JPS6245909A - Cryogenic power generating plant - Google Patents

Cryogenic power generating plant

Info

Publication number
JPS6245909A
JPS6245909A JP18357385A JP18357385A JPS6245909A JP S6245909 A JPS6245909 A JP S6245909A JP 18357385 A JP18357385 A JP 18357385A JP 18357385 A JP18357385 A JP 18357385A JP S6245909 A JPS6245909 A JP S6245909A
Authority
JP
Japan
Prior art keywords
pressure
switch
flow rate
controller
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18357385A
Other languages
Japanese (ja)
Inventor
Koichi Iwasaki
孝一 岩崎
Kenichi Mochizuki
健一 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP18357385A priority Critical patent/JPS6245909A/en
Publication of JPS6245909A publication Critical patent/JPS6245909A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To usually secure a stable operation, when an accident is occurred at the thermal plant, by setting a high pressure flow rate adjusting valve to the opening responsive to the quantity of reduced gas, during the given period from the time when FCB signal is generated due to the accident at said plant. CONSTITUTION:When FCB is started due to the generation of an accident at a thermal power generating plant, gas quantity consumed at said plant is reduced. In this case, a FCB signal is input to a switch 15, a timer 18, main stop valve 3 and a bypass valve 10, and then the main stop valve 3 is closed for stopping a turbine 5 so as to open the bypass valve 10. Further, the switch 15 is changed over and a pressure controller 16 is connected to a switch 14, and a setting device 17 is connected to a high pressure flow rate adjusting valve 1 through the changeover of the switch 14 by the timer. Therefore, on the basis of the signal from the setting device 17, the flow rate adjusting valve 1 is set to the opening responsive to the FCB signal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液化ガスの冷熱を利用して発電をする冷熱発
電設備、特に冷熱発電設備に火力発電設備が並設された
場合で何らかの原因で火力発電設備側でガス消費量が大
幅且急激に減少した場合に冷熱発電設備からのガス送出
量を消費量に対応させて安定に減少させる様にした冷熱
発電設備に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to cold power generation equipment that generates electricity using the cold energy of liquefied gas, especially when thermal power generation equipment is installed in parallel to the cold power generation equipment. This invention relates to cold power generation equipment in which, when the gas consumption on the thermal power generation equipment side significantly and rapidly decreases, the amount of gas delivered from the cold power power generation equipment is stably reduced in accordance with the consumption amount.

[従来の技術] 冷熱発電設備で発電に供したガスは常温迄昇温され、火
力発電設備に供給されるが、ガスの供給を安定して行う
為、圧力制御器によりガス送出圧力を検出し該検出圧力
と設定圧力との偏差を求めて流量制御器へフィードバッ
クし、ガス送出圧力が設定圧力となる様流吊制御してい
る。
[Conventional technology] Gas used for power generation in cold power generation equipment is heated to room temperature and then supplied to thermal power generation equipment.In order to ensure a stable supply of gas, the gas delivery pressure is detected by a pressure controller. The deviation between the detected pressure and the set pressure is determined and fed back to the flow rate controller, thereby controlling the flow rate so that the gas delivery pressure becomes the set pressure.

然し、火力発電設備で送電線の故障、主要補機の故障に
よりFCB (火力発電設備での各種事故の内容に応じ
て急激に燃料を絞り込むための機能)が起動した場合、
火力発電設備でのガス消費量は事故の内容によってそれ
ぞれ減じられる。従って、冷熱発電設備からの送出♀も
これに見合った様に減少させなければならない。
However, if the FCB (a function that rapidly narrows down the amount of fuel depending on the details of various accidents in thermal power generation equipment) is activated due to a power transmission line failure or failure of a major auxiliary equipment in thermal power generation equipment,
Gas consumption in thermal power generation facilities is reduced depending on the nature of the accident. Therefore, the output ♀ from the cold power generation equipment must be reduced accordingly.

[発明が解決しようとする問題点] 上記した従来の冷熱発電設備に於いて、火力発電設備か
らのPCB信号(前記PCBが起動した場合に発せられ
る信号)が入力され、送出量を事故の内容に応じ急激に
減少させようとすると冷熱発電設備のガス流路系の応答
速度が遅いのに比べ制御系の応答速度が速いのでマツチ
ングがとれず安定したガスの送出ができないという問題
がある。
[Problems to be Solved by the Invention] In the conventional cold power generation equipment described above, a PCB signal (signal emitted when the PCB is activated) from the thermal power generation equipment is input, and the amount of output is determined based on the details of the accident. If an attempt is made to rapidly reduce the amount of gas, there is a problem that the response speed of the control system is fast compared to the slow response speed of the gas flow path system of the cold power generation equipment, so matching cannot be achieved and stable gas delivery cannot be achieved.

