JPS6244564B2 - - Google Patents

Info

Publication number
JPS6244564B2
JPS6244564B2 JP8087779A JP8087779A JPS6244564B2 JP S6244564 B2 JPS6244564 B2 JP S6244564B2 JP 8087779 A JP8087779 A JP 8087779A JP 8087779 A JP8087779 A JP 8087779A JP S6244564 B2 JPS6244564 B2 JP S6244564B2
Authority
JP
Japan
Prior art keywords
resin composition
triazine
parts
resins
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8087779A
Other languages
Japanese (ja)
Other versions
JPS564610A (en
Inventor
Kazuo Akagane
Kunimasa Kamio
Koichi Okuno
Hiroshi Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP8087779A priority Critical patent/JPS564610A/en
Publication of JPS564610A publication Critical patent/JPS564610A/en
Publication of JPS6244564B2 publication Critical patent/JPS6244564B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、接着剀、塗料、積局材料或いは成圢
材料等に有甚な新芏な暹脂組成物に関する。 埓来より、䞊蚘甚途等にぱポキシ暹脂が倚く
䜿甚されおきたが、該暹脂は皮々のすぐれた特性
を有するものの、耐熱性が䞍十分であ぀た。䞀
方、耐熱性にすぐれたものずしおは、たずえばビ
スプノヌルずクロルシアンずの反応によるゞ
シアネヌト化合物を曎にプレポリマヌ化しおなる
TriazineAず呌ばれるトリアゞン系暹脂が知られ
おいるが、このものは耐熱性のみならず、皮々の
すぐれた性質を有するが、該暹脂䞭に存圚するシ
アネヌト基が加氎分解を受け易く、貯蔵安定性が
劣るずいう欠点があ぀た。 このようなこずから、本発明者らはトリアゞン
系暹脂ず同等もしくはそれ以䞊の特性を有し、か
぀貯蔵安定性にもすぐれた硬化性暹脂組成物を開
発すべく鋭意怜蚎の結果、―む゜プロペニルフ
゚ノヌルず―トリアゞントリハラむドずから埗
られるトリアゞン系暹脂が、物性的に非垞にすぐ
れるのみならず、貯蔵安定性にもすぐれるこずを
芋出し、本発明に至぀た。 すなわち本発明は、―む゜プロペニルプノ
ヌルず―トリアゞントリハラむドずを、塩基の
存圚䞋に、モル比0.8〜1.2の範囲で反応させ
お埗られる重合性䞍飜和化合物ず硬化觊媒を含む
硬化性暹脂組成物である。 本発明においお甚いられる重合性䞍飜和化合物
は、―む゜プロペニルプノヌルず―トリア
ゞントリハラむドたずえば―トリアゞントリク
ロラむドずの反応により埗られるものであ぀お、
䞋蚘構造匏に瀺されるように、分子䞭にトリアゞ
ン骚栌を有するものである。 ―む゜プロペニルプノヌルず―トリアゞ
ントリハラむドずの反応においお、その反応モル
比は通垞0.8〜1.2であり、たたこの反応は脱
ハロゲン化氎玠反応であるため、生成したハロゲ
ン化氎玠陀去のために、副生するハロゲン化氎玠
モル圓り玄モルの塩基を反応系に存圚させる
こずが必芁である。 かかる塩基ずしおは、たずえば氎酞化ナトリり
ムもしくは氎酞化カリりムのごずきアルカリ金属
氎酞化物、炭酞ナトリりムもしくは炭酞カリりム
のごずきアルカリ金属炭酞塩、ナトリりムメチラ
ヌトもしくはカリりムタヌシダリヌブチラヌトの
ごずきアルコラヌト、あるいはトリ゚チルアミ
