JPS6243128A - Projecting optical apparatus - Google Patents

Projecting optical apparatus

Info

Publication number
JPS6243128A
JPS6243128A JP60182434A JP18243485A JPS6243128A JP S6243128 A JPS6243128 A JP S6243128A JP 60182434 A JP60182434 A JP 60182434A JP 18243485 A JP18243485 A JP 18243485A JP S6243128 A JPS6243128 A JP S6243128A
Authority
JP
Japan
Prior art keywords
mark
magnification
sides
window
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60182434A
Other languages
Japanese (ja)
Inventor
Hidemi Kawai
秀実 川井
Kyoichi Suwa
恭一 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP60182434A priority Critical patent/JPS6243128A/en
Publication of JPS6243128A publication Critical patent/JPS6243128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To measure precisely magnification error of a projecting optical system, and to detect the positioning error of a mask, by overlapping a light- transmitting mark of a quadrilateral on the mask onto a reference mark of a quadrilateral on an object, and by measuring only each space between respective four sides. CONSTITUTION:A holding means 2 holds a reticle R which has a light- transmitting mark of a quadrilateral (a window RS with edges E1, E2, E3, E4) having a diagonal line on the extended line which connects the optical axis AX with the center C1 displaced from the optical axis AX of the projecting optical system. A reference mark plate 30 has a reference mark FM which is similar in shape to the projecting image and which has four sides being parallel to the four sides of the projecting image with given spaces in between respectively when they are aligned to each other. Space detecting means 21a, 21b, 40, 41 scan photoelectrically in the direction approximately perpendicular to the extended line and detect spaces W1-W4 concerning the scanning direction of the respective four sides of both the marks. A magnification error detecting means 42 detects the error of the projecting magnification.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はマスクのパターン金被投影基板(半導体ウェハ
等)に所定の倍率で投影する投影光学装置■ 置に貴し、特に半導体素子等を製造するための縮小投影
型露光装置に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a projection optical device for projecting a pattern of a mask onto a substrate (semiconductor wafer, etc.) at a predetermined magnification, and particularly for manufacturing semiconductor devices. The present invention relates to a reduction projection type exposure apparatus for use in image processing.

(発明の背景) 近年、半導体素子(超LSI等)上に形成される線幅は
増々微細化が進み、これに伴ってそれら半導体素子全製
造するための露光装置、特に縮小投影型露光装置にも高
解像なものが要求されてきた。この種の縮小投影型露光
装置(以下ステッパーと呼ぶ)i−1t、マスク上に描
かれ友回路パターン等?、所定の縮小倍率を持つ投影レ
ンズを用いて半導体ウェハ等の被投影物体上に投影g元
するものである。線幅の微細化に対応するためには、投
影レンズの解像力を高めgばよい訳であるが、これに伴
なって、ステッパーとしての重ね合わせ露光の精度も高
め々ければならない。重ね合わせ精度全悪化させる1つ
の要因に、投影レンズの倍率誤差が考えられる。倍率誤
差が生じるとウエノ・上にすでに形成されたパター7と
、祈念に重ね合わせ露光する投影パターン像とが相対的
に微小量だけ伸縮し、特にパター7像の周辺での重ね合
わせ精度が著しく低下するといった欠点が生じる。倍率
誤差を引き起こす原因としては、露光光が投影し/ズゲ
透過することVこ上る熱的な変動と、大気圧変動のよう
な空気の屈折率の変動とに大別できる。いずれの場合も
、何らかの方法で倍率変動?検出し、所定の補正をカロ
兄ないと、重ね合わせ精度全向上させることは難しい。
(Background of the Invention) In recent years, the line width formed on semiconductor devices (VLSI, etc.) has become increasingly finer, and as a result, exposure equipment, especially reduction projection type exposure equipment, for manufacturing all of these semiconductor devices has become increasingly finer. There has also been a demand for high-resolution images. Is this type of reduction projection type exposure device (hereinafter referred to as a stepper) i-1t, a companion circuit pattern drawn on a mask, etc.? , a projection lens having a predetermined reduction magnification is used to project onto an object to be projected, such as a semiconductor wafer. In order to cope with the miniaturization of line widths, it is only necessary to increase the resolving power of the projection lens, but along with this, the precision of overlapping exposure as a stepper must also be improved. A magnification error of the projection lens is considered to be one factor that deteriorates the overall overlay accuracy. When a magnification error occurs, the putter 7 that has already been formed on the Ueno and the projected pattern image that is overlaid and exposed will expand or contract by a relatively small amount, and the overlay accuracy will be significantly affected, especially around the putter 7 image. However, there are disadvantages such as a decrease in The causes of magnification errors can be broadly classified into thermal fluctuations caused by projection/transmission of exposure light, and fluctuations in the refractive index of air such as atmospheric pressure fluctuations. In either case, does the magnification change in some way? It is difficult to fully improve the overlay accuracy without detecting and making a predetermined correction.

倍率を微小憤補正する手段として、投影レンズ内の空気
間隔内の圧力全調整する装置が、本願出題人により先に
出願され、特開昭60−28613号公報として公知で
ある。ま九倍率変@は、マスク(レチクル)上のマーク
とウェノ1上のマークとを投影レンズを介して位置合わ
せし念後の、残存アライメント誤差から予測する方法等
が知られている。しかし・シがらこの方法で(1、ウエ
ノ飄自体にプロセスによる伸縮が生じるので、必らずし
も正確な変動値金求めることができない。さらにこの方
ahウエノ・上のマーク金柑いる之め、ウェハ表面の状
咋によってマークの光電検出の精度がばらつくといつ九
問題もある。
As a means for slightly correcting the magnification, a device for fully adjusting the pressure within the air space within the projection lens was previously filed by the applicant of the present application and is known as Japanese Patent Laid-Open No. 60-28613. A known method is to predict the magnification change from the residual alignment error after aligning the mark on the mask (reticle) and the mark on the wafer 1 through a projection lens. However, with this method (1) the wafer itself undergoes expansion and contraction due to the process, so it is not always possible to obtain accurate fluctuation values. There are many problems when the accuracy of photoelectric detection of marks varies depending on the surface condition.

