JPS6244577A - Mass production apparatus for deposited film by plasma cvd method - Google Patents

Mass production apparatus for deposited film by plasma cvd method

Info

Publication number
JPS6244577A
JPS6244577A JP18111285A JP18111285A JPS6244577A JP S6244577 A JPS6244577 A JP S6244577A JP 18111285 A JP18111285 A JP 18111285A JP 18111285 A JP18111285 A JP 18111285A JP S6244577 A JPS6244577 A JP S6244577A
Authority
JP
Japan
Prior art keywords
substrates
high frequency
reaction chamber
deposited film
mass production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18111285A
Other languages
Japanese (ja)
Inventor
Eiji Takeuchi
栄治 竹内
Tsutomu Toyono
豊野 勉
Nagao Hosono
細野 長穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18111285A priority Critical patent/JPS6244577A/en
Publication of JPS6244577A publication Critical patent/JPS6244577A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the various characteristics and reproducibility of deposited films and the uniformity and homogeneity of the film quality and to make efficient mass production by providing a leak wave path connected to a means for generating a high-frequency, etc., to the central part of a reaction chamber and installing plural substrate holding means for rotating and/or oscillating the substrates to the space around the above-mentioned wave path. CONSTITUTION:The cylindrical substrates 6 are installed on plural substrate holding cylinders 61 and the inside of the reaction chamber A of the reaction vessel 1 is maintained under a prescribed degree of vacuum. After the temp. of the substrates 6 is maintained at an adequate temp. by a heating means 62, gaseous raw material such as SiH4 for forming the deposited films is introduced through a perforated inside wall 3 of a gas chamber B from a supply pipe 5 for said gas into the reaction chamber A. The inside pressure is regulated to a specified degree and thereafter the high frequency or microwave (high frequency, etc.) is radiated via the leak waveguide 8 connected to a power source 10 for the high frequency, etc. to the substrates while the substrates 6 are rotated and/or oscillated by proper driving means. The substrates are held for the prescribed time in this state, by which the deposited films are formed on the surface.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、基体上に堆積膜、とシわけ機能性膜、殊に半
導体ディバイス、電子写真用の感光ティハイス、画像入
力用のラインセンサー、撮像ディバイス、光起電力素子
などに用いられるアモルファス状あるいは多結晶状等の
非単結晶状の堆積膜を形成するのに至適なプラズマCV
D装置に関する。
Detailed Description of the Invention [Technical field to which the invention pertains] The present invention relates to a film deposited on a substrate, a functional film to be separated, particularly a semiconductor device, a photosensitive high speed for electrophotography, a line sensor for image input, Plasma CV optimal for forming non-monocrystalline deposited films such as amorphous or polycrystalline for use in imaging devices, photovoltaic devices, etc.
Regarding D device.

〔従来技術の説明〕[Description of prior art]

従来、半導体ディバイス、電子写真用感光ディバイス、
画像入力用ラインセンサー、撮像ディバイス、光起電力
素子等に使用する素子部材としては、アモルファスシリ
コン例えば、水素又は/及びハロゲン(例えばフッ素、
塩素等)で補償され念アモルファスシリコン(以後ra
−8i(H,X)Jと記す。)膜等が提案され、その中
のいくつかは実用に付されている。
Conventionally, semiconductor devices, photosensitive devices for electrophotography,
Element members used for image input line sensors, imaging devices, photovoltaic elements, etc. include amorphous silicon, hydrogen and/or halogens (e.g. fluorine,
chlorine, etc.) and amorphous silicon (hereinafter referred to as RA).
It is written as -8i(H,X)J. ) membranes have been proposed, some of which have been put into practical use.

そして、そうした堆積膜は、プラズマCVD法、即ち、
原料ガスを直流または高周波、マイクロ波グロー放電に
より分解し、ガラス、石英、ステンレス、アルミニウム
等の基体上に薄膜状の堆積膜を形成する方法によフ形成
されることが知られておジ、その念めの装置も各種提案
されている。
Then, such a deposited film is deposited using a plasma CVD method, that is,
It is known that a film can be formed by decomposing a raw material gas using direct current, high frequency, or microwave glow discharge to form a thin deposited film on a substrate such as glass, quartz, stainless steel, or aluminum. Various devices have been proposed for this purpose.

