JPS6243507A - Detector of configuration of section of steel plate - Google Patents

Detector of configuration of section of steel plate

Info

Publication number
JPS6243507A
JPS6243507A JP60183655A JP18365585A JPS6243507A JP S6243507 A JPS6243507 A JP S6243507A JP 60183655 A JP60183655 A JP 60183655A JP 18365585 A JP18365585 A JP 18365585A JP S6243507 A JPS6243507 A JP S6243507A
Authority
JP
Japan
Prior art keywords
steel plate
unit
distance
receiving element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60183655A
Other languages
Japanese (ja)
Inventor
Kazunari Ikegami
池上 一成
Takeshi Kurihara
健 栗原
Akio Kodoi
小土井 章夫
Takumasa Terauchi
琢雅 寺内
Kenichi Masuda
健一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60183655A priority Critical patent/JPS6243507A/en
Publication of JPS6243507A publication Critical patent/JPS6243507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To detect the configuration of the section of a steel plate with a high accuracy by constituting a detector by a photosensitive element, a rotary reflecting mirror, position detecting means, arithmetic means and the like. CONSTITUTION:When a steel plate 10 is conveyed to a roller table 14, central portion detecting unit 18 and a side detecting unit 20 arranged approximately in a line along the transverse direction of the steel plate are operated at the same time. The unit 18 measures a distance L1 between the unit 18 and the approximately central portion of steel plate 10 and the unit 20 measures a distance P between the reference position of photosensitive element 42 and a laser beam receiving point and the rotary angle of a rotary mirror 32, measured data being fed to arithmetic unit 48. The unit 48 conducts an operation to calculate coordinates L and R from a distance R in the direction of the width of the steel plate and a distance L from the focal point of a lens. Thus, the unit 20 detects the configurations of the surface portions of the margins of the steel plate 10 in its width direction and measures the range of the predetermined regions.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、熱間圧延工程において鋼板の断面形状を検
出する鋼板の断面形状検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a steel plate cross-sectional shape detection device that detects the cross-sectional shape of a steel plate during a hot rolling process.

[従来の技術] 鋼板を圧延して所定の厚みの鋼板を得る圧延工程に於い
て、鋼板板厚が、その幅方向に不均一になることを防止
するために鋼板断面の形状を検出して確認する必要があ
る。この種の装置として、鋼板の幅方向の厚みを連続的
に検出するプロフィル7!−夕が知られている。このプ
ロフィルメータは、放射線を利用して鋼板の厚みを1l
lll定する厚み測定器を備え、鋼板が搬送ライン上を
搬送されている際に、鋼板の幅方向に往復動してその厚
みを測定する。このように鋼板の幅方向全体にわったて
厚み(断面形状)をa−1定することによって断面形状
の凹凸を検出し、鋼板のプロフィルを測定している。
[Prior Art] In the rolling process of rolling a steel plate to obtain a steel plate with a predetermined thickness, the shape of the cross section of the steel plate is detected in order to prevent the thickness of the steel plate from becoming uneven in the width direction. It is necessary to confirm. As this type of device, Profile 7! continuously detects the thickness of the steel plate in the width direction! -Evening is known. This profile meter uses radiation to measure the thickness of a steel plate by 1 liter.
It is equipped with a thickness measuring device that measures the thickness of the steel plate by reciprocating in the width direction of the steel plate while the steel plate is being conveyed on the conveyance line. In this way, by setting the longitudinal thickness (cross-sectional shape) of the steel sheet over the entire width direction to a-1, irregularities in the cross-sectional shape are detected and the profile of the steel sheet is measured.