(発明の目的) そこで本発明は倍率の調整、あるいはコノトロール全正
確に行なうために、倍率の変動(倍率誤差)1kWA単
に、迅速に測定し舟る工うにし九投影光学装fik提供
するOとを目的とする。
(Objective of the Invention) Therefore, the present invention provides nine projection optical systems that can simply and quickly measure the variation in magnification (magnification error) of 1 kW in order to adjust the magnification or control the control accurately. With the goal.

(発明のa隻) 本発明は、投影′jt、学糸の元軸(AX)力・ら離れ
文位置に中心点(C,i有し、この中心点(C,)と光
軸(AX)と金結ぶ延長線C1,)k対角線とするよう
な実質的に四辺形の光透過マーク(工1ジE、、E童、
E、 、E4による窓R8)金備えたマスク(レチクル
R)(r保持する保持手段(2)と、投影光学系の結1
求面に配置可能であり、光透過マークの投影像と位置合
わせし友とき、その投影f象の形状と相似で、かつ投影
1象の四辺の夫々と所定の間隔で平行になるような四辺
L[する基準マーク(FM)t−備えた物体(基準マー
ク板30)と、光透過マークと基準マークとが位置合わ
せされ九とき、延長線(l、)とほぼ直交する方向に光
電走査し、両マークの四辺の夫々の走査方向に関する間
隔(W、、W、、W、、W、 ) ’に検出する間隔検
出手段(21a、21b、40.41)と、その四辺の
各間隔値に基づいて投影光学系の投影倍率の誤差全検出
する倍率誤差検出手段(42)とを設けること金技術的
要点としている。
(A ship of the invention) The present invention has a center point (C,i) at a position apart from the projection 'jt, the original axis (AX) of the school thread, and this center point (C,) and the optical axis (AX ) and metal extension line C1, )k diagonal line.
E, , Window R8 by E4) Holding means (2) for holding the mask (reticle R) (r) and the connection 1 of the projection optical system.
Four sides that can be placed on the desired surface, are similar in shape to the projected image, and are parallel to each of the four sides of the projected image at a predetermined interval when aligned with the projected image of the light transmission mark. When the object (fiducial mark plate 30) equipped with the fiducial mark (FM) t-, the light transmitting mark and the fiducial mark are aligned, photoelectric scanning is performed in a direction approximately perpendicular to the extension line (l,). , interval detection means (21a, 21b, 40.41) that detects the intervals (W, , W, , W, , W, )' in the scanning direction of each of the four sides of both marks, and the interval values of each of the four sides. It is a technical point to provide a magnification error detection means (42) for detecting all errors in the projection magnification of the projection optical system based on the projection optical system.

(実施例) 第1図は本発明の実施例による縮小投影型露光装置の概
略的な構成金示す斜視図、第2図はその装置に装着され
るレチクルに設けらn友アライメノト用の窓の形状を示
す平面図、第3図はウェハステージ上に設けられた基準
マークの形状を示す平面図であり、第4図は第1図の装
置における倍率誤差1jl11足やレチクル位置測定の
友めの回路ブロック図である。
(Embodiment) Fig. 1 is a perspective view showing a schematic configuration of a reduction projection type exposure apparatus according to an embodiment of the present invention, and Fig. 2 shows a window for an alignment note provided on a reticle attached to the apparatus. FIG. 3 is a plan view showing the shape of the reference mark provided on the wafer stage, and FIG. 4 is a plan view showing the shape of the reference mark provided on the wafer stage. It is a circuit block diagram.

第1図において、所定の回路パターン等が描かれたパタ
ーン領域Prk有するレチクルRは、レチクルホルダー
2上に載置される。ンチクルホルダー2には、パターン
領域prと、その周辺に設けられtアライメント又は倍
率誤差測定用の光透過性の窓R3とが投影レンズlに工
って投影露光可能なように開口2aが形成されている。
In FIG. 1, a reticle R having a pattern area Prk in which a predetermined circuit pattern or the like is drawn is placed on a reticle holder 2. As shown in FIG. An opening 2a is formed in the chip holder 2 so that a pattern region pr and a light-transmissive window R3 provided around it for alignment or magnification error measurement can be formed in the projection lens l to enable projection exposure. has been done.

第1因において、レチクルRはパターン領域prの中心
に、投影レンズ1の光軸AXが通るように、位置決めさ
れているものとする。この位置決めはレチクル凡の周辺
のアライメ/トマークRmkアライメント顕微鏡15で
検出して行なわれる。窓ItSはパター/領域prの外
側に、光軸AXから一定の距離の位置に配置され、パタ
ー/領域Pl−挟む2ケ所に設けられている。投影され
友パターン領域pr、又は2つの窓R8の像は、本来な
らはウェハW上に露光される。ウエノ・Wはウエノ・ホ
ルダー3上に載lt嘔れ、ウエノ・ホルダー3は元軸A
X方向に上下動するZステージ4に設けられる。
In the first factor, it is assumed that the reticle R is positioned so that the optical axis AX of the projection lens 1 passes through the center of the pattern region pr. This positioning is performed by detecting alignment/marks around the reticle using an Rmk alignment microscope 15. The windows ItS are arranged outside the putter/region pr at a constant distance from the optical axis AX, and are provided at two locations sandwiching the putter/region Pl. The projected images of the friend pattern region pr or the two windows R8 are originally exposed onto the wafer W. Ueno W is placed on Ueno holder 3, and Ueno holder 3 is attached to the original axis A.
It is provided on a Z stage 4 that moves up and down in the X direction.