それらの従来のプラズマCVD法による堆積膜の形成装
置は、代表的には、第4図の模式図で示される装置構成
のものである。第4図において、1は反応容器全体を示
し、2は側壁、21は底壁をそれぞれ示す。3は多穿孔
内壁、4は排気管、41はパルプ、5は原料ガス供給管
、51はバルブ、6は円筒基体、61は基体保持円筒、
62はヒータ、7は支持脚、10は高周波またはマイク
ロ波電源、102は導波部、103は高周波ま念はマイ
クロ波、104は誘電体窓をそれぞれ示し、Aは反応室
、Bはガス室を示す。
These conventional apparatuses for forming deposited films by the plasma CVD method typically have the apparatus configuration shown in the schematic diagram of FIG. In FIG. 4, 1 indicates the entire reaction vessel, 2 indicates the side wall, and 21 indicates the bottom wall. 3 is a multi-perforated inner wall, 4 is an exhaust pipe, 41 is pulp, 5 is a raw material gas supply pipe, 51 is a valve, 6 is a cylindrical base, 61 is a base holding cylinder,
62 is a heater, 7 is a support leg, 10 is a high frequency or microwave power source, 102 is a waveguide, 103 is a high frequency microwave, 104 is a dielectric window, A is a reaction chamber, and B is a gas chamber. shows.

こうした従来の堆積膜形成装置による堆積膜形成は、次
のようにして行われる。即ち反応容器1の反応室A内の
ガスを、排気管4を介して真空排気すると共に、円筒状
基体6をヒータ62により所定湿度に加熱、保持する。
Formation of a deposited film using such a conventional deposited film forming apparatus is performed as follows. That is, the gas in the reaction chamber A of the reaction container 1 is evacuated through the exhaust pipe 4, and the cylindrical substrate 6 is heated and maintained at a predetermined humidity by the heater 62.

次に、原料ガス供給管5を介して、例えばa  3 i
 (H、X )堆積膜を形成する場合であれば、シラン
等の原料ガスをガス室Bに導入し、該原料ガスは、ガス
室Bの多穿孔内壁3の多数の孔から反応室A内に放出さ
れる。これと同時併行的に、電源10から例えばマイク
ロ波を発生し、該マイクロ波は、導波部102を通り誘
電体窓104を介して反応室A内に導入される。かくし
て反応室A内の導入原料ガスは、マイクロ波のエネルギ
ーによυ励起されて解離(励起種化)し、Sl、SiH
*等(*励起状態を表わす。)の、ラジカル粒子、電子
、イオン粒子が生成され、それ等が相互に反応し基体の
表面に堆積膜が形成される。
Next, for example, a 3 i
(H, is released. At the same time, for example, microwaves are generated from the power source 10, and the microwaves are introduced into the reaction chamber A through the waveguide section 102 and the dielectric window 104. In this way, the raw material gas introduced into the reaction chamber A is excited by the microwave energy and dissociated (excited speciation) to form Sl, SiH
Radical particles, electrons, and ion particles such as * (representing an excited state) are generated, and these react with each other to form a deposited film on the surface of the substrate.

上述の、従来のプラズマCVD法による堆積膜装置は、
至適なものとして一般に広く採用されているものではあ
るが、いくつかの問題点が存在する。
The above-mentioned deposition film apparatus using the conventional plasma CVD method is
Although it is generally widely adopted as the optimum method, there are some problems.

即ち、導波管そして多くの場合基体保持手段も固定され
ていることから、反応室内に放射される高周波tたはマ
イクロ波の電磁界は定在化し、電界は、誘電体窓側に強
く、下方に行くに従って弱く強度分布し、そしてその強
度分布は、適用する高周波またはマイクロ波の波長に依
存するので、結局のところ系中に導入される堆積膜形成
用の原料ガスは、電界の強度分布に従った密度で励起さ
れて励起種化するところとなり、基体表面上に堆積され
る膜は、おのずと電界の強い部分では厚く、ま次弱い部
分では薄くなり、基体が前記の波長xp長い場合にはな
お更であるが、形成される堆積膜に膜厚の他、密度、硬
度そしてまた組成の点についても不都合な影響を与えて
しまい、緒特性発現性を具有する所望の堆積膜製品を定
常的に得るのは困難であるという問題がある。
That is, since the waveguide and, in many cases, the substrate holding means are also fixed, the electromagnetic field of high frequency waves or microwaves radiated into the reaction chamber is localized, and the electric field is strong on the dielectric window side and downward. The intensity distribution becomes weaker as the electric field increases, and the intensity distribution depends on the wavelength of the applied radio frequency or microwave.As a result, the raw material gas for forming the deposited film introduced into the system depends on the intensity distribution of the electric field. The film deposited on the surface of the substrate is naturally thicker in areas where the electric field is stronger and thinner in areas where the electric field is weaker. Furthermore, this may have an unfavorable effect on the thickness, density, hardness, and even composition of the deposited film that is formed. The problem is that it is difficult to obtain.