[発明が解決しようとする問題点] しかしながら、従来のプロフィルメータは、板厚計を鋼
板の幅方向に沿って往復移動させなければならない。こ
の場合に、板厚計が移動している間に鋼板がその搬送方
向に移動してしまっているために、プロフィルメタ−は
同一断面における断面形状を1l11定していることに
ならない。一方、板厚計の移動を高速にした場合には、
板厚計に大きな振動を与え、測定値の誤差が太き(、ま
た距離計を損傷させるという問題がある。
[Problems to be Solved by the Invention] However, in the conventional profile meter, the plate thickness gauge must be moved back and forth along the width direction of the steel plate. In this case, since the steel plate has moved in the conveying direction while the plate thickness gauge is moving, the profile meter does not determine the cross-sectional shape of the same cross section. On the other hand, if the plate thickness gauge is moved at high speed,
There is a problem in that it causes large vibrations to the plate thickness gauge, increasing the error in measurement values (and damaging the distance meter).

し問題点を解決するための手段〕 この発明は斯かかる事情に鑑みてなされたものであって
、鋼板断面の形状を高精度で検出することができる鋼板
の断面形状検出装置を提供することを目的とする。
[Means for Solving the Problems] The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a cross-sectional shape detection device for a steel plate that can detect the cross-sectional shape of a steel plate with high accuracy. purpose.

この発明に係る鋼板の断面形状検出装置は、レーザ光を
発射する光源と、鋼板からの反射光を受光する受光素子
と、前記光源から発射せられたレーザ光を鋼板に向けて
反射して鋼板の幅方向に走査する回転反射鏡と、前記回
転反射鏡の回転角度を検出することによってレーザ光の
走査位置を検出する位置検出手段と、位置検出手段及び
受光素子の検出データを基に鋼板の断面形状を演算する
演算手段と、を有することを特徴とする。
A cross-sectional shape detection device for a steel plate according to the present invention includes a light source that emits a laser beam, a light receiving element that receives reflected light from the steel plate, and a light receiving element that reflects the laser beam emitted from the light source toward the steel plate to detect the steel plate. a rotating reflecting mirror that scans in the width direction of the steel plate; a position detecting means that detects the scanning position of the laser beam by detecting the rotation angle of the rotating reflecting mirror; It is characterized by having a calculating means for calculating a cross-sectional shape.

[実施例] 以下に、第1図乃至第3図を参照してこの発明の実施例
について詳細に説明する。鋼片を熱間圧延して鋼板lO
を形成する熱間圧延設備の、例えば、1■圧延機(図示
せず)の出口側には、第1図に示すように、この発明の
実施例に係るプロフィルメータ12が設けられている。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 3. Hot rolling a steel billet to make a steel plate lO
As shown in FIG. 1, a profile meter 12 according to an embodiment of the present invention is provided on the exit side of, for example, a 1-inch rolling mill (not shown) in hot rolling equipment for forming a rolling mill.

このプロフィルメータ12は、ローラテーブル14上を
搬送される鋼板10の上面の形状を検出する下面検出機
構16と、鋼板の下面の形状を検出する下面検出機構(
図示せず)とを有する。しかし、この下面検出機構は以
下に詳述する上面検出機構16とほぼ同一の構成である
から、その説明を省略する。
This profile meter 12 includes a lower surface detection mechanism 16 that detects the shape of the upper surface of the steel plate 10 conveyed on the roller table 14, and a lower surface detection mechanism (16) that detects the shape of the lower surface of the steel sheet.
(not shown). However, since this lower surface detection mechanism has almost the same configuration as the upper surface detection mechanism 16 described in detail below, the explanation thereof will be omitted.

第1図に、鋼板10の横断面を示すように、上面検出機
構16においては、ローラテーブル14上を搬送されて
くる鋼板10の幅方向に、鋼板10の略中央部の形状を
検出する中央部検出ユニット18及び鋼板の側方部の形
状を検出する側方部検出ユニット20が配設されている
。3つの検出ユニット18.20(中央及び両側の検出
二ニット)は夫々制御ユニット22に接続され、各ユニ
ットからのデータはこの制御ユニット22において統合
されチャートに記録される。
As shown in FIG. 1, which shows a cross section of the steel plate 10, the upper surface detection mechanism 16 detects the shape of the approximate center of the steel plate 10 in the width direction of the steel plate 10 conveyed on the roller table 14. A side part detection unit 18 and a side part detection unit 20 for detecting the shape of the side part of the steel plate are provided. The three detection units 18,20 (center and two detection units on both sides) are each connected to a control unit 22 in which the data from each unit is integrated and recorded in a chart.