ン、ゞ゚チルアニリンおよびピリゞンのごずき第
玚アミンである。 反応は、通垞溶液あるいは懞濁液系で行なわれ
るが、かかる反応に適した反応溶媒ずしおは、た
ずえばメタノヌル、゚タノヌル、―プロパノヌ
ルもしくはiso―プロパノヌルのごずき䜎玚脂肪
族アルコヌル、アセトン、メチル゚チルケトン、
ゞ゚チルケトン、メチルむ゜プロピルケトンもし
くはメチルむ゜ブチルケトンのごずき脂肪族ケト
ン、脂肪族炭化氎玠奜たしくは石油゚ヌテル、軜
ペトロヌルpetrolもしくはペトロヌルのごず
き倩然産混合物の蒞溜䞭に蓄積する留分である脂
肪族炭化氎玠、ベンれン、トル゚ンおよびキシレ
ンのごずき芳銙族炭化氎玠、ゞクロルメタン、ゞ
―クロル゚タン、パ―クロル゚チレン、クロルベ
ンれン、ゞクロルベンれンのごずきハロゲン化炭
化氎玠、ゞ゚チル゚ヌテルもしくはゞむ゜プロピ
ル゚ヌテルのごずき゚ヌテル、ニトロメタン、ニ
トロベンれンもしくはニトロトル゚ンのごずきニ
トロ炭化氎玠、および氎が䟋瀺される。 反応は、通垞〜100℃で実斜されるが、奜た
しくは70℃以䞋である。 かかる反応により埗られた反応混合物は、公知
の方法に準じお、たずえば反応溶媒ずしお有機溶
媒を甚いた堎合には、反応混合物䞭に氎を添加し
お、副生したハロゲン化氎玠酞塩を氎に溶解さ
せ、該氎溶液を分離したのち、溶媒を蒞留等によ
぀お陀去するこずにより目的ずする重合性䞍飜和
化合物が埗られる。もちろん、この凊理は䞊蚘方
法のみに限られず、それぞれの補造条件に応じお
任意の方法が遞ばれる。 かくしお埗られた重合性䞍飜和化合物は、単な
る加熱のみによ぀おも重合するが、硬化觊媒を甚
いるこずによ぀おより効果的に重合し、むンダン
構造を有する重合䜓を圢成するものず考えられ
る。本発明の硬化性暹脂組成物は、かかる重合性
䞍飜和化合物ず硬化觊媒を含む暹脂組成物であ぀
お、該組成物は貯蔵安定性にすぐれるのみなら
ず、耐熱性にもすぐれるなどその硬化物は非垞に
すぐれた皮々の特性を瀺す。 ここで甚いられる硬化觊媒ずしおは、たずえば
―トル゚ンスルホン酞、サリチル酞、酢酞、マ
レむン酞等の有機酞類、無氎マレむン酞、無氎メ
チルナゞク酞、無氎フタル酞、メチルテトラヒド
ロフタル酞等の酞無氎物、塩酞、リン酞、硫酞等
の鉱酞類、BF3―モノ゚チルアミン、塩化アルミ
ニりム、有機酞の金属塩等のルむス酞類、むミダ
ゟヌル及びその誘導䜓などが䟋ずしお挙げられ
る。 本発明においお、硬化觊媒の䜿甚量には特に限
定されず、䜿甚する觊媒の皮類や埌述の䜵甚暹脂
の皮類、量等によ぀お適宜蚭定される。 かかる本発明の硬化性暹脂組成物においお、そ
れぞれの目的、甚途に応じお各皮の化合物を添加
するこずができるが、特に―む゜プロペニルフ
゚ニルグリシゞル゚ヌテルあるいはそれに曎に分
子䞭に個以䞊の゚ポキシ基をも぀゚ポキシ化合
物を添加、配合するこずは、埗られた硬化性暹脂
組成物が゚ポキシ暹脂のも぀すぐれた特性を䜵せ
お有するこずになり、極めおすぐれた性胜を発揮
する。 この堎合、重合性䞍飜和化合物ず―む゜プロ
ペニルプニルグリシゞル゚ヌテルの混合比は、
通垞、重量比で〜100〜95であり、たた
―む゜プロペニルプニルグリシゞル゚ヌテルず
゚ポキシ化合物の混合比は、通垞、重量比で〜
100〜95より奜たしくは20〜100〜80であ
る。 かかる゚ポキシ化合物ずしおは、たずえばビス
プノヌル系゚ポキシ暹脂、レゟルシン系゚ポ
キシ暹脂、クレゟヌルノボラツク型゚ポキシ暹
脂、ポリ゚チレングリコヌルのゞグリシゞル゚ヌ
テル、メタアミノプノヌル系゚ポキシ暹脂等が
䟋瀺される。 たた、本発明の硬化性暹脂組成物は、最終的な
塗膜、接着剀局、成圢品等における暹脂の性質を
改善する目的で、皮々の倩然、半合成或いは合成
暹脂類を配合するこずができる。 このような暹脂ずしおは、也性油、半也性油等
のオレオレゞン、ロゞン、シ゚ラツク、コヌバ
ル、油倉性ロゞン、プノヌル暹脂、アルキツド
暹脂、尿玠暹脂、メラミン暹脂、ポリ゚ステル暹
脂、䞍飜和ポリ゚ステル暹脂、゚ポキシアクリレ
ヌト、ビニルブチラヌル暹脂、酢酞ビニル暹脂、
塩化ビニル暹脂、アクリル暹脂、シリコヌン暹脂