もつとも上述した従来のプラズマCVD法による堆積膜
形成装置によれば、一応満足のゆく堆積膜製品の製造は
可能ではあるものの、その場合、各種パラメーターにつ
いて厳密な選択が必要とされる。ところが、そのように
厳密に選択されたパラメーターについてはその中の1つ
の構成因子、とシわけそれがプラズマであって、不安定
な状態になりでもすると形成される膜は著しい悪影響を
受けて製品として成立し得ないものになってしまうとい
う問題が存在する。したがってその装置構成は、おのず
と複雑なものとなり、装置規模、原料ガスの種類等が変
れば個々に厳選されたパラメーターに対応し得るように
設計しなければならない。
Although it is possible to manufacture a somewhat satisfactory deposited film product using the conventional plasma CVD deposited film forming apparatus described above, in this case, strict selection of various parameters is required. However, when it comes to such strictly selected parameters, one of the constituent factors is plasma, and if it becomes unstable, the formed film will be significantly adversely affected and the quality of the product will be affected. There is a problem that it becomes something that cannot be established as such. Therefore, the device configuration naturally becomes complicated, and if the device scale, type of raw material gas, etc. change, it must be designed to accommodate individually carefully selected parameters.

こうしたことから、プラズマCVD法については、それ
が今のところ至適な方法とされてはいるものの、上述し
たことから、所望の堆積膜を量産するとなれば装置に多
大の設備投資が必要とな9、そうしたところで尚量産の
ための工程管理項目は多く且つ複雑であり、工程管理許
容幅は狭く、そしてまた装置調整が微妙であることから
、結局は製品をかなりコスト高のものにしてしまう等の
問題がある。
For these reasons, although the plasma CVD method is considered to be the most suitable method at present, as mentioned above, it requires a large amount of equipment investment in order to mass produce the desired deposited film. 9. In such a case, the process control items for mass production are many and complex, the process control tolerance is narrow, and equipment adjustments are delicate, so in the end the product becomes quite expensive. There is a problem.

一方、前述の各種ディバイスが多様化して来ておシ、そ
のための素子部材即ち、前述し九各種特性等の要件を総
じて満足すると共に適用対象、用途に相応し、そして場
合によってはそれが大面積化されたものである、安定な
堆積膜製品を低コストで定常的に供給されることが社会
的要求としてあり、この要求を満友す装置の開発が切望
されている。
On the other hand, the various devices mentioned above have become diversified, and the element materials for them, that is, the elements that satisfy all the requirements such as the nine various characteristics mentioned above, are suitable for the application target and use, and in some cases have a large area. There is a social demand for a constant supply of stable deposited film products at low cost, and there is a strong desire for the development of an apparatus that satisfies this demand.

〔発明の目的〕[Purpose of the invention]

本発明は、光起電力素子、半導体ディバイス、画像入力
用ラインセンサー、撮像ディバイス、電子写真用感光デ
ィバイス等に使用する堆積膜を形成する従来装置につい
て、上述の諸問題を解決し、上述の要求を満たすように
することを目的とするものである。
The present invention solves the above-mentioned problems and meets the above-mentioned requirements regarding conventional apparatuses for forming deposited films used in photovoltaic elements, semiconductor devices, image input line sensors, imaging devices, electrophotographic photosensitive devices, etc. The purpose is to satisfy the following.

すなわち本発明の主たる目的は、電気的、光学的、光導
電的特性が殆んどの使用環境に依存することなく実質的
に常時安定しており、優れ念耐光疲労特性を有し、繰返
し使用にあっても劣化現象を起こさず、優れた耐久性、
耐湿性を有し、残留電位の問題を生じない均一にして均
質な、改善され之堆積膜を多量生産するためのプラズマ
CVD法による堆積膜量産装置を提供することにある。
That is, the main object of the present invention is to have electrical, optical, and photoconductive properties that are virtually always stable regardless of the usage environment, to have excellent light fatigue resistance, and to withstand repeated use. Excellent durability without causing deterioration even if
It is an object of the present invention to provide a deposited film mass production apparatus using a plasma CVD method for mass producing an improved deposited film that has moisture resistance and is uniform and homogeneous without causing the problem of residual potential.

本発明の他の目的は、形成される膜の緒特性、成膜速度
、再現性の向上及び膜品質の均一化、均質化をはかりな
がら、膜の生産性向上と共に、特に量産化を可能にし、
同時に膜の大面積化を可能にするプラズマCVD法によ
る堆積膜量産装置を提供することにある。
Another object of the present invention is to improve film productivity, particularly to enable mass production, while aiming to improve the properties, film formation speed, and reproducibility of the film formed, and to make the film quality uniform and homogeneous. ,
At the same time, it is an object of the present invention to provide an apparatus for mass-producing deposited films using a plasma CVD method, which makes it possible to increase the area of films.