Zステージ4はモータ5によってX方向に一次元移動す
るXステージ6上に設けられ、Xステージ6はモータ7
によってX方向に一次元移動するyステージ8上に設け
られる。ウェハホルダー3上には本発明における物体と
しての基準板30が固定されている。そしてエステ−シ
ロ、yステージ8の各移動による基準板30の2次元的
な位置は。
The Z stage 4 is provided on an X stage 6 which is moved one-dimensionally in the X direction by a motor 5, and the X stage 6 is moved by a motor 7.
The stage 8 is provided on a y stage 8 that moves one-dimensionally in the X direction. A reference plate 30 is fixed on the wafer holder 3 as an object in the present invention. The two-dimensional position of the reference plate 30 due to each movement of the y-stage 8 is as follows.

レーザ干渉計9.10によって検出される。−万、レチ
クルR上の窓R8と投影レンズ1とを介して基準板30
の表面に設けられ定基準マーク全観察するために、窓R
8の上方にはミラー2Qa。
Detected by laser interferometer 9.10. - 10,000, the reference plate 30 is passed through the window R8 on the reticle R and the projection lens 1.
In order to observe all the fixed reference marks provided on the surface of the
Above 8 is mirror 2Qa.

20bが配置され、窓R8と基準マークの画像は。20b is placed, and the image of the window R8 and the reference mark is as follows.

顕微鏡対物レンズとテレビカメラ等の光電走査型上フサ
−を含む、アライメントセンサー21a。
An alignment sensor 21a that includes a microscope objective lens and a photoelectric scanning type upper frame of a television camera or the like.

21bに工って光電検出される。21b and is photoelectrically detected.

ここで第2図ケ用いて、窓R8の形状を説明する。レチ
クルRが正確に位置決めされ定状態で、アライメントセ
ンサー21 (21a、21b)は第2図中で破線で示
す工うに、窓R8t−含む矩形領域SFを走査領域とし
て撮像する。そして窓R8の中心点CIとパターン領域
Prの中心点。
Here, the shape of the window R8 will be explained with reference to FIG. When the reticle R is accurately positioned and in a steady state, the alignment sensor 21 (21a, 21b) images the rectangular area SF including the window R8t as a scanning area, as shown by the broken line in FIG. and the center point CI of the window R8 and the center point of the pattern area Pr.

、と。,and.

すなわち光軸AXとを結ぶ延長線t1としたとき、窓R
8は線Atに関して線対称な形状となっている。この線
tl&’!、Zi/座標系の2軸と平行であり、アライ
メントセンサー21の光電走査の方向、すなわちy軸と
平行な走査線SLI、SL2と直交するように定められ
ている。さて窓R8内には本発明における四辺形を規定
する4つの工・IジEl。
In other words, when the extension line t1 connecting the optical axis AX is taken as the window R
8 has a line-symmetrical shape with respect to line At. This line tl&'! , Zi/, and are set to be perpendicular to the scanning lines SLI and SL2, which are parallel to the photoelectric scanning direction of the alignment sensor 21, that is, the y-axis. Now, inside the window R8 are four shapes that define the quadrilateral in the present invention.

E、、E、、E、が形成されている。第2図中。E,,E,,E,are formed. In Figure 2.

斜線部はクロム等による遮光部である。エツジE1とE
、の両延長線は線t、上で90°で交差し。
The shaded area is a light shielding area made of chrome or the like. Edge E1 and E
Both extension lines of , intersect at 90° above line t.

エツジE、とE、の両延長線も線tI上で90゜で交差
する。セして工9ジE、とE、の成す角。
Both extensions of edges E and E also intersect at 90° on line tI. The angle formed by E and E.

及びエツジE、とE4の成す角はともに90°である。The angles formed by edges E and E4 are both 90°.

このためエツジE、 、E、、E、、E、かう成る四辺
形は正方形であり、その対角線の一本が線t、と一致し
ている。また各エツジEt、E*、E、、E、は走査#
SI、1、SL2と45°で交差するように定められて
いる。
Therefore, a quadrilateral consisting of edges E, , E, , E, , E is a square, and one of its diagonals coincides with the line t. Also, each edge Et, E*, E, ,E, is scanned #
It is determined to intersect SI,1 and SL2 at 45 degrees.

次に第3図全周いて、基準板30上に形成された基準マ
ークFMの形状全説明する。マークFMはステージ上に
一体に設けられ友ものであり、窓R8内の四辺形に合わ
せて相似形状の正方形にしである。そしてマークFMの
中心C1通る対角線!、はX軸と平行になる工うに定め
られ、四辺の各エツジB) ’% B1@@ Ell、
E4゜の夫々はx軸、y軸に対して45° 傾いている
。このマークFMの寸法は、レチクル几上の窓R8内の
四辺形の投影像の寸法ニジも小さく定められている。
Next, referring to FIG. 3, the entire shape of the fiducial mark FM formed on the fiducial plate 30 will be explained. The mark FM is integrally provided on the stage and has a similar square shape to match the quadrilateral inside the window R8. And a diagonal line passing through the center C1 of mark FM! , is defined to be parallel to the X axis, and each edge on the four sides B) '%B1@@Ell,
Each of E4 degrees is inclined at 45 degrees with respect to the x-axis and the y-axis. The dimensions of this mark FM are determined to be smaller than the dimensions of the quadrilateral projected image within the window R8 on the reticle box.

さて、第4図は第1図に示した装置における信号処理系
の回路ブロック図である。テレビカメラ等を含むアライ
メントセ/サー21a、21bの夫々からの画1#!信
号は1間隔検出手段としての信号処理回路40.41に
入力する。信号処理回路40.41の夫々は、第2図に
示すように走査領域SF内の2ケ所の走査線SLI、8
L2に対応し良画像信号に基づいて、窓R8内の四辺形
の各エツジE、%E皇、Ea % E4 s及び乙の窓
R,S内に位置合わせされ九マークFMの各エツジEl
11、E、。、 Ell 、E4・の走査方向の各種間
隔を検出するものである。検出された各種間隔値は、倍
率誤差検出手段としての演算回路42に入力する。
Now, FIG. 4 is a circuit block diagram of the signal processing system in the apparatus shown in FIG. 1. Image 1# from each of the alignment sensors 21a and 21b including the TV camera, etc.! The signal is input to a signal processing circuit 40.41 as one interval detection means. As shown in FIG.
Based on the good image signal corresponding to L2, each edge E of the quadrilateral in the window R8, Ea %E4s, and each edge El of the nine marks FM are aligned in the windows R and S of B.
11.E. , Ell, and E4. Various intervals in the scanning direction are detected. The various detected interval values are input to an arithmetic circuit 42 serving as a magnification error detection means.