の皮又は皮以䞊の組合せを挙げるこずがで
き、これらの暹脂は本発明の硬化性暹脂組成物の
本来の性質を損わない範囲、䟋えば党暹脂量の30
重量以䞋の量で配合し埗る。その他、曎に必芁
に応じお炭玠繊維、ガラス繊維、アルミナ繊維、
或いはナむロン、ポリ゚ステル等の有機質繊維
や、炭酞カルシりム、アルミナ、カオリン、ケむ
゜り土、ガラス粉、埮粉末シリカ、グラフアむト
等の補匷材や充填剀を甚いるこずができる。 これらの補匷材、充填剀は甚途によ぀おも異る
が、積局材料や成圢材料の甚途には、暹脂固圢分
圓り重量倍䜍迄の量で䜿甚するこずができる。
たた、着色する目的で二酞化チタン、黄鉛、カヌ
ボンブラツク、ベンガラ、コンゞペり、グンゞペ
り等の顔料や染料を含有させるこずができる。曎
に本発明の暹脂組成物を塗料甚途に䜿甚する堎合
には、着色染顔料、防錆顔料、垂れ止め剀、分散
剀、増粘剀、塗膜改質剀、䜓質顔料、難燃剀等の
それ自䜓呚知の塗料甚配合剀を含有せしめるこず
ができる。 本発明の硬化性暹脂組成物は固䜓状溶液状、或
いは分散液状等の任意の圢で存圚し埗る。䟋えば
前蚘配合成分を、メチル゚チルケトンの劂きケト
ン類、酢酞゚チル、メチルメタクリレヌトの劂き
゚ステル類、ゞブチル゚ヌテルの劂き゚ヌテル
類、トル゚ン、キシレン、スチレン、ゞメチルス
チレンの劂き芳銙族炭化氎玠或いはこれらの混合
物に溶解もしくは分散せしめおしお甚いるこずが
出来る。たた乳化剀を加え、氎分散液ずしお䜿甚
するこずも可胜である。曎には也燥した粉末、ペ
レツト、含浞物、或いはコンパりンド等の圢で
皮々の目的に䟛するこずができる。 かかる本発明の硬化性暹脂組成物を䜿甚するに
圓り、硬化させるのに必芁な枩床は觊媒の皮類、
䜿甚量等により異なるが、䞀般的に70℃〜250℃
奜たしくは100℃〜200℃の範囲である。必芁な加
熱時間は、該暹脂組成物が薄い塗膜であるか或い
は比范的肉厚の成圢品ずか積局物であるか等䜿甚
条件によ぀おもかなり盞違するが、䞀般的に蚀぀
お30秒間〜10時間であり、それぞれの䜿甚条件に
応じお暹脂成分が完党に硬化するに十分な時間を
遞択すればよい。本発明の暹脂組成物を成圢品、
積局品或いは接着構造物等の補造に甚いる堎合に
は、硬化に際しお、通垞10〜100Kgcm2の圧力を
加えるこずが䞀般に望たしい。 以䞋、本発明を実斜䟋により説明する。ただ
し、䟋䞭、郚ずあるのは重量郚を意味する。 参考䟋  ―トリアゞントリクロリド184モル
をアセトン2.5に溶解した。これに、―む゜
プロペニルプノヌル402モルずカセむ
゜ヌダ120モルを蒞留氎500mlに分散させ
おなる分散液を20℃にお滎䞋し、その埌、50℃で
時間保持しお反応を行な぀た。反応終了埌、反
応混合物を蒞留しおアセトンを陀去し、぀いで氎
を加えお、反応䞭に生じた塩化ナトリりムを
溶解させ、ろ過しお結晶を取り出し、氎掗、也燥
しお目的化合物化合物ずするを埗た。 収量 463収率97 実斜䟋  参考䟋で埗た化合物をメチル゚チルケトン
に溶解しお固圢分70重量のワニスを調補した。
このワニス100郚に䞉北化ホり玠―モノ゚チルア
ミンを郚加えお暹脂組成物を䜜成した。 平織ガラス垃を該暹脂組成物に含浞埌、溶剀を
陀去した。これをタツクがなくなるたで宀枩で颚
也埌、120〜130℃で分間也燥凊理しお含浞され
た暹脂の―ステヌゞ化を行な぀た。 埗られたプリプレグず銅箔を重ね、180℃で
時間、぀いで190℃で時間を芁しお熱プレスで
硬化させ、銅匵り積局板を埗た。埗られた積局板
の特性JIS ―6481に芏定する詊隓法によ
る。を衚―に瀺す。 比范䟋  KU―6573―ビス―シアナ―トフ
゚ニルプロパンから誘導されたトリアゞン系暹
脂、メチル゚チルケトンを溶剀ずした固圢分70重
量のワニス。バむ゚ル瀟品143郚にオク
チル酞亜鉛0.2郚、カテコヌル0.1郚および―゚
チル――メチルむミダゟヌル0.075郚を混合し
お暹脂組成物を䜜成した。 平織ガラス垃を該暹脂組成物に含浞埌、溶剀を
陀去した。これをタツクがなくなるたで宀枩で颚
也埌、125〜140℃で分間也燥凊理しお含浞され