中央部検出ユニット18は第1のレーザ光送受部24及
び演算ユニット25を備え、この第1のレーザ光送受部
24から鋼板表面までの距fiL1を測定する。この第
1のレーザ光送受部24はレーザ光を照射する光源26
と、レーザ光を受光する受光素子28とを備えている。
The central detection unit 18 includes a first laser beam transmitting/receiving section 24 and a calculation unit 25, and measures a distance fiL1 from the first laser beam transmitting/receiving section 24 to the steel plate surface. This first laser beam transmitter/receiver 24 has a light source 26 that emits laser beams.
and a light receiving element 28 that receives laser light.

光源26はレーザ光を下方に照射し、鋼板からの反射光
を受光素子28が受光する。演算ユニット25はこの受
光素子28の検出データを下に、光源から鋼板表面まで
の距離L1を算出する。そして、この中央部検出ユニッ
ト18による計測値L1は制御ユニット22に送られる
The light source 26 emits laser light downward, and the light receiving element 28 receives the reflected light from the steel plate. The calculation unit 25 calculates the distance L1 from the light source to the steel plate surface based on the detection data of the light receiving element 28. Then, the measured value L1 by the center detection unit 18 is sent to the control unit 22.

ここで、第2図を参照してレーザ光送受部24のDI定
原理を説明する。光源から鋼板表面Aまでの距1lL1
、受光素子に受光されたレーザ光の点をa1受光素子の
基準線の点(零点)をCとする。
Here, the principle of determining the DI of the laser beam transmitting/receiving section 24 will be explained with reference to FIG. Distance from light source to steel plate surface A 1lL1
, the point of the laser beam received by the light receiving element is a1, and the point (zero point) of the reference line of the light receiving element is C.

光源と表面Aとの距離により受光素子に受光されたレー
ザ光の入射角度が決定される。この受光素子への入射角
度は受光素子において受光されたレーザ光の位置と相関
関係にあるから、受光素子のup位置C点からレーザ光
線の受光点aまでの距離Pを基に光源から鋼板表面まで
の距!L1を演算することができる。受光素子としては
イメージセンサを用い、予めAPI定された単位距離(
ビット単位)あたりの係数をα、基準点Cに対する零点
設定のための補正係数をβとすれば、光源から鋼板表面
までの距離L1は下記の(1)の式で表わすことができ
る。
The distance between the light source and the surface A determines the angle of incidence of the laser light received by the light receiving element. Since the angle of incidence on the light receiving element has a correlation with the position of the laser beam received by the light receiving element, the distance P from the up position C of the light receiving element to the light receiving point a of the laser beam is calculated from the light source to the steel plate surface. The distance! L1 can be calculated. An image sensor is used as the light receiving element, and the unit distance (
If α is the coefficient per bit unit) and β is the correction coefficient for setting the zero point with respect to the reference point C, then the distance L1 from the light source to the steel plate surface can be expressed by the following equation (1).

Ll−(P±β)×α    ・・・(1)このように
レーザ方式の距離計によれば光源から鋼板の表面までの
距離を容易に測定することかできる。
Ll-(P±β)×α (1) As described above, the laser distance meter can easily measure the distance from the light source to the surface of the steel plate.