演算回路42は倍率誤差の他にレチクルRのアライメン
ト誤差も演算可能である。さらに演算回路42には、レ
ーザ干渉計9,10からの位置情報が入力するとともに
、xyステージを移動させるモータ5,7に所定の駆動
信号を出力する。
The calculation circuit 42 can calculate not only the magnification error but also the alignment error of the reticle R. Further, the arithmetic circuit 42 receives position information from the laser interferometers 9 and 10, and outputs a predetermined drive signal to the motors 5 and 7 for moving the xy stage.

次に本実施例の動作全第5図、第6図?参照して説明す
る。まずレチクルR’に第1図に示すようにレチクルホ
ルダー2上に載置し、レチクルアライメント手段として
のアライメント顕微鏡15を用いて、光軸AXがレチク
ルRの中心と一致するようにアライメントを行なう。こ
のアライメントが完了した時点でレチクル凡の2ケ所の
窓R8の夫々は第2図に示すような配置となり、アライ
メントセ/サー218.21bの走査領域5FP13に
位置する。九だし、窓R8内の四辺形の中心01を通る
対角線が正確に線l、と一致するかどうかは、レチクル
アライメントの精度によるものであリ、この精度は借で
述べるようにマークFM金使ってチェックすることがで
きる。
Next, the complete operation of this embodiment shown in Figs. 5 and 6? Refer to and explain. First, the reticle R' is placed on the reticle holder 2 as shown in FIG. 1, and alignment is performed so that the optical axis AX coincides with the center of the reticle R using an alignment microscope 15 as a reticle alignment means. When this alignment is completed, each of the two windows R8 on the reticle is arranged as shown in FIG. 2, and is located in the scanning area 5FP13 of the alignment sensor/cer 218.21b. Therefore, whether the diagonal line passing through the center 01 of the quadrilateral in the window R8 exactly matches the line l depends on the accuracy of the reticle alignment, and this accuracy depends on the mark FM gold usage as described below. You can check it.

次にステージケ移動させて、第5図に示すように、g架
板30上のマークFMがレチクルRの2つの窓R8の一
万の投影像と重なり合うように位(n決め2行なう。第
5図はアライメントセンサー21aで観察され定態R8
とマークFMとの配置関係?示す図であり、窓R8内の
四辺形の中心C1とマークF’Mの中上−C,とかわず
かにX方向にずれてイ立置決めされている。また同図中
で角度θは不実施例では45°である。第5図のような
状態でアライメ/トセ/サー21aに工6走査線SLI
に基づいた画像信号は第6図(a)のような波形となり
、走査線SL2に基づいた画像信号Vi第6図(b)の
ような波形となる。第6図において、横軸は走在方同(
y方向)を表わし、縦軸は光電レベルニゲ表わす。走査
線SLIに沿った光電走査が窓It 8円のエツジE、
?横切った瞬間に光電レベル11は立ち上がり、マーク
FMのエツジE、・勿横切った瞬間に、マークFMの反
射率に応じたレベルまで低下し、さらにマークPMのエ
ツジE+o f横切っ之とき再び光′tllンベルI、
は立ち上がり、そして窓R8内のエン/E改1黄切った
とき、はぼ零まで立下がる。走査線SL2に対応した画
像信号の光電レベル11も全く同様の波形となり、エツ
ジE、とE、。の間、及びエツジE、。とE、の間で昼
レベルになる。信号処理回路40は第6図ta+、(b
)に示したような2つの画像信号?読み込み1例えば一
定のスライスレベルIrとの比較に工って、エツジE1
とE3.の間隔W3.エツジE、。とE、の間隔W11
エツジE、とE、・の間隔WI、及びエツジE−とE4
の間隔W、の夫々ケ、投影レンズlの投影結像面上の寸
法に換算して検出する。
Next, move the stage and position it so that the mark FM on the g frame 30 overlaps the 10,000 projected images of the two windows R8 of the reticle R as shown in FIG. The figure shows a steady state R8 observed by the alignment sensor 21a.
The arrangement relationship between and Mark FM? In this figure, the center C1 of the quadrilateral in the window R8 and the upper center -C of the mark F'M are positioned slightly offset in the X direction. Further, in the figure, the angle θ is 45° in the non-example. In the state shown in Fig. 5, the 6th scanning line SLI is inserted into the alignment/setting/cer 21a.
The image signal based on the scanning line SL2 has a waveform as shown in FIG. 6(a), and the image signal Vi based on the scanning line SL2 has a waveform as shown in FIG. 6(b). In Figure 6, the horizontal axis is the direction of travel (
y direction), and the vertical axis represents the photoelectric level. Photoelectric scanning along the scanning line SLI is the window It 8 circle edge E,
? The photoelectric level 11 rises at the moment it crosses the edge E of mark FM, and decreases to a level corresponding to the reflectance of the mark FM at the moment it crosses the edge E+o f of the mark PM. Nbel I,
rises, and when the engine/E change 1 in window R8 turns yellow, it falls to zero. The photoelectric level 11 of the image signal corresponding to the scanning line SL2 also has a completely similar waveform, with edges E, and E. Between and Edge E,. The daytime level is reached between and E. The signal processing circuit 40 is shown in FIG.
) The two image signals shown in )? Read 1 For example, for comparison with a constant slice level Ir, edge E1
and E3. interval W3. Etsuji E. Distance W11 between and E
Distance WI between edges E and E, and edges E- and E4
The distances W, respectively, are detected by converting them into dimensions on the projection image plane of the projection lens l.