た暹脂の―ステヌゞ化を行な぀た。 埗られたプリプレグず銅箔を重ね、180℃で
時間、぀いで190℃で時間を芁しお熱プレスで
硬化させ、銅匵り積局板を埗た。埗られた積局板
の特性を衚―に瀺す。 比范䟋  スミ゚ポキシESCN―220Lクレゟヌルノボラ
ツク型゚ポキシ暹脂、䜏友化孊瀟商品名100郚
をメチル゚チルケトン43郚に溶解埌、スミキナア
―4′―ゞアミノゞプニルメタン、䜏友
化孊瀟商品名23郚を加え、均䞀に溶解しお暹脂
組成物を䜜成した。以䞋、比范䟋ず同様にしお
積局板を埗た。埗られた積局板の特性を衚―に
瀺す。 実斜䟋  参考䟋で埗た化合物をあらかじめ40℃、盞
察湿床100の雰囲気䞭で週間攟眮したのち、
実斜䟋ず同様にしお積局板を䜜成した。 埗られた積局板の特性を衚―に瀺すが、その
特性は実斜䟋の堎合ず殆んど倉わらず、化合物
を䞊蚘の劂き高湿床䞋に保存しおもその圱響は
みられなか぀た。 比范䟋  KU―6573前述をあらかじめ40℃、盞察湿
床100の雰囲気䞭で週間攟眮したのち、比范
䟋ず同様にしお積局板を䜜成した。 埗られた積局板の特性を衚―に瀺すが、その
特性は著しく劣り、原料暹脂の保存時における湿
床の圱響は非垞に倧きか぀た。 実斜䟋  参考䟋で埗た化合物A50郚に―む゜プロペ
ニルプニルグリシゞル゚ヌテル50郚を混合埌、
120℃に加枩しお均䞀に溶解した。枩床を80℃に
䞋げおから、―゚チル――メチルむミダゟヌ
ル郚および無氎メチルナゞク酞45郚を添加し、
よく撹拌しお暹脂組成物ずした。 この暹脂組成物を枚のガラス板にmm厚のシ
リコンゎムスペヌサヌをはさんだ泚圢型に泚入
し、120℃で時間、150℃で時間180℃で時
間保持しおステヌゞキナアヌを行な぀た。 埗られた泚圢板の特性を衚―に瀺す。 比范䟋  スミ゚ポキシELA―128ビスプノヌル系゚
ポキシ暹脂、䜏友化孊瀟品100郚に―゚チル
――メチルむミダゟヌル郚および無氎メチル
ナゞク酞90郚を添加し、80℃でよく撹拌しお暹脂
組成物を埗た。 該暹脂組成物を甚いお実斜䟋ず同様の方法で
泚圢板を䜜成した。 埗られた泚圢板の特性を衚―に瀺す。 実斜䟋  参考䟋で埗た化合物A50郚、―む゜プロペ
ニルプニルグリシゞル゚ヌテル10郚、スミ゚ポ
キシESA―014ビスプノヌル系固圢゚ポキシ
暹脂、軟化点95〜104℃、䜏友化孊瀟品20郚、
スミ゚ポキシESA―017ビスプノヌル系固型
゚ポキシ暹脂、軟化点122〜131℃、䜏友化孊瀟
品20郚、ゞシアンゞアミド郚、―゚チル―
―メチルむミダゟヌル郚、酞化チタン50郚お
よび゚ロゞル郚をロヌル混合したのち、150ÎŒ
以䞋の粒床に粉砕した。 この粉䜓を甚いお粉䜓塗装―70KV荷電䞋
を行ない、150℃で時間、1180℃で曎に時間
焌付けた。埗られた塗膜の性胜を衚―に瀺す。 比范䟋  実斜䟋においお、化合物のかわりにスミ゚
ポキシESA―014を甚いる以倖は党く同様にしお
粉䜓塗装を行な぀た。埗られた塗膜の性胜を衚―
に瀺す。
The present invention relates to a novel resin composition useful for adhesives, paints, laminated materials, molding materials, and the like. Conventionally, epoxy resins have been widely used for the above-mentioned purposes, but although these resins have various excellent properties, they have insufficient heat resistance. On the other hand, products with excellent heat resistance are made by further prepolymerizing a dicyanate compound produced by the reaction of bisphenol A and chlorocyan, for example.