側方部検出ユニット20は鋼板の幅方向の各縁部(図中
布及び左)の表面部分の形状を検出するが、各側方部検
出ユニットの構成は略等しいため同一部分には同一の符
号を付すことによって一方の側方部検出ユニットの構成
について説明し、他方の側方部検出ユニットの説明を省
略する。側方部検出ユニット20には、レーザ光送受部
30とこのレーザ光送受部30の光源40からのレーザ
光を鋼板表面に向けて照射し鋼板表面で走査するための
回転m32、回転鏡32を回転させるモータ34及びモ
ータの回転角度を検出する角度検出器36とが設けられ
ている。回転鏡32は6角柱形状に形成されており、6
側面に鏡が配設されている。第2のレーザ光送受部30
には第1のレーザ光送受部18と同様に、光源40、受
光素子42、レンズ43が配設されているが、光源40
からはレーザ光が回転m32に向けて略水平に照射され
る。モータ34にはパルスモータが用いられ、角度検出
器36はモータ34のパルス信号を人力してこのパルス
の数を計パー1することによって、回転鏡の回転角度β
1 (第3図参照)を検出する。
The side part detection unit 20 detects the shape of the surface part of each edge in the width direction of the steel plate (cloth and left in the figure), but since the configuration of each side part detection unit is approximately the same, the same parts are The configuration of one side detection unit will be explained by assigning reference numerals, and the explanation of the other side detection unit will be omitted. The side detection unit 20 includes a laser beam transmitting/receiving section 30, a rotating m32, and a rotating mirror 32 for irradiating the laser beam from the light source 40 of the laser beam transmitting/receiving section 30 toward the surface of the steel plate and scanning the surface of the steel plate. A motor 34 for rotating and an angle detector 36 for detecting the rotation angle of the motor are provided. The rotating mirror 32 is formed in the shape of a hexagonal column, and has 6
A mirror is placed on the side. Second laser beam transmitter/receiver 30
A light source 40, a light receiving element 42, and a lens 43 are disposed in the same way as the first laser beam transmitting/receiving section 18, but the light source 40
From there, laser light is irradiated substantially horizontally toward the rotation m32. A pulse motor is used as the motor 34, and the angle detector 36 calculates the rotation angle β of the rotating mirror by manually inputting the pulse signal of the motor 34 and counting the number of pulses.
1 (see Figure 3).

第2のレーザ光送受部30、回転鏡32、及びモータ3
4は支持部材45に配設されており、この支持部材45
はローラテーブル14を横断するように渡されたロット
44に懸架されている。ロッド44にはその右端から中
央部に口)けて右ねしが形成され、中央部から左端に掛
けれ逆ねじ、即ち、左ねしが形成されている。ロンド4
4の一端部には幅設定機構46が連結され、ここに配設
されたモータ(図示せず)を所定量回転することによっ
て、支持部材45が往復動自在に移動され、光源40、
受光素子42、回転1’132、モータ34が一体的に
移動し、自在に鋼板の表面の測定位置を変更することが
できる。
Second laser beam transmitter/receiver 30, rotating mirror 32, and motor 3
4 is disposed on a support member 45, and this support member 45
is suspended on a lot 44 that extends across the roller table 14. The rod 44 has a right-handed thread extending from the right end to the center, and a reverse thread, that is, a left-hand thread, extending from the center to the left end. Rondo 4
A width setting mechanism 46 is connected to one end of the width setting mechanism 4, and by rotating a motor (not shown) disposed here by a predetermined amount, the support member 45 is moved reciprocally, and the light source 40,
The light receiving element 42, the rotation 1' 132, and the motor 34 move together, and the measurement position on the surface of the steel plate can be changed freely.

第2の光送受部30及び角度検出ユニフト36は演算ユ
ニット48に連結され、第2の光送受部30と角度検出
器36からのデータに基づいて鋼板上方の基準位置(レ
ンズの中心点)からの距離りと鋼板の幅方向の距#JR
とが演算される。演算ユニフト48および角度検出器3
6とは制御ユニット22に連結され、回転鏡が走査した
回転角度ごとの距ML及びRの連続的な値がインプット
される。
The second optical transceiver 30 and the angle detection unit 36 are connected to a calculation unit 48, and based on the data from the second optical transceiver 30 and the angle detector 36, the second optical transceiver 30 and the angle detection unit 36 are connected to each other from the reference position (the center point of the lens) above the steel plate. distance and distance in the width direction of the steel plate #JR
is calculated. Arithmetic unit 48 and angle detector 3
6 is connected to the control unit 22, and continuous values of the distances ML and R for each rotation angle scanned by the rotating mirror are inputted.