そして演算回路42はマークFMの中心C1と窓R8の
四辺形の中上・C1とのX方向のずれ扉ΔAを以下の(
1)式によって求める。
Then, the arithmetic circuit 42 calculates the deviation door ΔA in the X direction between the center C1 of the mark FM and the upper middle C1 of the quadrilateral of the window R8 as follows (
1) Calculate using the formula.

tanθ jA= −((W、+W、 )−(W、 +W、 ))
・il1次にステージをy座vA値は変えずに、X方向
のみに直線移動させ、他方の窓R8の投影像とマークF
Mとが重なる工うに位置決めする。このときのステージ
のX方向の移動量は一義的に定められている。ここでレ
チクルR上の2つの窓R8の中心のX方向の間隔金X・
とし、投影レンズ1の設計ト(倍率誤差が々い時)の倍
率41(通常115又は1/10)とし九とき、投影像
面上での窓R8の中心の投影点の1方向における間隔は
X、・Mになる。従ってステージは第5図に示した位置
関係からX方向に正確にX、・Mだけ移動して位置決め
される。この位置決めはレーザ干渉計9の計測分解能に
よって決筐る精度で達成可能であり、例えば±0.02
μmで位置決めされる。
tanθ jA= −((W, +W, )−(W, +W, ))
・il1 Next, move the stage linearly only in the X direction without changing the y position vA value, and compare the projected image of the other window R8 with the mark
Position it so that it overlaps with M. The amount of movement of the stage in the X direction at this time is uniquely determined. Here, the distance between the centers of the two windows R8 on the reticle R in the X direction is
When the design magnification of the projection lens 1 (when the magnification error is large) is 41 (usually 115 or 1/10), the interval in one direction of the projection point of the center of the window R8 on the projection image plane is It becomes X,・M. Therefore, the stage is positioned by accurately moving by X,·M in the X direction from the positional relationship shown in FIG. This positioning can be achieved with an accuracy of ±0.02 depending on the measurement resolution of the laser interferometer 9.
Positioned in μm.

そして、他方の窓R8円の四辺形の各エツジと、マーク
FMの各エツジとの間隔ケ第5図、第6図と同様に、ア
ライメントセンサー21b、信号処理回路41によって
検出して、他方の窓R8の中心点とマークPMの中心点
とのX方向のずれ量ΔB金、演算回路42によって(1
)式と同じ様に算出する。尚、(1)式においてθ=4
5°であるからtanθ=1である。′また(1)式か
らも明ら力)な工うに、マークPMの中心C2と窓R8
の中−crc、とのX方向の位置が一致している場合は
、両中心C1、C5のy方向への位置ずれにかかわらず
、vv’、+w、とW。
Then, the distance between each edge of the quadrilateral of the other window R8 circle and each edge of the mark FM is detected by the alignment sensor 21b and the signal processing circuit 41, as in FIGS. The amount of deviation ΔB in the X direction between the center point of the window R8 and the center point of the mark PM is determined by the calculation circuit 42 as (1
) is calculated in the same way as the formula. In addition, in equation (1), θ=4
Since the angle is 5°, tanθ=1. 'Also, it is clear from equation (1) that the center C2 of the mark PM and the window R8
If the positions in the X direction match the center of -crc, vv', +w, and W, regardless of the positional deviation of both centers C1 and C5 in the y direction.

+W4の両加算値は等しくなり、結局ずれ量ΔA、又は
ΔBは零になる。このように、マークFMと窓R8との
y方向の位置決め誤差によるずれ墳ΔんΔBの計測誤差
は、4つの間隔値W、 、 W、 、W、、W、  k
(1)式のように演算することによって本質的に含まれ
なくなる。ま几、マークF’Mの中心C1が第5図の工
うに窓R8の中心C1に対して光軸AXから遠ざかる方
向にずれている場合は、ずれ量ΔA、ΔBはともに負の
値となり、逆の方向にずれている場合は、ともに正の値
となる。
Both added values of +W4 become equal, and eventually the deviation amount ΔA or ΔB becomes zero. In this way, the measurement error of the displacement mound ΔB due to the positioning error in the y direction between the mark FM and the window R8 is calculated by the four interval values W, , W, , W, , W, k
By calculating as in equation (1), it is essentially not included. However, if the center C1 of the mark F'M is offset from the center C1 of the window R8 in FIG. 5 in the direction away from the optical axis AX, both the amount of offset ΔA and ΔB will be negative values, If the deviation is in the opposite direction, both values are positive.

さて、投影し/ズlの倍率誤差ΔMは先に求めた2つの
ずれ危ΔAとΔBから(2)式のように算出される。
Now, the magnification error ΔM of projection/displacement l is calculated from the two deviations ΔA and ΔB obtained previously as shown in equation (2).

ΔM二ΔA+ΔB  ・・・・・・ (2)例えば倍率
誤差がないものとすると、ずれ祉ΔAとΔBの各絶対値
は共に等しい値となり、かつ正負の極性のみが異なる。
ΔM2ΔA+ΔB (2) For example, assuming that there is no magnification error, the absolute values of the deviations ΔA and ΔB are both equal, and only the positive and negative polarities differ.