A triazine-based resin called Triazine A is known, and although this resin has various excellent properties in addition to heat resistance, the cyanate group present in the resin is easily hydrolyzed, resulting in poor storage stability. It had the disadvantage of being inferior. For this reason, the present inventors have conducted intensive studies to develop a curable resin composition that has properties equivalent to or better than triazine resins and also has excellent storage stability. The inventors discovered that a triazine resin obtained from propenylphenol and s-triazine trihalide not only has excellent physical properties but also excellent storage stability, leading to the present invention. That is, the present invention includes a polymerizable unsaturated compound obtained by reacting m-isopropenylphenol and s-triazine trihalide in the presence of a base at a molar ratio of 3:0.8 to 1.2 and a curing catalyst. It is a curable resin composition. The polymerizable unsaturated compound used in the present invention is obtained by the reaction of m-isopropenylphenol and s-triazine trihalide, such as s-triazine trichloride, and
As shown in the structural formula below, it has a triazine skeleton in the molecule. In the reaction between m-isopropenylphenol and s-triazine trihalide, the reaction molar ratio is usually 3:0.8 to 1.2, and since this reaction is a dehydrohalogenation reaction, the amount of hydrogen halide produced is removed. Therefore, it is necessary to have about 1 mol of base present in the reaction system per 1 mol of by-produced hydrogen halide. Such bases include, for example, alkali metal hydroxides such as sodium or potassium hydroxide, alkali metal carbonates such as sodium or potassium carbonate, alcoholates such as sodium methylate or potassium tertiary butyrate, or triethylamine, diethyl Tertiary amines such as aniline and pyridine. The reaction is usually carried out in a solution or suspension system, and suitable reaction solvents for such reactions include, for example, lower aliphatic alcohols such as methanol, ethanol, n-propanol or iso-propanol, acetone, methyl ethyl ketone,
aliphatic ketones such as diethyl ketone, methyl isopropyl ketone or methyl isobutyl ketone, aliphatic hydrocarbons, which are the fractions that accumulate during distillation of natural product mixtures such as petroleum ether, light petrol or petrol; Hydrogen, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as dichloromethane, dichloroethane, perchloroethylene, chlorobenzene, dichlorobenzene, ethers such as diethyl ether or diisopropyl ether, nitromethane, nitrobenzene. Examples include nitrohydrocarbons such as nitrotoluene, and water. The reaction is usually carried out at a temperature of 0 to 100°C, preferably 70°C or lower. The reaction mixture obtained by such a reaction can be prepared according to a known method, for example, when an organic solvent is used as the reaction solvent, water is added to the reaction mixture to dissolve the by-produced hydrohalide salt in water. After separating the aqueous solution, the desired polymerizable unsaturated compound is obtained by removing the solvent by distillation or the like. Of course, this treatment is not limited to the above method, and any method may be selected depending on the respective manufacturing conditions. The polymerizable unsaturated compound thus obtained can be polymerized by mere heating, but it is thought that it can be polymerized more effectively by using a curing catalyst to form a polymer having an indane structure. . The curable resin composition of the present invention is a resin composition containing such a polymerizable unsaturated compound and a curing catalyst, and the composition has not only excellent storage stability but also excellent heat resistance. The cured product exhibits a variety of excellent properties. Examples of curing catalysts used here include organic acids such as p-toluenesulfonic acid, salicylic acid, acetic acid, and maleic acid; acid anhydrides such as maleic anhydride, methylnadic anhydride, phthalic anhydride, and methyltetrahydrophthalic acid; and hydrochloric acid. Examples include mineral acids such as phosphoric acid and sulfuric acid, Lewis acids such as BF 3 -monoethylamine, aluminum chloride, and metal salts of organic acids, imidazole and its derivatives. In the present invention, the amount of the curing catalyst to be used is not particularly limited, and is appropriately set depending on the type of catalyst used and the type and amount of the combined resin described below. In the curable resin composition of the present invention, various compounds can be added depending on the purpose and use, but in particular m-isopropenyl phenyl glycidyl ether or furthermore two or more epoxy compounds in the molecule. By adding and blending an epoxy compound having a group, the resulting curable resin composition also has the excellent properties of an epoxy resin, and exhibits extremely excellent performance. In this case, the mixing ratio of the polymerizable unsaturated compound and m-isopropenylphenyl glycidyl ether is:
Usually, the weight ratio is 5-100:0-95, and m
- The mixing ratio of isopropenyl phenyl glycidyl ether and epoxy compound is usually 5 to 5 by weight.