次に、第3図及び第4図を参照して、側方部検出ユニツ
ト20のA11l定原理(走査原理)について説明する
。回転鏡32の回転角度をβ1、光源40と回転鏡32
とレンズ43とがなす角度をβ0、レンズ43の中心線
と、レンズ43と回転鏡面とを結ぶ線とのなす角度をα
0とする。レーザ光線の鋼板面での反射位置と、回転鏡
面での反射位置及びレンズ43の中心点を結んだ三角形
を形成すると、角度el 、Y、α2は、夫々下記の(
2)乃至(4)式に示される。尚、このαlは受光素子
において点Cから点aまでの距M P Iを測定するこ
とにより決定される値である。
Next, the A111 constant principle (scanning principle) of the side portion detection unit 20 will be explained with reference to FIGS. 3 and 4. The rotation angle of the rotating mirror 32 is β1, the light source 40 and the rotating mirror 32
The angle between the lens 43 and the lens 43 is β0, and the angle between the center line of the lens 43 and the line connecting the lens 43 and the rotating mirror surface is α.
Set to 0. When a triangle is formed by connecting the reflection position of the laser beam on the steel plate surface, the reflection position on the rotating mirror surface, and the center point of the lens 43, the angles el, Y, and α2 are as follows (
It is shown in equations 2) to (4). Note that this αl is a value determined by measuring the distance M P I from point C to point a in the light receiving element.

el−2β1−β0      ・・・(2)α2mα
0+a1       ・・・(3)y−180−θ1
−α2−β0 ・・・(4)また、三角関数の定理から
下記の(5)式の関係式が示される。
el-2β1-β0 ... (2) α2mα
0+a1...(3)y-180-θ1
−α2−β0 (4) Furthermore, the following relational expression (5) is shown from the theorem of trigonometric functions.

Lh/5iny−Ll/5ine+ ・・・(5) 尚、Lhは回転鏡の反射面とレンズの中心との間の距離
であり角度β1で補正された値を使用する。尚、レンズ
と回転鏡との配置関係によっては距離Lhを一定とみな
してもよい。Liはレンズの中心と鋼板の反射面との間
の距離である。
Lh/5iny-Ll/5ine+ (5) Note that Lh is the distance between the reflective surface of the rotating mirror and the center of the lens, and a value corrected by angle β1 is used. Note that the distance Lh may be regarded as constant depending on the arrangement relationship between the lens and the rotating mirror. Li is the distance between the center of the lens and the reflective surface of the steel plate.

(5)式を下記の(6)式のように液形する。Formula (5) is converted into liquid form as shown in formula (6) below.

Li =Lh Xs ine+ /s iny・・・(
6) 距It Lは下記の(7)式のように示される。
Li =Lh Xs ine+ /s iny...(
6) The distance It L is expressed as in the following equation (7).

L=Li Xs i na2      ・ (7)(
7)式に(6)式を代入して、 L−Lh Xs i neIXs i n(αO+al
)/5iny −Lh xs i nelxs in (α0+α1) / s i n (e+ +α0+α1+β0)・・・(8)一方、幅方
向の距#iRは下記の(9)式で示される。
L=Li Xs ina2 ・(7)(
Substituting equation (6) into equation (7), L-Lh Xs ineIXs in(αO+al
)/5iny −Lh xs i nelxs in (α0+α1) / sin (e+ +α0+α1+β0) (8) On the other hand, the distance #iR in the width direction is expressed by the following equation (9).

ここで、Lh、sinα0は既知の定数であり、elは
回転鏡の回転角度の検出結果から求められ、α1は受光
素子における距離Pの検出結果から求められる。従って
、この(8)式からLが算出される。
Here, Lh and sin α0 are known constants, el is obtained from the detection result of the rotation angle of the rotating mirror, and α1 is obtained from the detection result of the distance P at the light receiving element. Therefore, L is calculated from this equation (8).

R−Llcos(α2 )       ・・・ (9
)=LhXsin θ1 × COS (α0 +α1)  /s  1n (e+  +αO+α1 +β0 ) この場合、Lと同様にRが算出される。
R-Llcos(α2)...(9
)=LhXsin θ1 × COS (α0 +α1) /s 1n (e+ +αO+α1 +β0) In this case, R is calculated in the same way as L.