tfc倍率誤差によって、2つの窓R8の投影点の間隔
が設計値よりも広がっ几鳴合は、ずれtΔA、jBの両
刀が正の値、もしくはいずれか−万が正の値で、他方が
負の値となり、正の値の絶対値が負の値の・絶対値より
も大きくなるようにil側され、結局倍率誤差1Mは正
の値となる。逆の場合は、ずれ撤jA、Bの両刀が負の
値、もしくは−万が正の値で、他方が負の値で、かつ負
の値の絶対値が正の値の絶対値↓りも大きくなるように
計測され、結局倍率誤差ΔMは負の値となる。こうして
得られた倍率誤差ΔMは、投影し/ズ1の光軸AXから
一定圧11m(例えば9mm)だけ離れ文意孔Sの投影
点における1象の伸縮量であり、投影し/ズ1そのもの
の倍率値(イづ分の1)全人わすものではない。本夾施
例においては、レチクルR上の2つの窓孔Sは、レチク
ルアライメントの完了時に元軸AXからそれぞれ等しい
距離に配置し友ため、先の(2)式のような簡単な演算
で倍率誤差が求められるが、等しい距離にない場合は、
複雑々演算式音用いることになる。通常、倍率誤差を測
定する際の基準点は光軸に定められるから、光軸から等
しい距離の少なくとも2つの投影点を使うことが精度を
上げるためには望ましい。またこの種の高解像な投影レ
ンズでおっても、多かれ少なかれ、ディストーショ/(
像歪み)が存在する。そのディスト−ショア黛は極めて
小さいが、計測され几ずれ童ΔA、ΔBの夫々にはその
ディストーショ/Ikも含まれてくる。このため倍率誤
差ΔMにも七のディストーション盆が含まれて測定され
ることになる。
Due to the tfc magnification error, the interval between the projection points of the two windows R8 is wider than the design value. In this case, both of the deviations tΔA and jB are positive values, or one of them is a positive value, and the other is a negative value. , and the absolute value of the positive value is set to the il side so that it is larger than the absolute value of the negative value, and the magnification error 1M becomes a positive value after all. In the opposite case, the two swords of A and B are negative values, or - ten thousand is a positive value, and the other is a negative value, and the absolute value of the negative value is less than the absolute value of the positive value. As a result, the magnification error ΔM becomes a negative value. The magnification error ΔM obtained in this way is the amount of expansion and contraction of one elephant at the projection point of the Wenyi hole S, which is a constant pressure of 11 m (for example, 9 mm) from the optical axis AX of the projected lens/Z1, and The multiplier value (1/1) is not something that everyone can lose. In this example, since the two windows S on the reticle R are arranged at equal distances from the original axis AX when reticle alignment is completed, the magnification can be determined by a simple calculation such as equation (2) above. If the error is determined, but they are not at equal distances, then
Complex arithmetic expression sounds will be used. Since the reference point for measuring magnification error is usually set on the optical axis, it is desirable to use at least two projection points at equal distances from the optical axis in order to improve accuracy. Also, even with this type of high-resolution projection lens, there will be more or less distortion/(
image distortion). Although the distortion/shore force is extremely small, the distortion/Ik is included in each of the measured distortion values ΔA and ΔB. Therefore, the magnification error ΔM also includes seven distortion basins in the measurement.

さて、窓R8とマークF’Mとをそのwt用いて、レチ
クルRのアライメント誤差’a−1U11定することが
可能である。このためには、第1図に示し几レチクルア
ライメント手段としてのレチクルアライメント顕微鏡(
以下几−Micと呼ぶ)15の光軸位置が投影渫面円で
予めわ〃為っていることが必須である。すなわち几−M
iC15の元軸の投影し/ズ1tl−介した投影点とマ
ークFMの中心C8とが一致する工つなステージの位置
が求められていれff、よい。そしてレチクルRは七の
周辺に設けられ九マークR,mが几−MiC15の元軸
に位置合わせされる工うに位置決めされる。マーク1m
と窓R8とのレチクルR上での配置及び間隔等は予めわ
かっている。そこでR−MiC15の元軸の投影点全基
準にして、窓R8が本来投影されるべき位置にマークF
M’(位置決めする、このときレチクルRにアライメン
ト誤差がなければ、マークFMの中心CIと窓孔Sの中
心C5とは一致するはずである。しかし中心C1,C會
がずれていれば、それはレチクル凡のアライメント誤差
とみなすことができる。まず−万の窓R8の本来投影さ
れるべき位置にマークFM?位置決めしfc後、アライ
メントセンサー21aによって第6図に示した工うな画
像信号を得て、信号処理回路401Cjって間隔w、 
、w、 、 w、 、 w。
Now, using the window R8 and the mark F'M, it is possible to determine the alignment error 'a-1U11 of the reticle R. For this purpose, a reticle alignment microscope (shown in Fig. 1) as a means for reticle alignment (
It is essential that the optical axis position of 15 (hereinafter referred to as "Mic") is warped in advance on the projection plane circle. That is, 几-M
It is good to find a convenient stage position where the projection point of the original axis of iC15, which is projected from the original axis 1tl, coincides with the center C8 of the mark FM. The reticle R is provided around the 7th mark and is positioned so that the 9th marks R and m are aligned with the original axis of the MiC15. Mark 1m
The arrangement and spacing between the window R8 and the window R8 on the reticle R are known in advance. Therefore, using all the projection points of the original axis of R-MiC15 as a reference, mark F is placed at the position where window R8 should originally be projected.
M' (Positioning. At this time, if there is no alignment error in the reticle R, the center CI of the mark FM and the center C5 of the window hole S should match. However, if the centers C1 and C are misaligned, It can be regarded as an alignment error of the reticle.First, the mark FM? is positioned at the position where it should be projected on the window of 10,000 R8. After fc, the image signal shown in FIG. 6 is obtained by the alignment sensor 21a. , the signal processing circuit 401Cj is the interval w,
,w, ,w, ,w.

全検出する。そして演算回路42はそれらの値を用いて
(3)式の計算上行ない、−万の窓孔Sの中心CIの光
電走査方向(すなわちX方向)のマークFMに対する位
置ずれ量aY+t−求める。
Detect all. Then, the arithmetic circuit 42 uses these values to calculate the equation (3) to find the amount of positional deviation aY+t- of the center CI of the -1000 window hole S with respect to the mark FM in the photoelectric scanning direction (that is, the X direction).

jYl = 174 ((wt +W、 )−(Wl 
+Ws月・・・・・・・・・(3) この演算式によると、マークFMのX方向の位置決め誤
差が相殺され、X方向のずれ量のみが正確に求まる。
jYl = 174 ((wt +W, )-(Wl
+Ws month (3) According to this calculation formula, the positioning error of the mark FM in the X direction is canceled out, and only the amount of deviation in the X direction can be accurately determined.