〔発明の構成、効果〕[Structure and effect of the invention]

本発明者らは、従来のプラズマCVD法による堆積膜形
成装置についての前述の諸問題を克服して、上述の目的
を達成すべく鋭意研究を重ねた結果、前記従来装置から
誘電体窓を排除し、代って漏洩波路を反応室中央部に設
置したところ、前述の諸問題が解決され、且つ上述の目
的が達成できる知見を得、本発明を完成するに至った。
The present inventors have conducted intensive research to overcome the aforementioned problems with the conventional plasma CVD deposited film forming apparatus and achieve the above objectives, and as a result, the dielectric window has been eliminated from the conventional apparatus. However, by instead installing a leaky wave path in the center of the reaction chamber, the above-mentioned problems were solved, and the inventors obtained knowledge that the above-mentioned objects could be achieved, and completed the present invention.

即ち本発明の量産装置は、堆積膜形成用の原料ガスを励
起させて励起種化するための高周波又はマイクロ波発生
手段と、基体上に堆積膜を形成するための反応室とを有
してなるプラズマCVD法による堆積膜の量産装置にお
いて、該反応室の中央部に前記高周波またはマイクロ波
発生手段に接続された漏洩高周波路または漏洩マイクロ
波路が設置されており、該波路の周囲う 空間に基体を回転及び/又は振動さ−Feb基体保持手
段が複数設置されてなることを特徴とするものである。
That is, the mass production apparatus of the present invention includes a high frequency or microwave generation means for exciting a raw material gas for forming a deposited film and converting it into excited species, and a reaction chamber for forming a deposited film on a substrate. In a mass production apparatus for deposited films by plasma CVD method, a leaky high frequency wave path or a leaky microwave path connected to the high frequency or microwave generating means is installed in the center of the reaction chamber, and a space surrounding the wave path is The apparatus is characterized in that a plurality of Feb substrate holding means are installed to rotate and/or vibrate the substrate.

かくなる本発明の装置は、堆積膜形成操作時、電界の強
度分布を基体の近傍において一様にするので、従来の堆
積膜形成装置に比較して成膜速度を飛躍的に伸ばすこと
ができ、加えて、基体が高周波またはマイクロ波の波長
工9長いものであっても、製品たる膜の品質、厚さ、そ
して電気的、光学的、光導電的特性等の安定した堆積膜
を効率的に量産することを可能にし、そしてまた堆積膜
製品を低コストで提供することを可能にするものである
Since the apparatus of the present invention makes the intensity distribution of the electric field uniform in the vicinity of the substrate during the deposited film forming operation, the deposition rate can be dramatically increased compared to conventional deposited film forming apparatuses. In addition, even if the substrate is a high-frequency or microwave wavelength device with a long wavelength, it is possible to efficiently deposit films with stable product film quality, thickness, and electrical, optical, and photoconductive properties. It allows mass production and also allows deposited film products to be provided at low cost.

本発明の装置により堆積膜を形成するについて使用され
る原料ガスは、高周波またはマイクロ波のエネルギーに
工υ励起種化し、化学的相互作用して基体表面上に所期
の堆積膜を形成する類のものでちれば何れのものであっ
ても採用することができるが、例えば、a−8i (H
、X)膜を形成する場合であれば、具体的には、ケイ素
に水素、ハロゲン、あるいは炭化水素等が結合したシラ
ン類及びハロゲン化シラン類等のガス状態のもの、また
は容易にガス化しうるものをガス化したものを用いるこ
とができる。これらの原料ガスは1種を使用してもよく
、あるいは2種以上を併用してもよい。−1友、これ等
の原料ガスは、He、Ar等の不活性ガスにニジ稀釈し
て用いることもある。さらに、a−8i (H,X)膜
はp型不純物元素又はn型不純物元素をドーピング′す
ることが可能であシ、これ等の不純物元素を構成成分と
して含有する原料ガスを、単独で、あるいは前述の原料
ガスまたは/お工び稀釈用ガスと混合して反応室内に導
入することができる。
The raw material gas used to form the deposited film by the apparatus of the present invention is a kind that is excited by high-frequency or microwave energy and chemically interacts with it to form the desired deposited film on the substrate surface. Any type of material can be used, but for example, a-8i (H
. Gasified materials can be used. These source gases may be used alone or in combination of two or more. -1, these raw material gases may be used after being diluted with an inert gas such as He or Ar. Furthermore, the a-8i (H,X) film can be doped with a p-type impurity element or an n-type impurity element. Alternatively, it can be mixed with the above-mentioned raw material gas or/and dilution gas and introduced into the reaction chamber.