[問題点を解決するための手段] 本発明は、上記した問題点を解決すべくなしたものであ
って、高圧ポンプからの液化ガスを気化し、気化ノjス
ににリタービンを駆動して発電する様にすると共に気化
ガスを火力発電設備に送給する様にした冷熱発電設備に
おい−C1高圧ポンプからの液化ガスラインに高圧流量
調整弁を設け、又送出カスラインに圧力制御器及び前記
液化カスラインに流量制御器を設け、圧力制御器と流量
制御器とを信号ラインにより接続し、該流量制御器を第
1のスイッチ、第2のスイッチを介して高圧流量調整弁
に接続し、更に第1のスイッチには前記圧力制御器を、
第2のスイッチには開度設定器をそれぞれ接続し、通常
運転時には圧力制御器の信号を基に流m制御器によって
高圧流量制御を行い、ガス供給尾低減時は第1スイッチ
により圧力制御器を第2スイッチを介して高圧流量調整
弁と接続して圧力制御器による高圧流量制御に切換える
と共に低減り換り時点より所要時間だけ開度設定器と高
圧流量調整弁とを接続して該弁の開度設定を行う様にし
たことを特徴とするものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems. In a cold-heat power generation facility designed to generate electricity and to supply vaporized gas to thermal power generation facilities, a high-pressure flow rate adjustment valve is provided in the liquefied gas line from the C1 high-pressure pump, and a pressure controller and the liquefied gas are provided in the delivery waste line. A flow controller is provided in the waste line, the pressure controller and the flow controller are connected by a signal line, the flow controller is connected to a high pressure flow regulating valve via a first switch and a second switch, and a The pressure controller is connected to the switch No. 1,
An opening setting device is connected to each of the second switches, and during normal operation, the flow controller controls the high pressure flow rate based on the signal from the pressure controller, and when the gas supply tail is reduced, the first switch controls the pressure controller. is connected to the high-pressure flow rate adjustment valve via the second switch to switch to high-pressure flow rate control by the pressure controller, and the opening setting device and the high-pressure flow rate adjustment valve are connected for the required time from the time of switching to the reduction, and the high-pressure flow rate adjustment valve is connected to the valve. This feature is characterized in that the opening degree can be set.

[作  用コ PCB信号発生時点より所要時間だけ、高圧流量調整弁
を強制的にガスの低減量を児込んだ開度に設定し、所要
時間経過後には圧力制御器からの信号によりフィードバ
ック制御する。而して、送給ガス低減時の過渡期の不安
定状態を避は得る。
[Operation] The high-pressure flow rate adjustment valve is forcibly set to an opening that reduces the amount of gas for the required time from the time the PCB signal is generated, and after the required time has passed, feedback control is performed by the signal from the pressure controller. . In this way, an unstable state during the transition period when the feed gas is reduced can be avoided.

[実 施 例] 以下図面を参照しつつ本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

図示しない液化ガスタンクに接続された高圧ポンプ7を
高圧流量調整弁1を介して気化器2に接続し、該気化器
2には主止弁3、加減弁4を介してタービン5を接続す
る。タービン5より排出されたガスは加熱器6で常温迄
加熱されて火力発電設備へ送出される様になっている。
A high-pressure pump 7 connected to a liquefied gas tank (not shown) is connected to a vaporizer 2 via a high-pressure flow control valve 1, and a turbine 5 is connected to the vaporizer 2 via a main stop valve 3 and a control valve 4. The gas discharged from the turbine 5 is heated to room temperature by a heater 6 and sent to a thermal power generation facility.

前記高圧ポンプ7の上流側と気化器2の上流側とをバイ
パス路8で連通し該バイパス路8には低圧流量調整弁9
を設け、又前記気化器2と加熱器6とはバイパス弁10
を介して連通せしめる。
The upstream side of the high-pressure pump 7 and the upstream side of the vaporizer 2 are connected through a bypass passage 8, and a low-pressure flow rate regulating valve 9 is provided in the bypass passage 8.
The vaporizer 2 and the heater 6 are provided with a bypass valve 10.
communication via.