同様に、ステージのy座標値は変化させずに、ステージ
fx方向Vr−X、・Mだけ移動させ、他方の窓R,8
の本来投影されるべき位置にマークFM全位置決めしt
後、アライメントセンサー21b。
Similarly, without changing the y-coordinate value of the stage, the stage is moved by Vr-X, ·M in the fx direction, and the other window R, 8
The mark FM is fully positioned at the position where it should be projected.
After that, alignment sensor 21b.

信号処理回路41によって4つの間隔を検出し、演算回
路42によシ、他方の窓几Sの中心CIと光電走査方向
(X方向)のマークFMに対する位置動等)は、倍率誤
差ΔM’に求める九めの計測動作と全く同じなので、−
回の動作で4つの間隔が求められ、後は演算のみでレチ
クルのアライメント誤差としてのずれtjYl、lY、
と、倍率誤差ΔMとの両刀が求められる。
The signal processing circuit 41 detects four intervals, and the arithmetic circuit 42 calculates the positional movement between the center CI of the other window S and the mark FM in the photoelectric scanning direction (X direction) as a magnification error ΔM'. Since it is exactly the same as the ninth measurement operation we are looking for, −
The four intervals are determined by the same operation, and the only calculation required is to calculate the reticle alignment errors tjYl, lY,
and the magnification error ΔM.

さて、ずれ量jYl 、jYtがともに零の場合は当然
X方向のアライメント誤差も零である。またlY、とl
Y8との正負が同極性で絶対値が等しいときは、X方向
のみにその絶対値に応じ九アライメント誤差が生じてい
ることになり、  iY+とΔY、の差が零でないとき
は、レチクルRに回転ケ伴なったアライメント誤差(レ
チクルローチー7ヨ/誤差)が生じていることになる。
Now, when both the deviation amounts jYl and jYt are zero, the alignment error in the X direction is naturally also zero. Also lY, and l
When the polarity and absolute value are the same as that of Y8, there is an alignment error of 9 depending on the absolute value only in the X direction.If the difference between iY+ and ΔY is not zero, the reticle R This means that an alignment error (reticle roach/error) accompanied by rotation has occurred.

また、倍率誤差が光軸AXケ中心昏て点対称に生じるも
のとすると、レチクルRのX方向のアライ、I /トF
rK差ΔXは(4)式によって求められる。
Also, assuming that the magnification error occurs symmetrically with respect to the center of the optical axis AX, the alignment of the reticle R in the X direction, I/F
The rK difference ΔX is determined by equation (4).

ΔX二ΔA−ΔB  ・・・・・・・・・  +4)こ
の(4)式は倍率誤差のσ11]定時に求めたずれ量Δ
A、JBのみケ使うので、計測動作(マークFMの移動
)はことでら8委としない。
ΔX2ΔA−ΔB ・・・・・・・・・ +4) This formula (4) is the magnification error σ11] The deviation amount Δ calculated at the regular time
Since only A and JB are used, the measurement operation (movement of mark FM) is not done by Kotodera 8.

以上本発明では四辺形のマーフケ正方形としたが、窓R
S内の四辺形、基準マークFMの夫々は線1.、l!、
に灯して線対称のひし形であっても1へ特に倍率誤差の
計が11精度を上げる九めには、第5図中に示した角度
θ全45°工りも小さくすると工い。
In the above invention, the quadrilateral Mahfke square is used, but the window R
Each of the quadrilaterals in S and the fiducial mark FM is line 1. , l! ,
In light of this, even if the rhombus is line symmetrical, the total magnification error will increase to 11. To improve the accuracy, the total machining angle θ shown in Fig. 5 can be reduced by 45°.

(発明の効果) 1:J土木発明によれば、マスク上の実質的に四辺形と
なる光透過マークと物体上の四辺形の基準マークと?重
ね合わせ、四辺の各間隔のみ?計6111すること(で
よって、投影光学系の倍率誤差が正確に計測できるとと
もに、マスクの位置決め誤差も検出できるといった効果
がある。さらに光透過マークと基準マークとは四辺形に
なっているため、光電走査に工って得られる画[#!倍
信号単純な明暗に応じ九波形となり、波形処理が単純に
なるといった利点がある。
(Effect of the invention) 1: According to the civil engineering invention of J, what is the difference between a substantially quadrilateral light transmitting mark on a mask and a quadrilateral reference mark on an object? Superposition, only the spacing on the four sides? (Thus, the magnification error of the projection optical system can be accurately measured, and the positioning error of the mask can also be detected.Furthermore, since the light transmission mark and the reference mark are quadrilateral, The image obtained by photoelectric scanning has the advantage that the signal has nine waveforms depending on simple brightness and darkness, and waveform processing is simple.