このように、鋼板の幅方向の距MRと、この点において
の基準位置(レンズの焦点)からの距離りとを(L、R
)の座標として算出する。つまり、軽鎖の回転角度β1
毎の受光素子における距離Pを測定することにより演算
ユニット48では上述の(2)乃至(9)式を演算して
、(L、R)の座標を算出する。
In this way, the distance MR in the width direction of the steel plate and the distance from the reference position (lens focal point) at this point are calculated as (L, R
) is calculated as the coordinates of In other words, the rotation angle β1 of the light chain
By measuring the distance P at each light receiving element, the calculation unit 48 calculates the above-mentioned equations (2) to (9) to calculate the coordinates of (L, R).

次に、第1図及び第3図を参照してこの実施例の作用を
説明する。ローラテーブル14に鋼板が搬送されてくる
と、鋼板の横断方向に沿って略−列に配置された中央部
検出ユニット18及び側方部検出ユニット20が同時に
作動する。中央部検出ユニット18は、前述の(1)式
により鋼板の略中央部までの距離L1をilP]定する
。側方部検出ユニット20は前述の受光素子のイI11
定距11 Pと、回転鏡の回転角度βをhp+定し、こ
れらの測定値(P、β)を演算ユニット48へ送る。次
に、演算ユニット48では、前述の式(2)乃至(9)
式に基づいて演算し、(L、R)を算出する。このよう
にして、側方部検出ユニット20は鋼板の縁部を所定の
領域の範囲(Rの範囲)を計1定する。
Next, the operation of this embodiment will be explained with reference to FIGS. 1 and 3. When the steel plate is conveyed to the roller table 14, the central part detection unit 18 and the side part detection units 20, which are arranged substantially in a row along the transverse direction of the steel plate, operate simultaneously. The center detection unit 18 determines the distance L1 to the approximate center of the steel plate as ilP] using the above-mentioned equation (1). The side detection unit 20 includes the above-mentioned light receiving element I11.
A constant distance 11 P and a rotation angle β of the rotating mirror are determined as hp+, and these measured values (P, β) are sent to the calculation unit 48. Next, in the calculation unit 48, the above-mentioned equations (2) to (9) are executed.
Calculate (L, R) based on the formula. In this manner, the side portion detection unit 20 determines a total of one predetermined area (range of R) of the edge of the steel plate.

この場合、側方部検出ユニット20は鋼板の縁から約1
50 u+の範囲で鋼板の表面形状を測定する。
In this case, the side part detection unit 20 is approximately 1 inch from the edge of the steel plate.
The surface shape of the steel plate is measured in the range of 50 u+.

尚、この実施例では鋼板の裏面側にも上面検出機構16
と同様な検出機構が配設され制御ユニット22に連結さ
れているから、鋼板の両面の形状を検出すると共に鋼板
の厚みを1lPj定することができる。この実施例によ
るプロフィルメータによれば鋼板の中央部と側方部に付
いてのみfl?+定したか、その測定値と連結すれば中
央部との間を含めた鋼板全体のプロフィールを求めるこ
とができる。尚、ユニット45は鋼板の幅サイズに合せ
て幅設定機構46が作動され、所定の位置に移動される
In this embodiment, the upper surface detection mechanism 16 is also provided on the back side of the steel plate.
Since a detection mechanism similar to that shown in FIG. According to the profilometer according to this embodiment, only fl? By linking with the measured value, it is possible to obtain the profile of the entire steel plate including the area between the center and the center. Note that the unit 45 is moved to a predetermined position by actuating the width setting mechanism 46 in accordance with the width size of the steel plate.

この発明は上述した一実施例に限定されることなく、こ
の発明の要旨を逸脱しない範囲で種々変形可能である。
This invention is not limited to the one embodiment described above, and can be modified in various ways without departing from the gist of the invention.

例えば、前記実施例では、鋼板の側方部をレーザ光で走
査したが、これに限らず、鋼板の中央部についても、回
転鏡を用いてレーザ光を走査してもよい。
For example, in the embodiment described above, the side portions of the steel plate were scanned with laser light, but the present invention is not limited to this, and the center portion of the steel plate may also be scanned with laser light using a rotating mirror.