また基体については、導電性のものであっても、半導電
性のものであっても、あるいは電気絶縁性のものであっ
てもよく、具体的には金属、セラミックス、ガラス等が
挙げられる。そして成膜操作時の基体温度は、特に制限
されないが、30〜450℃の範囲とするのが一般的で
あシ、好ましくは50〜350℃である。
The substrate may be conductive, semiconductive, or electrically insulating, and specific examples thereof include metal, ceramics, glass, and the like. The substrate temperature during the film forming operation is not particularly limited, but is generally in the range of 30 to 450°C, preferably 50 to 350°C.

!た、堆積膜を形成するにあたっては、原料ガスを導入
する前に反応室内の圧力を5X10−6Torr以下、
好1しくはI X 10  Torr以下とし、原料ガ
スを導入した時には反応室内の圧力をIX 10”’−
2〜I Torr、好ましくは5 X 10−2〜l 
’l’orrとするのが望せしい。
! In addition, when forming a deposited film, the pressure in the reaction chamber is set to 5X10-6 Torr or less before introducing the raw material gas.
Preferably, the pressure is set to below IX 10 Torr, and when the raw material gas is introduced, the pressure inside the reaction chamber is set to IX 10"'-
2~I Torr, preferably 5 X 10~1
It is desirable to set it to 'l'orr.

なお、本発明の装置による堆積膜形成は、通常は、前述
したように原料ガスを事前処理(励起種化)することな
く反応室に導入し、そこで高周波またはマイクロ波のエ
ネルギーにより励起種化し、化学的相互作用を生起せし
めることにJニジ行われるが、二種以上の原料ガスを使
用する場合、その中の一種を事前に励起種化し、次いで
反応室に導入するようにすることも可能である。
Note that in forming a deposited film using the apparatus of the present invention, as described above, the raw material gas is normally introduced into the reaction chamber without prior treatment (excited speciation), where it is excited and speciated using radio frequency or microwave energy. This is mainly done to cause chemical interactions, but when using two or more types of raw material gases, it is also possible to make one of them into an excited species in advance and then introduce it into the reaction chamber. be.

以下、本発明のプラズマCVD法による堆積膜量産装置
を第1乃3図に図示の実施例に工9更に詳しく説明する
が、本発明の装置はこれらによって何ら限定されるもの
ではない。
Hereinafter, the apparatus for mass production of deposited films using the plasma CVD method of the present invention will be described in more detail with reference to the embodiments shown in FIGS. 1 to 3, but the apparatus of the present invention is not limited thereto.

第1図は、本発明のプラズマCVD法による堆積膜量産
装置全体の模式図であシ、第2−a乃至2−b図は、第
1図の装置°において使用する高周波またはマイクロ波
の漏洩波路の説明図であり、第3図は、第1図の装置に
おいて設置する円筒基体を保持する保持手段の説明図で
ある。
FIG. 1 is a schematic diagram of the entire apparatus for mass production of deposited films using the plasma CVD method of the present invention, and FIGS. 2-a and 2-b show leakage of high frequency or microwave waves used in the apparatus shown in FIG. FIG. 3 is an explanatory diagram of a wave path, and FIG. 3 is an explanatory diagram of a holding means for holding a cylindrical base installed in the apparatus of FIG. 1.

