

Country Link
JP (1) JPS6246316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707029B1 (en) 1999-01-22 2004-03-16 Citizen Watch Co., Ltd. Optical displacement measuring apparatus having light receiving arrays
EP3747100B1 (en) * 2018-01-30 2022-03-16 Hitachi Energy Switzerland AG Surge arrestor dimensioning in a dc power transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707029B1 (en) 1999-01-22 2004-03-16 Citizen Watch Co., Ltd. Optical displacement measuring apparatus having light receiving arrays
EP3747100B1 (en) * 2018-01-30 2022-03-16 Hitachi Energy Switzerland AG Surge arrestor dimensioning in a dc power transmission system

Similar Documents

Publication Publication Date Title
US5434455A (en) Harmonic cancellation system
JP3598126B2 (en) Three-phase load voltage phase adjustment transformer
JPS6246316A (en) Voltage phase regulating transformer
US6011381A (en) Three-phase auto transformer with two tap changers for ratio and phase-angle control
JPS62182815A (en) Thyristor control type voltage phase controlled auto-transformer
US3440516A (en) Transformer and capacitor apparatus for three-phase electrical systems
JPS63106021A (en) Voltage phase regulating autotransformer
JPS6244818A (en) Single winding transformer for adjusting voltage/phase
JPS62260312A (en) Voltage phase-regulation autotransformer
JPS6244820A (en) Single winding transformer for adjusting voltage/phase
JPS62182814A (en) Thyristor control type voltage phase controlled transformer
JPS6244821A (en) Single winding transformer for adjusting voltage/phase
JPS6246314A (en) Voltage phase regulating transformer
JPS62182813A (en) Thyristor control type voltage phase controlled autotransformer
JPS6244819A (en) Single winding transformer for adjusting voltage/phase
JPS6246315A (en) Voltage phase regulating transformer
CN215682151U (en) Multiphase flow energy transmission rectifier
JPS62236013A (en) Thyristor control type voltage phase regulator
JPS6244816A (en) Transformer for adjusting voltage/phase
JPS62184512A (en) Voltage phase regulating device of thyrister control type
JPS62184514A (en) Voltage phase regulating device of thyrister control type
JPS62184513A (en) Voltage phase regulating device of thyrister control type
Alexander et al. EHV application of autotransformers
JPS62236012A (en) Thyristor control type voltage phase regulator
JPH0122972B2 (en)