また、必要に応じて所定の位置にのみ一つの側方部検出
機構のみを設置してその部分の表面形状を測定しても良
い。
Furthermore, if necessary, only one side portion detection mechanism may be installed at a predetermined position to measure the surface shape of that portion.

回転鏡は6角形状に形成することに限らず、5角形3角
形等の多角形形状であれば良い。
The rotating mirror is not limited to a hexagonal shape, and may be any polygonal shape such as a pentagon or a triangle.

[発明の効果] この発明によれば、距離測定装置を移動させることなく
所定の領域の断面形状を検出することができるから、高
精度で鋼板の断面形状を検出することができる。
[Effects of the Invention] According to the present invention, since the cross-sectional shape of a predetermined area can be detected without moving the distance measuring device, the cross-sectional shape of the steel plate can be detected with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

検出ユニットの測定原理を示す図、第3図は側方部検出
ユニットの作用を説明するための概略図、第4図は側方
部検出ユニットの71ilt定原理を示す概略図である
。 16・・・上面検出機構、18・・・中央検出ユニット
、28方部検出ユニット、30・・・レーザ距離計、4
0・・・光源、42・・・受光素子、32・・・回転鏡
、36・・・角度検出器。 出願人代理人 弁理士 鈴江武彦 第2図 第3図
FIG. 3 is a diagram showing the measurement principle of the detection unit, FIG. 3 is a schematic diagram for explaining the operation of the side detection unit, and FIG. 4 is a schematic diagram showing the 71ilt constant principle of the side detection unit. 16... Top detection mechanism, 18... Central detection unit, 28 side detection unit, 30... Laser distance meter, 4
0... Light source, 42... Light receiving element, 32... Rotating mirror, 36... Angle detector. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ光を発射する光源と、鋼板からの反射光を
受光する受光素子と、前記光源から発射せられたレーザ
光を鋼板に向けて反射して鋼板の幅方向に走査する回転
反射鏡と、前記回転反射鏡の回転角度を検出することに
よってレーザ光の走査位置を検出する位置検出手段と、
位置検出手段及び受光素子の検出データを基に鋼板の断
面形状を演算する演算手段と、を有することを特徴とす
る鋼板の断面形状検出装置。
(1) A light source that emits laser light, a light receiving element that receives reflected light from the steel plate, and a rotating reflector that reflects the laser light emitted from the light source toward the steel plate and scans it in the width direction of the steel plate. and a position detection means for detecting the scanning position of the laser beam by detecting the rotation angle of the rotating reflecting mirror;
A cross-sectional shape detecting device for a steel plate, comprising a position detecting means and a calculation means for calculating the cross-sectional shape of the steel plate based on detection data of a light receiving element.
(2)前記光源、受光素子、及び回転反射鏡は所定の配
置関係に支持体に支持されており、この支持体は鋼板の
搬送路と交差する方向に移動可能であることを特徴とす
る特許請求の範囲第1項に記載の鋼板の断面形状検出装
置。
(2) A patent characterized in that the light source, the light receiving element, and the rotary reflecting mirror are supported by a support body in a predetermined arrangement relationship, and the support body is movable in a direction intersecting the conveyance path of the steel plate. A cross-sectional shape detection device for a steel plate according to claim 1.
JP60183655A 1985-08-21 1985-08-21 Detector of configuration of section of steel plate Pending JPS6243507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183655A JPS6243507A (en) 1985-08-21 1985-08-21 Detector of configuration of section of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183655A JPS6243507A (en) 1985-08-21 1985-08-21 Detector of configuration of section of steel plate

Publications (1)

Publication Number Publication Date
JPS6243507A true JPS6243507A (en) 1987-02-25

Family

ID=16139604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183655A Pending JPS6243507A (en) 1985-08-21 1985-08-21 Detector of configuration of section of steel plate

Country Status (1)