The ratio is more preferably 20-100:0-80 than 100:5-95. Examples of such epoxy compounds include bisphenol A-based epoxy resins, resorcinol-based epoxy resins, cresol novolak-type epoxy resins, diglycidyl ether of polyethylene glycol, and meta-aminophenol-based epoxy resins. Furthermore, the curable resin composition of the present invention may contain various natural, semi-synthetic, or synthetic resins in order to improve the properties of the resin in the final coating film, adhesive layer, molded product, etc. can. Such resins include oleoresins such as drying oils and semi-drying oils, rosins, Sierraks, Kobals, oil-modified rosins, phenolic resins, alkyd resins, urea resins, melamine resins, polyester resins, unsaturated polyester resins, and epoxy acrylates. , vinyl butyral resin, vinyl acetate resin,
One type or a combination of two or more of vinyl chloride resins, acrylic resins, and silicone resins can be mentioned, and these resins can be used within a range that does not impair the original properties of the curable resin composition of the present invention, such as the total resin amount. of 30
It can be blended in an amount of less than % by weight. In addition, carbon fiber, glass fiber, alumina fiber,
Alternatively, organic fibers such as nylon and polyester, reinforcing materials and fillers such as calcium carbonate, alumina, kaolin, diatomaceous earth, glass powder, finely powdered silica, and graphite can be used. Although these reinforcing materials and fillers vary depending on the application, they can be used in amounts up to about 4 times the weight per solid resin content for laminated materials and molding materials.
Further, for the purpose of coloring, pigments and dyes such as titanium dioxide, yellow lead, carbon black, red iron oxide, red radish, and silver oxide can be contained. Furthermore, when the resin composition of the present invention is used for paint purposes, it may be used as a coloring dye, a rust preventive pigment, an anti-sagging agent, a dispersant, a thickener, a paint film modifier, an extender pigment, a flame retardant, etc. It can contain paint formulations that are well known per se. The curable resin composition of the present invention may exist in any form such as a solid solution or a dispersion. For example, the above ingredients may be dissolved in ketones such as methyl ethyl ketone, esters such as ethyl acetate, methyl methacrylate, ethers such as dibutyl ether, aromatic hydrocarbons such as toluene, xylene, styrene, dimethylstyrene, or mixtures thereof. It can be used after being dispersed. It is also possible to add an emulsifier and use it as an aqueous dispersion. Furthermore, it can be used for various purposes in the form of a dry powder, pellet, impregnated product, compound, or the like. When using the curable resin composition of the present invention, the temperature required for curing depends on the type of catalyst,
It varies depending on the amount used, etc., but generally 70℃ to 250℃
Preferably it is in the range of 100°C to 200°C. The required heating time varies considerably depending on the conditions of use, such as whether the resin composition is a thin coating, a relatively thick molded product, or a laminate, but generally speaking, it is 30 seconds. ~10 hours, and a time sufficient for the resin component to be completely cured may be selected depending on each usage condition. Molded products using the resin composition of the present invention,
When used in the production of laminated products or adhesive structures, it is generally desirable to apply a pressure of 10 to 100 kg/cm 2 during curing. The present invention will be explained below using examples. However, in the examples, parts mean parts by weight. Reference example 1 s-triazine trichloride 184g (1 mol)
was dissolved in acetone 2.5. A dispersion of 402 g (3 mol) of m-isopropenylphenol and 120 g (3 mol) of caustic soda dispersed in 500 ml of distilled water was added dropwise to this at 20°C, and then the mixture was kept at 50°C for 1 hour to react. I did this. After the reaction is complete, the reaction mixture is distilled to remove acetone, then 50% of water is added to dissolve the sodium chloride produced during the reaction, the crystals are taken out by filtration, washed with water, and dried to obtain the target compound (compound A). ) was obtained. Yield: 463 g (yield: 97%) Example 1 Compound A obtained in Reference Example 1 was dissolved in methyl ethyl ketone to prepare a varnish with a solid content of 70% by weight.
A resin composition was prepared by adding 1 part of boron trifluoride-monoethylamine to 100 parts of this varnish. After impregnating a plain weave glass cloth with the resin composition, the solvent was removed. This was air-dried at room temperature until there was no tack, and then dried at 120-130°C for 7 minutes to B-stage the impregnated resin. The obtained prepreg and copper foil were layered and heated at 180℃ for 2 hours.
The copper-clad laminate was then cured using a hot press at 190° C. for 2 hours to obtain a copper-clad laminate. The properties of the obtained laminate (according to the test method specified in JIS C-6481) are shown in Table 1. Comparative Example 1 KU-6573 (a triazine resin derived from 2,2-bis(4-cyanatophenyl)propane, a varnish with a solid content of 70% by weight using methyl ethyl ketone as a solvent. A Bayer product) 8% in 143 parts A resin composition was prepared by mixing 0.2 part of zinc octylate, 0.1 part of catechol, and 0.075 part of 2-ethyl-4-methylimidazole. After impregnating a plain weave glass cloth with the resin composition, the solvent was removed. This was air-dried at room temperature until there was no tack, and then dried at 125-140°C for 7 minutes to B-stage the impregnated resin. The obtained prepreg and copper foil were layered and heated at 180℃ for 2 hours.