図において、1は、反応容器全体を示し、側壁2、下壁
21、上壁22により密封形成されてなる反応室Aを有
している。3は、側壁2の内壁面との間に一定の間隔を
保って見かけ上密封されたガス室Bを形成するように設
けられた多穿孔(ガス流通孔)内壁である。4は、一端
は反応室A内に開口し、他端はパルプ手段41を介して
排気装置(図示せず)に連通している排気管である。な
お排気管4は、通常2本配設されるが、1本であっても
よいし、3本以上でもよい。5は、一端は原料ガス室B
内に開口し、他端はパルプ手段51を介して原料ガス供
給源(図示せず)に連通している原料ガス供給管である
。6.6、・・・は、円筒基体であシ、第3図に示すよ
うに、回転、従方向振動を与える駆動手段(図示せず)
に機械的に連結している支持脚7上の加熱手段62を内
蔵する基体保持筒61.61、・・・にそれぞれ同軸的
に保持されている。8は、接合部91、同軸ケーブル管
部9を介して高周波またはマイクロ波電源10に接続さ
れていて、前記基体保持筒61.61、・・・の内側に
あって、それら基体保持筒のそれぞれから等距離の位置
に設置された、高周波′またはマイクロ波の漏洩波路で
あり、該波路は、第2−a乃至2−b図に示すように、
導体軸82、それを周温するスロット部83又は83′
を有する導体81、終端およびスロット部を密封する誘
電体部材84又は84′を有し、内部を密封してなる漏
洩波路である。前記誘電体部材84又は84′としては
、シリコン樹脂、テフロン樹脂、アルミナ等のセラミッ
クスなどの比誘電率が高く、誘電損の小さい、高耐熱性
材料が使用される。かくなる漏洩波路8は、通常1つ使
用されるが、場合にょつては複数個使用することもでき
る。
In the figure, reference numeral 1 denotes the entire reaction vessel, which has a reaction chamber A sealed by a side wall 2, a lower wall 21, and an upper wall 22. Reference numeral 3 denotes an inner wall with multiple perforations (gas flow holes) provided at a constant distance from the inner wall surface of the side wall 2 to form an apparently sealed gas chamber B. 4 is an exhaust pipe that opens into the reaction chamber A at one end and communicates with an exhaust system (not shown) at the other end via a pulp means 41. Note that although two exhaust pipes 4 are normally provided, there may be one or three or more exhaust pipes. 5, one end is source gas chamber B
A raw material gas supply pipe is open inward, and the other end is in communication with a raw material gas supply source (not shown) via the pulp means 51. 6.6, . . . is a cylindrical base, and as shown in FIG.
The substrate holding cylinders 61, 61, . 8 is connected to the high frequency or microwave power source 10 via the joint portion 91 and the coaxial cable tube portion 9, and is located inside the substrate holding cylinders 61, 61, . . . It is a leaky wave path of a high frequency wave or a microwave installed at a position equidistant from the
Conductor shaft 82, slot portion 83 or 83' surrounding it
It is a leaky wave path having a conductor 81 having a conductor 81 and a dielectric member 84 or 84' that seals the terminal end and the slot portion, and the inside thereof is sealed. As the dielectric member 84 or 84', a highly heat-resistant material with a high dielectric constant, low dielectric loss, such as silicone resin, Teflon resin, or ceramics such as alumina is used. One such leaky wave path 8 is normally used, but in some cases, a plurality of leaky wave paths 8 may be used.

以上のように構成してなる本発明のプラズマCVD法に
よる堆積膜量産装置においては、膜堆積操作時、漏洩波
路8からそのスロット部83または83′の作用により
、高周波またはマイクロ波が横方向に万遍なく放射され
、又、誘電体部材84又は84′の作用にニジ原料ガス
が漏洩波路内に進入して漏洩波路内で分解されるのが防
がれるために高周波又はマイクロ波が効率的に放射され
、その際基体6の設置しである基体保持筒61.61、
・・・は、駆動手段によυ、それぞれ支持脚7を軸に自
転しながら、漏洩波路を中心に公転するところとなり、
更にそれらは前記駆動手段によυ軸方向に往復振動され
もすることから、各基体表面近傍の電界の強度分布は、
時間積分でみれば一様とな9、それにより原料ガスは一
様にしかも効率的に励起種化され、それ等の密度分布も
一様となり、各基体表面上に堆積する膜は均一にして均
質なものとなり、緒特性に富んだ所望品質の堆積膜製品
を得ることができる。
In the deposited film mass production apparatus using the plasma CVD method of the present invention configured as described above, during the film deposition operation, high frequency or microwave waves are transmitted from the leaky wave path 8 in the lateral direction by the action of the slot portion 83 or 83'. High frequency or microwave is effective because it is radiated evenly and the dielectric member 84 or 84' prevents the raw material gas from entering the leaky wave path and being decomposed in the leaky wave path. the substrate holding cylinder 61.61, in which the substrate 6 is installed;
... are rotated around the leaky wave path while rotating around the support leg 7 at υ due to the drive means,
Furthermore, since they are also reciprocated in the υ-axis direction by the driving means, the intensity distribution of the electric field near the surface of each base is as follows.
In terms of time integration, it is uniform9.As a result, the source gas is excited and speciated uniformly and efficiently, and its density distribution is also uniform, so that the film deposited on each substrate surface is uniform. A deposited film product of desired quality and rich in properties can be obtained.

以下に、本発明のプラズマCVD法による堆積膜量産装
置の操作を、例を挙げて説明するが、以下の例は該装置
の操作に限定的意義を持つものではない。
The operation of the apparatus for mass production of deposited films using the plasma CVD method of the present invention will be explained below by giving an example, but the following example does not have a limiting meaning to the operation of the apparatus.

実施例 第1図に図示の本発明のプラズマCVD法による堆積膜
量産装置を以下のように操作して円筒状の基体表面に光
導電性の堆積膜を形成した。
EXAMPLE A photoconductive deposited film was formed on the surface of a cylindrical substrate by operating the deposited film mass production apparatus using the plasma CVD method of the present invention shown in FIG. 1 as follows.