Country Link
JP (1) JPS6243507A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281950A (en) * 1985-10-02 1987-04-15 Toyoda Autom Loom Works Ltd Motor protective device for rolling stock used in low-temperature environment
JPH04157304A (en) * 1990-10-19 1992-05-29 Kawasaki Steel Corp Measuring method of dimension of h beam steel
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera
KR20030053845A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Apparatus and method for measuring the curl of gavanized strip in continuous galvanizing line
WO2008062568A1 (en) 2006-11-20 2008-05-29 Panasonic Electric Works Co., Ltd. Moving object detector
US7746220B2 (en) 2006-01-06 2010-06-29 Panasonic Electric Works Co., Ltd. Moving object detection apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255657A (en) * 1975-10-31 1977-05-07 Seiko Instr & Electronics Ltd Photoelectric type range finding system
JPS56100306A (en) * 1980-01-14 1981-08-12 Fuji Photo Optical Co Ltd Analyzer for sectional shape of substance
JPS6082804A (en) * 1983-10-12 1985-05-11 Nippon Steel Corp Shape detecting method of running belt shaped body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255657A (en) * 1975-10-31 1977-05-07 Seiko Instr & Electronics Ltd Photoelectric type range finding system
JPS56100306A (en) * 1980-01-14 1981-08-12 Fuji Photo Optical Co Ltd Analyzer for sectional shape of substance
JPS6082804A (en) * 1983-10-12 1985-05-11 Nippon Steel Corp Shape detecting method of running belt shaped body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281950A (en) * 1985-10-02 1987-04-15 Toyoda Autom Loom Works Ltd Motor protective device for rolling stock used in low-temperature environment
JPH04157304A (en) * 1990-10-19 1992-05-29 Kawasaki Steel Corp Measuring method of dimension of h beam steel
JPH0682043B2 (en) * 1990-10-19 1994-10-19 川崎製鉄株式会社 H-section steel dimension measurement method
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera
KR20030053845A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Apparatus and method for measuring the curl of gavanized strip in continuous galvanizing line
US7746220B2 (en) 2006-01-06 2010-06-29 Panasonic Electric Works Co., Ltd. Moving object detection apparatus
WO2008062568A1 (en) 2006-11-20 2008-05-29 Panasonic Electric Works Co., Ltd. Moving object detector
US8576664B2 (en) 2006-11-20 2013-11-05 Panasonic Corporation Moving object detection system

Similar Documents

Publication Publication Date Title
US4301373A (en) Scanning of workpieces such as lumber cants
FI109833B (en) Light scanner with interlaced camera fields and parallel light beams
EP1039262B1 (en) Sheet thickness and swell measurement method and apparatus therefor
EP2184578B1 (en) Apparatus and method for measuring three-dimensional shape of a wood block
US6061126A (en) Detecting system for surface form of object
EP0320139A2 (en) Optical measurement of wall thickness of transparent articles
JP4357621B2 (en) Method and apparatus for detecting the position of a paper pile
US4743769A (en) Non-contacting measuring apparatus for measuring a displacement in dependence on the incidence of a laser beam on a laser beam detector
JPS6243507A (en) Detector of configuration of section of steel plate
US4227812A (en) Method of determining a dimension of an article
US4192612A (en) Device for contact-free thickness measurement
JP2003215149A (en) Optical shift detector, and conveying system
JP3438832B2 (en) Method and apparatus for measuring plate thickness of transparent plate
JPH0648172B2 (en) Steel pipe end profile and wall thickness measuring device
JPH09505883A (en) Equipment for measuring the dimensions of large objects
JPH08114422A (en) Apparatus for measuring outer diameter of steel pipe
JPH0514852B2 (en)
JPH0647540A (en) Method and device for detecting welding groove shape
US20040227110A1 (en) Procedure and sensor device for detecting an object
JPH0560532A (en) Optical shape measurement instrument
JP2004358954A (en) Apparatus and method for detecting position of edge of product
SU938004A1 (en) Method of part dimension tough-free determination
JPH0437924B2 (en)
JPH08304046A (en) Bending measuring instrument
JPH05141929A (en) Visual sense device