−5= 11はタービン5に連結した発電機である。−5= 11 is a generator connected to the turbine 5.

高圧流出調整弁1、低圧流量調整弁9の上流側にそれぞ
れ流量検出器12.13を設け、両流量検出器12.1
3の検出結果を流量制御器19に入力する様にし、流量
制御器19からの出力はスイッチ14.15を介して高
圧流量制御弁1に入力せしめその開度を調整する様にす
る。
A flow rate detector 12.13 is provided on the upstream side of the high pressure outflow regulating valve 1 and the low pressure flow regulating valve 9, respectively, and both flow rate detectors 12.1
The detection result of step 3 is input to the flow rate controller 19, and the output from the flow rate controller 19 is input to the high pressure flow control valve 1 via the switch 14, 15 to adjust its opening degree.

前記加熱器6の下流には圧力制御器16を設はガス送出
圧力を検出すると共に予め設定入力しである設定圧力と
検出圧力とを比較してその偏差を出力する様にし、圧力
制御器16は前記スイッチ15に接続し、又スイッチ1
4には開度設定器17を接続する。更にスイッチ14に
はタイマ18を介してPCB信号を、又スイッチ15に
はPCB信号をそれぞれ入力する。又、PCB信号は前
記加減弁4、バイパス弁10にも入力する。
A pressure controller 16 is installed downstream of the heater 6 to detect the gas delivery pressure, compare the detected pressure with a preset pressure, and output the deviation. is connected to the switch 15, and the switch 1
4 is connected to an opening setting device 17. Furthermore, the PCB signal is input to the switch 14 via the timer 18, and the PCB signal is input to the switch 15, respectively. Further, the PCB signal is also input to the control valve 4 and the bypass valve 10.

以下作動を説明する。The operation will be explained below.

通常稼動時は、スイッチ14.15は第1図の如き状態
であって、圧力制御器16の信号は流量制御器19に入
力され、流量制御器19は圧力制御器−〇 − 16からの信号と流量検出器12からの信号とを演紳し
、ガスの送出圧力が設定した圧力となる様高汁流用調整
弁1を制御する。流量制御された液化ガスは気化器2に
よってガス化されタービン5によって発電機11を駆動
し、加熱器6て常温迄加熱されて、火力発電設備へ供給
される。
During normal operation, the switches 14 and 15 are in the state shown in FIG. 1, and the signal from the pressure controller 16 is input to the flow rate controller 19, which receives the signal from the pressure controller and the signal from the flow rate detector 12 to control the high juice flow regulating valve 1 so that the gas delivery pressure becomes the set pressure. The liquefied gas whose flow rate is controlled is gasified by a vaporizer 2, drives a generator 11 by a turbine 5, is heated to room temperature by a heater 6, and is supplied to thermal power generation equipment.

送電線、火力発電設備の主要補機の事故により燃料絞込
装置が作動し、出ノJをそれに対応させて絞込むがその
際の信号(前記PCB信号)か、スイッチ15、タイマ
18、主止弁3、バイパス弁10へ人力される。PCB
信号により主止弁3が閉じ、タービン5の駆動が停止し
バイパス弁10が開となる。
Due to an accident in a power transmission line or a main auxiliary machine in a thermal power generation facility, the fuel throttling device is activated, and the output J is narrowed down accordingly, but the signal at that time (the above-mentioned PCB signal), switch 15, timer 18, main The stop valve 3 and the bypass valve 10 are manually operated. PCB
The signal closes the main stop valve 3, stops driving the turbine 5, and opens the bypass valve 10.

PCB信号によってスイッチ15が切換ねり、圧力制御
器16とスイッチ14とが接続状態となる。
The switch 15 is switched by the PCB signal, and the pressure controller 16 and the switch 14 are connected.