即ち、4本の基体保持筒61.61、・・・上に円筒基
体6.6、・・・を載置し、反応容器1の反応室A内を
約10 ’Torrの真空度にした。次に加熱手段によ
り基体温度を約250℃に保持した。次いで、堆積膜形
成用の原料ガスであるSiH4を水素で希釈して反応室
A内に導入した。ガスの流量が安定してから排気パルプ
41を調節して反応室Aの内圧を約0.02 Torr
とした。内圧が一定になってから基体保持筒を駆動手段
により、回転、上下振動させながらそこに2.45GH
zのマイクロ波を漏洩波路8を介して放射し念。この状
態で30分間保持し、基体表面上にa−8i (H,X
)の堆積膜を形成した。
That is, the cylindrical substrates 6.6, . . . were placed on the four substrate holding cylinders 61, 61, . Next, the substrate temperature was maintained at about 250° C. by heating means. Next, SiH4, which is a raw material gas for forming a deposited film, was diluted with hydrogen and introduced into the reaction chamber A. After the gas flow rate is stabilized, the exhaust pulp 41 is adjusted to bring the internal pressure of the reaction chamber A to approximately 0.02 Torr.
And so. After the internal pressure becomes constant, the substrate holding cylinder is rotated and vibrated up and down by the driving means, and the cylinder is heated at 2.45GH.
The microwave of z is radiated through the leaky wave path 8. This state was maintained for 30 minutes and a-8i (H,X
) was formed.

その後基体を所定温度まで冷却したところで、4本の基
体を系外に取シ出し、堆積されたa−3i (H,X)
膜をテストしたところ、いづれの基体についても均一に
して均質な所望の堆積膜が形成されておシ、諸特性に富
むものであることが観察された。
After that, when the substrates were cooled to a predetermined temperature, the four substrates were taken out of the system and the deposited a-3i (H,
When the film was tested, it was observed that the desired deposited film was uniform and homogeneous on all substrates, and was rich in various properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のプラズマCVD法による堆積膜形成
装置全体の模式図であυ、第2−a乃至2−b図は、第
1図の装置において使用する高周波またはマイクロ波の
漏洩波路の説明図であり、第3図は、第1図の装置にお
いて設置する円筒基体を保持する保持手段の説明図であ
る。 第4図は従来のプラズマCVD法による堆積膜形成装置
の模式図である。 第1乃至3図について、 1・・・反応容器  2・・・側 壁  3・・・多穿
孔内壁4・・・排気管      41・・・パルプ手
段5・・原料ガス供給管  51・・・パルプ手段6・
・・円筒基体     61・・・基体保持筒62・・
・加熱手段 7・・・支持脚 8・・・漏洩波路81・
・・導 体 82・・・導体軸 83.83′・・・ス
ロット部84.84′・・・誘電体部材 9・・・同軸
ケーブル管部91・・・接合部 10・・・高周波またはマイクロ波電源A・・・反応室
  B・・・ガス室 第4図について 1・・・反応容器  2・・・側 壁  21・・・底
 壁3・・・多穿孔内壁  4・・・排気管 41・・
・パルプ5・・・原料ガス供給管  51・・・パルプ
6・・・円筒基体  61・・・基体保持円筒62・・
・ヒータ   7・・・支持脚10・・・高周波または
マイクロ波電源102・・・導波部  103・・・高
周波またはマイクロ波104・・・誘電体窓  A・・
・反応室  B・・・ガス室第1図 eIt 第3図 第4図
FIG. 1 is a schematic diagram of the entire apparatus for forming a deposited film using the plasma CVD method of the present invention. FIGS. FIG. 3 is an explanatory diagram of a holding means for holding a cylindrical base installed in the apparatus of FIG. 1. FIG. 4 is a schematic diagram of a deposited film forming apparatus using the conventional plasma CVD method. Regarding Figures 1 to 3, 1... Reaction vessel 2... Side wall 3... Multi-perforated inner wall 4... Exhaust pipe 41... Pulp means 5... Raw material gas supply pipe 51... Pulp Means 6・
...Cylindrical base 61...Base holding cylinder 62...
・Heating means 7...Support leg 8...Leakage wave path 81・
...Conductor 82...Conductor axis 83.83'...Slot portion 84.84'...Dielectric member 9...Coaxial cable tube section 91...Joint section 10...High frequency or micro Wave power source A...Reaction chamber B...Gas chamber Regarding Fig. 4 1...Reaction vessel 2...Side wall 21...Bottom wall 3...Multi-perforated inner wall 4...Exhaust pipe 41・・・
- Pulp 5... Raw material gas supply pipe 51... Pulp 6... Cylindrical base 61... Base holding cylinder 62...
・Heater 7...Support leg 10...High frequency or microwave power source 102...Waveguide section 103...High frequency or microwave 104...Dielectric window A...
・Reaction chamber B...Gas chamber Fig. 1 eIt Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 堆積膜形成用の原料ガスを励起させて励起種化するため
の高周波又はマイクロ波発生手段と、基体上に堆積膜を
形成するための反応室とを有してなるプラズマCVD法
による堆積膜の量産装置において、該反応室の中央部に
前記高周波またはマイクロ波発生手段に接続された漏洩
高周波路または漏洩マイクロ波路が設置されており、該
波路の周囲空間に基体を回転及び/又は振動させうる基
体保持手段が複数設置されてなることを、特徴とするプ
ラズマCVD法による堆積膜の量産装置。
A deposited film formed by a plasma CVD method comprising a high frequency or microwave generation means for exciting a raw material gas for forming a deposited film to generate excited species, and a reaction chamber for forming a deposited film on a substrate. In the mass production device, a leaky high frequency path or a leaky microwave path connected to the high frequency or microwave generating means is installed in the center of the reaction chamber, and the substrate can be rotated and/or vibrated in the space surrounding the wave path. 1. An apparatus for mass production of deposited films by plasma CVD method, characterized in that a plurality of substrate holding means are installed.
JP18111285A 1985-08-20 1985-08-20 Mass production apparatus for deposited film by plasma cvd method Pending JPS6244577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18111285A JPS6244577A (en) 1985-08-20 1985-08-20 Mass production apparatus for deposited film by plasma cvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18111285A JPS6244577A (en) 1985-08-20 1985-08-20 Mass production apparatus for deposited film by plasma cvd method