The copper-clad laminate was then cured using a hot press at 190° C. for 2 hours to obtain a copper-clad laminate. Table 1 shows the properties of the obtained laminate. Comparative Example 2 100 parts of Sumiepoxy ESCN-220L (cresol novolak type epoxy resin, trade name of Sumitomo Chemical Co., Ltd.) was dissolved in 43 parts of methyl ethyl ketone, and then Sumikiure-M (4,4'-diaminodiphenylmethane, trade name of Sumitomo Chemical Co., Ltd.) was dissolved. ) was added and uniformly dissolved to prepare a resin composition. Thereafter, a laminate was obtained in the same manner as in Comparative Example 2. Table 1 shows the properties of the obtained laminate. Example 2 Compound A obtained in Reference Example 1 was left in an atmosphere of 40°C and 100% relative humidity for one week, and then
A laminate was produced in the same manner as in Example 1. The properties of the obtained laminate are shown in Table 1, and the properties are almost the same as in Example 1, and even when Compound A was stored under high humidity as described above, no effect was observed. Ta. Comparative Example 3 KU-6573 (described above) was left in an atmosphere of 40° C. and 100% relative humidity for one week, and then a laminate was prepared in the same manner as in Comparative Example 1. The properties of the obtained laminate are shown in Table 1, and the properties were extremely poor, and the influence of humidity during storage of the raw resin was very large. Example 3 After mixing 50 parts of m-isopropenyl phenyl glycidyl ether with 50 parts of the compound A obtained in Reference Example 1,
It was heated to 120°C to uniformly dissolve it. After lowering the temperature to 80°C, 2 parts of 2-ethyl-4-methylimidazole and 45 parts of methylnadic anhydride are added,
The mixture was thoroughly stirred to obtain a resin composition. This resin composition was injected into a casting mold made by sandwiching a 3 mm thick silicone rubber spacer between two glass plates, and held at 120°C for 2 hours, 150°C for 1 hour, and 180°C for 1 hour to stage cure. I did it. The properties of the obtained cast plate are shown in Table 2. Comparative Example 4 2 parts of 2-ethyl-4-methylimidazole and 90 parts of methylnadic anhydride were added to 100 parts of Sumiepoxy ELA-128 (bisphenol-based epoxy resin, manufactured by Sumitomo Chemical Co., Ltd.), and the mixture was stirred well at 80°C to form a resin. A composition was obtained. A cast plate was made using the resin composition in the same manner as in Example 3. The properties of the obtained cast plate are shown in Table 2. Example 4 50 parts of the compound A obtained in Reference Example 1, 10 parts of m-isopropenyl phenyl glycidyl ether, 20 parts of Sumiepoxy ESA-014 (bisphenol solid epoxy resin, softening point 95-104°C, Sumitomo Chemical Co., Ltd.) ,
Sumiepoxy ESA-017 (bisphenol solid epoxy resin, softening point 122-131℃, Sumitomo Chemical Co., Ltd. product) 20 parts, dicyandiamide 2 parts, 2-ethyl-
After roll mixing 2 parts of 4-methylimidazole, 50 parts of titanium oxide and 1 part of Erosil, 150Ό
It was ground to the following particle size. Powder coating using this powder (-70KV charging)
The film was baked at 150°C for 1 hour and then at 1180°C for an additional 1 hour. Table 3 shows the performance of the resulting coating film. Comparative Example 5 Powder coating was carried out in exactly the same manner as in Example 4, except that Sumiepoxy ESA-014 was used instead of Compound A. The performance of the obtained coating film is shown below.
Shown in 3.