タイマ18へのPCB信号の入力によって所要時間(例
えば1分)、タイマ18はスイッチ14を切換える。ス
イッチ15の切換わりによって流量制御器19とスイッ
チ14との接続が断たれ、スイッチ14の切換わりによ
って設定器17と高圧流量調整弁1とが接続される。該
設定器17には予め事故の内容に対応した高圧流量調整
弁1の開度が入力されており、設定器17と高圧流量調
整弁1とが接続することにより、設定器17からの信号
により、該流量調整弁1は強制的にPCB信号に対応し
た開度となり、該開度はタイマ18の保持時間だけ保持
される。タイマ18の保持時間が経過するとスイッチ1
4が復帰し、高圧流量調整弁1と圧力制御器16とが接
続状態となる。この接続状態では圧力制御となり、流量
に変化があってもガス送出圧力が一定となる様に制御す
る。
By inputting the PCB signal to the timer 18, the timer 18 switches the switch 14 for a required time (for example, one minute). When the switch 15 is switched, the flow rate controller 19 and the switch 14 are disconnected, and when the switch 14 is switched, the setting device 17 and the high-pressure flow rate regulating valve 1 are connected. The opening degree of the high-pressure flow regulating valve 1 corresponding to the content of the accident is input into the setting device 17 in advance, and by connecting the setting device 17 and the high-pressure flow regulating valve 1, , the flow rate regulating valve 1 is forcibly opened to an opening degree corresponding to the PCB signal, and this opening degree is held for the holding time of the timer 18. When the holding time of timer 18 has elapsed, switch 1
4 returns to its original state, and the high-pressure flow rate regulating valve 1 and the pressure controller 16 are brought into a connected state. In this connected state, pressure is controlled so that the gas delivery pressure remains constant even if the flow rate changes.

この時の制御の状態は第2図、第3図で示す通りである
The control state at this time is as shown in FIGS. 2 and 3.

即ち、高圧流星調整弁1は見込まれる開度に強制的に閉
じられ、その状態が所要の時間保持され、ガス系が安定
したところで圧力制御に移行しようとするものである。
That is, the high-pressure meteor regulating valve 1 is forcibly closed to the expected opening degree, this state is maintained for a required period of time, and when the gas system is stabilized, pressure control is attempted.

従って、流量変化の過渡期に於いて1御系が不安定にな
り、安定する迄に時間がかかるということが避けられる
Therefore, it is possible to avoid the situation where the first control system becomes unstable during the transition period of the flow rate change and takes a long time until it stabilizes.

尚、バイパス路8、低圧′a量調整弁9は、タービン5
に異常があった場合に設けられるもので、タービン5に
異常が発生すると高圧流量調整弁1を仝閉にすると共に
主止弁3を仝閉、バイパス弁10を開とし、低圧流量調
整弁9による流量調整を行い、液化ガスを直接気化器2
に送給し、該気化器2で気化したガスはタービン5を経
ることなく加熱器6で加熱されて発電設備へ送給される
様になっている。
Note that the bypass passage 8 and the low pressure 'a amount regulating valve 9 are connected to the turbine 5.
When an abnormality occurs in the turbine 5, the high-pressure flow regulating valve 1 is closed, the main stop valve 3 is closed, the bypass valve 10 is opened, and the low-pressure flow regulating valve 9 is closed. The liquefied gas is directly transferred to the vaporizer 2.
The gas vaporized by the vaporizer 2 is heated by the heater 6 without passing through the turbine 5, and is then sent to the power generation equipment.

[発明の効果] 以上述べた如く本発明によれば、火力発電設備以降の何
らかの原因で火力発電設備でのガス消費量が急激且大幅
に減少しても速やかに対応することができる。
[Effects of the Invention] As described above, according to the present invention, even if the gas consumption in the thermal power generation equipment suddenly and significantly decreases due to some cause after the thermal power generation equipment, it is possible to promptly cope with the situation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概略説明図、第2図はバイパス弁と高
圧流量調整弁の弁開度状態を示す線図、第3図は送出ガ
スの圧力、流量の変化を示す線図である。 1は高圧流量調整弁、5はタービン、7は高圧ポンプ、
14.15はスイッチ、16は圧力制御器、19は流量
制御器を示す。
Fig. 1 is a schematic explanatory diagram of the present invention, Fig. 2 is a diagram showing the valve opening states of the bypass valve and the high-pressure flow rate regulating valve, and Fig. 3 is a diagram showing changes in the pressure and flow rate of the delivered gas. . 1 is a high-pressure flow regulating valve, 5 is a turbine, 7 is a high-pressure pump,
14 and 15 are switches, 16 is a pressure controller, and 19 is a flow rate controller.