Publications (1)

Publication Number Publication Date
JPS6244577A true JPS6244577A (en) 1987-02-26

Family

ID=16095055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18111285A Pending JPS6244577A (en) 1985-08-20 1985-08-20 Mass production apparatus for deposited film by plasma cvd method

Country Status (1)

Country Link
JP (1) JPS6244577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930442A (en) * 1987-03-27 1990-06-05 Canon Kabushiki Kaisha Microwave plasma CVD apparatus having an improved microwave transmissive window
US5129359A (en) * 1988-11-15 1992-07-14 Canon Kabushiki Kaisha Microwave plasma CVD apparatus for the formation of functional deposited film with discharge space provided with gas feed device capable of applying bias voltage between the gas feed device and substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930442A (en) * 1987-03-27 1990-06-05 Canon Kabushiki Kaisha Microwave plasma CVD apparatus having an improved microwave transmissive window
US5129359A (en) * 1988-11-15 1992-07-14 Canon Kabushiki Kaisha Microwave plasma CVD apparatus for the formation of functional deposited film with discharge space provided with gas feed device capable of applying bias voltage between the gas feed device and substrate

Similar Documents

Publication Publication Date Title
TWI733838B (en) Plasma film forming device and substrate mounting table
US4404076A (en) Film forming process utilizing discharge
JPS6244577A (en) Mass production apparatus for deposited film by plasma cvd method
KR100262745B1 (en) Surface processing apparatus
JPS6240380A (en) Deposited film forming device by plasma cvd method
JPH0633246A (en) Formation of deposited film and deposited film forming device
JPS62142783A (en) Deposited film forming device by plasma cvd method
JPS6244578A (en) Deposited film forming device by plasma cvd method
JPH06295866A (en) Plasma reaction system
JPS6240382A (en) Deposited film forming device by plasma cvd method
JPS6217181A (en) Device for forming deposited film by plasma cvd method
JPS6240381A (en) Deposited film forming device by plasma cvd method
JPS6350479A (en) Device for forming functional deposited film by microwave plasma cvd method
JPS6362880A (en) Device for forming functional deposited film by microwave plasma cvd
JPS63479A (en) Device for forming functional deposited film by plasma cvd method
JPS62235471A (en) Deposited film forming device by plasma cvd method
JPS6357779A (en) Functional deposited film forming device by microwave plasma cvd method
JPS6115973A (en) Plasma cvd device
JPS63235477A (en) Device for forming functional deposited film by microwave plasma cvd method
JPS642191B2 (en)
JP2553337B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPS62180074A (en) Formation of deposited film by plasma cvd method
JPH06196407A (en) Method and device for forming deposited film
JPS62142772A (en) Deposited film forming device by cvd method
JPS63241173A (en) Device for forming functional deposited film by microwave plasma cvd method