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  ―む゜プロペニルプノヌルず―トリア
ゞントリハラむドずを、塩基の存圚䞋に、モル比
0.8〜1.2の範囲で反応させお埗られる重合性
䞍飜和化合物ず硬化觊媒を含む硬化性暹脂組成
物。  ―む゜プロペニルプノヌルず―トリア
ゞントリハラむドずを、塩基の存圚䞋に、モル比
0.8〜1.2の範囲で反応させお埗られる重合性
䞍飜和化合物ず―む゜プロペニルプニルグリ
シゞル゚ヌテルず硬化觊媒を含む硬化性暹脂組成
物。  ―む゜プロペニルプノヌルず―トリア
ゞントリハラむドずを、塩基の存圚䞋に、モル比
0.8〜1.2の範囲で反応させお埗られる重合性
䞍飜和化合物ず―む゜プロペニルプニルグリ
シゞル゚ヌテルず分子䞭に個以䞊の゚ポキシ基
をも぀゚ポキシ化合物ず硬化觊媒を含む硬化性暹
脂組成物。
[Claims] 1. A polymerizable unsaturated compound obtained by reacting m-isopropenylphenol and s-triazine trihalide in the presence of a base at a molar ratio of 3:0.8 to 1.2 and a curing catalyst. A curable resin composition containing. 2 A polymerizable unsaturated compound and m-isopropenyl phenyl glycidyl ether obtained by reacting m-isopropenylphenol and s-triazine trihalide in the presence of a base at a molar ratio of 3:0.8 to 1.2. and a curable resin composition containing a curing catalyst. 3 Polymerizable unsaturated compound and m-isopropenyl phenyl glycidyl ether obtained by reacting m-isopropenylphenol and s-triazine trihalide in the presence of a base at a molar ratio of 3:0.8 to 1.2. A curable resin composition containing an epoxy compound having two or more epoxy groups in the molecule and a curing catalyst.
JP8087779A 1979-06-26 1979-06-26 Curable resin composition Granted JPS564610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8087779A JPS564610A (en) 1979-06-26 1979-06-26 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8087779A JPS564610A (en) 1979-06-26 1979-06-26 Curable resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP769786A Division JPS61210077A (en) 1986-01-16 1986-01-16 S-triazine-containing compound

Publications (2)

Publication Number Publication Date
JPS564610A JPS564610A (en) 1981-01-19
JPS6244564B2 true JPS6244564B2 (en) 1987-09-21

Family

ID=13730569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8087779A Granted JPS564610A (en) 1979-06-26 1979-06-26 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS564610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156066A (en) * 1990-10-19 1992-05-28 Erubetsukusu Video Kk Method and device for converting synchronizing signal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696613B2 (en) * 1986-02-25 1994-11-30 䜏友化孊工業株匏䌚瀟 Reactive polymer manufacturing method
US4808717A (en) * 1986-09-17 1989-02-28 Sumitomo Chemical Company, Limited Thermosetting resin composition
JPH0776377B2 (en) * 1987-03-11 1995-08-16 新日本補鐵株匏䌚瀟 Manufacturing method of high strength steel plate with excellent low temperature toughness
WO2024143964A1 (en) * 2022-12-28 2024-07-04 윔였롱읞더슀튞늬 죌식회사 Curing agent composition and curable composition containing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156066A (en) * 1990-10-19 1992-05-28 Erubetsukusu Video Kk Method and device for converting synchronizing signal

Also Published As

Publication number Publication date
JPS564610A (en) 1981-01-19

Similar Documents

Publication Publication Date Title
JP7085562B2 (en) Resin blends, prepregs, and articles containing phthalonitrile reactive diluents and diphthalonitrile resins.
Ratna Recent advances and applications of thermoset resins
JP4753336B2 (en) Novel allyl compound and process for producing the same
GB2031898A (en) Polyisopropenylphenol-epoxy resin compositions
JPS62292822A (en) Thermoplastic polymer composition having thermosetting processing characteristic
TW201806985A (en) Thermosetting resin composition, prepreg and cured product thereof
EP0449593B1 (en) Low temperature curable dicyanate esters of dihydric phenols
CN115175950A (en) Benzo 57694 curable compositions of oxazine and phthalonitrile resins
FR2531439A1 (en) EPOXY RESINS CONTAINING METAL ATOM
JPH0710902B2 (en) Curable resin composition
JPS6244564B2 (en)
JPS6263554A (en) N-arylaminophthalic acid derivative as intermeadiate for manufacturing silicon-modified phthalic acid derivative and manufacture
US4946928A (en) Curable resin from cyanate aromatic ester and propargyl aromatic ether
KR0139001B1 (en) Epoxy resins and compositions containing aromatic diamine curing agent
JP2002539189A (en) Cyanate ester with flame resistance
CN114478427A (en) High-performance thermosetting resin curing agent/diluent and preparation method thereof
JP2018145273A (en) Allyl group-containing resin, resin varnish, and method of manufacturing laminate
JP2017119830A (en) Allyl group-containing resin, method for producing the same, resin varnish and method for producing laminate
US4307223A (en) Solid resin prepared by polymerizing by-product tar formed during preparation of resorcinol
JP2018065931A (en) Resin varnish, method for producing the same, and method for manufacturing laminate
JPH01108213A (en) Propargyl-etherified cresol novolak resin
US3789055A (en) Aliphatically unsaturated imides and method for making same
EP0369527A2 (en) Curable resin compositions
JPH04268321A (en) Curable epoxy resin composition
JPH1129623A (en) Thermosetting resin composition