Claims (1)

【特許請求の範囲】[Claims] 1)高圧ポンプからの液化ガスを気化し、気化ガスによ
りタービンを駆動して発電する様にすると共に気化ガス
を火力発電設備に送給する様にした冷熱発電設備におい
て、高圧ポンプからの液化ガスラインに高圧流量調整弁
を設け、又送出ガスラインに圧力制御器及び前記液化ガ
スラインに流量制御器を設け、圧力制御器と流量制御器
とを信号ラインにより接続し、該流量制御器を第1のス
イッチ、第2のスイッチを介して高圧流量調整弁に接続
し、更に第1のスイッチには前記圧力制御器を、第2の
スイッチには開度設定器をそれぞれ接続し、通常運転時
には圧力制御器の信号を基に流量制御器によって高圧流
量制御を行い、ガス供給量低減時は第1スイッチにより
圧力制御器を第2スイッチを介して高圧流量調整弁と接
続して圧力制御器による高圧流量制御に切換えると共に
低減切換り時点より所要時間だけ開度設定器と高圧流量
調整弁とを接続して該弁の開度設定を行う様にしたこと
を特徴とする冷熱発電設備。
1) In a cold-thermal power generation facility that vaporizes liquefied gas from a high-pressure pump and uses the vaporized gas to drive a turbine to generate electricity, the vaporized gas is also sent to thermal power generation equipment. A high-pressure flow rate regulating valve is provided in the line, a pressure controller is provided in the delivery gas line, and a flow rate controller is provided in the liquefied gas line, the pressure controller and the flow rate controller are connected by a signal line, and the flow rate controller is connected to the The first switch is connected to the high-pressure flow rate regulating valve through the second switch, and the pressure controller is connected to the first switch, and the opening setting device is connected to the second switch.During normal operation, High-pressure flow control is performed by the flow controller based on the signal from the pressure controller, and when the gas supply amount is reduced, the first switch connects the pressure controller to the high-pressure flow adjustment valve via the second switch, and the pressure controller controls the flow rate. A cryogenic power generation facility characterized in that when switching to high-pressure flow control, the opening setting device and the high-pressure flow regulating valve are connected for a required period of time from the time of switching to low pressure to set the opening of the valve.
JP18357385A 1985-08-21 1985-08-21 Cryogenic power generating plant Pending JPS6245909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18357385A JPS6245909A (en) 1985-08-21 1985-08-21 Cryogenic power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18357385A JPS6245909A (en) 1985-08-21 1985-08-21 Cryogenic power generating plant

Publications (1)

Publication Number Publication Date
JPS6245909A true JPS6245909A (en) 1987-02-27

Family

ID=16138171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18357385A Pending JPS6245909A (en) 1985-08-21 1985-08-21 Cryogenic power generating plant

Country Status (1)

Country Link
JP (1) JPS6245909A (en)

Similar Documents

Publication Publication Date Title
JPS62142829A (en) Fuel supply controller for afterburner of gas turbine-jet propulsion engine
CN111928113A (en) Control method of ammonia gas supply system of power plant liquid ammonia station
JPS6245909A (en) Cryogenic power generating plant
JPH05207658A (en) Power supply method in co-generation facility
JP2004036980A (en) Hot-water supply system
JPH0415379B2 (en)
JPS6229706A (en) Controlling method for output of back pressure turbine generator
JPS6239655B2 (en)
JPH05215297A (en) Heating and decompressing system commonly used for gaseous phase of liquefied gas
JPH06330706A (en) Back pressure steam turbine system
JPS60222553A (en) Fuel oil converting device
JPS6223507A (en) Cold/hot generating equipment
JPS59226233A (en) Pressure raising method for cold-heat-utilizing power generator turbine
JPH10141006A (en) Control device for city gas line energy recovery turbine
JPH0610845A (en) Variable speed water feeder
JPH05272361A (en) Load controller of combined-cycle power generating plant
JPH11200890A (en) Air supplier for gas turbine device
JPH0444711B2 (en)
SU870747A1 (en) Apparatus for cooling steam turbine
JP2002147746A (en) Heating equipment for high-viscosity oil
JPH08247550A (en) Hot water-supply heater
JPH02113312A (en) Controller for hot and cold water mixture
JPH05341849A (en) Fluid flow-rate controller for steam turbine power plant
JP2000130109A (en) Method and device for controlling output of cryogenic power plant
JPS60166720A (en) Lng power plant