さらに本発明の実施例に工れは光透過マーク(窓R8の
四辺形)内に基準マーク(FM)k位置させて、両マー
クの明視野1象金元電走査し、基準マークは暗部として
検出し、四辺の間隔部は明部として検出する工うにした
ので、光透過マーク内に他のアライメントのための小マ
ーク金設けることができる。これは窓R8内に小マーク
を入れても、基準マークが窓R8内にくると小マークと
基準マークとでコントラスト(明暗)のちがいが生じず
、どちらも暗部となるからである。
Furthermore, in the embodiment of the present invention, a fiducial mark (FM) is positioned within the light transmitting mark (quadrilateral of window R8), and both marks are scanned with a bright field one quadrant, and the fiducial mark is used as a dark area. Since the space between the four sides is detected as a bright part, small marks for other alignments can be provided within the light transmission mark. This is because even if a small mark is placed within the window R8, if the reference mark is within the window R8, there will be no difference in contrast (brightness) between the small mark and the reference mark, and both will become dark areas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による縮小投影iM露光装置の
概略的な購成金示す斜視図、第2図はレチクル上の光透
過マークとしての窓の形状全示す平面図、第3図は基準
マークの形状を示す平面図、第4図は各種誤差の計測の
ための信号処理回路示す回路ブロック図、第5図は倍率
誤差計測時の各マークの配(l示す平面図、第6図は光
電走査によって得られる画f象信号の波形金示す波形図
である。 〔主要部分の符号の説明〕
FIG. 1 is a perspective view schematically showing the purchase price of a reduction projection iM exposure apparatus according to an embodiment of the present invention, FIG. 2 is a plan view showing the entire shape of a window as a light transmission mark on a reticle, and FIG. 3 is a reference. FIG. 4 is a circuit block diagram showing the signal processing circuit for measuring various errors; FIG. 5 is a plan view showing the arrangement of each mark when measuring magnification errors; FIG. It is a waveform diagram showing the waveform of an image signal obtained by photoelectric scanning. [Explanation of symbols of main parts]

Claims (1)

【特許請求の範囲】[Claims] (1)マスクのパターンを投影光学系によって被投影物
体に所定の倍率で投影する装置において、 前記投影光学系の光軸から離れた位置に中 心点を有し、該中心点と光軸とを結ぶ延長線を対角線と
するような実質的に四辺形の光透過マークを備えたマス
クを保持する保持手段と;前記投影光学系の結像面に配
置可能であり、前記光透過マークの投影像と位置合わせ
したとき、該投影像の形状と相似で、かつ該投影像の四
辺の夫々と所定の間隔で平行になるような四辺を有する
基準マークを備えた物体と;前記光透過マークと基準マ
ークとが位置合わせされたとき、前記延長線とほぼ直交
する方向に光電走査し、両マークの四辺の夫々の該走査
方向に関する間隔を検出する間隔検出手段と;該検出さ
れた四辺の各間隔値に基づいて、前記投影光学系の投影
倍率の誤差を検出する倍率誤差検出手段とを備えたこと
を特徴とする投影光学装置。
(1) A device that projects a pattern on a mask onto an object to be projected at a predetermined magnification using a projection optical system, which has a center point at a position away from the optical axis of the projection optical system, and has a center point and an optical axis that are connected to each other. a holding means for holding a mask having a substantially quadrilateral light-transmitting mark whose diagonal is an extension line connecting the two; an object comprising a reference mark having four sides that are similar in shape to the projected image and parallel to each of the four sides of the projected image at predetermined intervals when aligned with the light-transmitting mark and the reference; an interval detecting means for photoelectrically scanning in a direction substantially perpendicular to the extension line when the marks are aligned with each other, and detecting the interval between each of the four sides of both marks in the scanning direction; and each interval between the detected four sides. A projection optical device comprising: magnification error detection means for detecting an error in the projection magnification of the projection optical system based on the value.
JP60182434A 1985-08-20 1985-08-20 Projecting optical apparatus Pending JPS6243128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182434A JPS6243128A (en) 1985-08-20 1985-08-20 Projecting optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182434A JPS6243128A (en) 1985-08-20 1985-08-20 Projecting optical apparatus

Publications (1)

Publication Number Publication Date
JPS6243128A true JPS6243128A (en) 1987-02-25

Family

ID=16118199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182434A Pending JPS6243128A (en) 1985-08-20 1985-08-20 Projecting optical apparatus

Country Status (1)

Country Link
JP (1) JPS6243128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283927A (en) * 1988-05-11 1989-11-15 Mitsubishi Electric Corp Reduction stepper
KR100314552B1 (en) * 1995-04-04 2001-11-15 시마무라 테루오 An exposure apparatus and a method of operating an exposure apparatus
JP2007518257A (en) * 2004-01-16 2007-07-05 カール ツァイス エスエムテー アクチェンゲゼルシャフト Apparatus and method for optical measurement of optical system, measurement structure support, and microlithography projection exposure apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283927A (en) * 1988-05-11 1989-11-15 Mitsubishi Electric Corp Reduction stepper
KR100314552B1 (en) * 1995-04-04 2001-11-15 시마무라 테루오 An exposure apparatus and a method of operating an exposure apparatus
JP2007518257A (en) * 2004-01-16 2007-07-05 カール ツァイス エスエムテー アクチェンゲゼルシャフト Apparatus and method for optical measurement of optical system, measurement structure support, and microlithography projection exposure apparatus
JP4782019B2 (en) * 2004-01-16 2011-09-28 カール・ツァイス・エスエムティー・ゲーエムベーハー Apparatus and method for optical measurement of optical system, measurement structure support, and microlithography projection exposure apparatus

Similar Documents

Publication Publication Date Title
JP3200874B2 (en) Projection exposure equipment
KR100303743B1 (en) An exposure method
KR0170909B1 (en) Overlay detecting method of semiconductor device
US4385838A (en) Alignment device
US4737920A (en) Method and apparatus for correcting rotational errors during inspection of reticles and masks
JP2610815B2 (en) Exposure method
KR100396146B1 (en) Position fitting apparatus and methods
JPH0581046B2 (en)
JPS6243128A (en) Projecting optical apparatus
JPH0574684A (en) Positioning device
JPH0353770B2 (en)
JPS62150106A (en) Apparatus for detecting position
JPH09306811A (en) Method for exposure
JPH05160000A (en) Exposure apparatus
US7782441B2 (en) Alignment method and apparatus of mask pattern
JPH085767A (en) Drive table
JPH1089921A (en) Method for correcting error of alignment measurement and production of semiconductor device
JP2868548B2 (en) Alignment device
JPS59220604A (en) Method for detecting position between two objects opposed each other with minute gap therebetween
JPS62171126A (en) Projection-type exposure apparatus
JPS63150916A (en) Substrate for calibration of alignment device
JP2924635B2 (en) Semiconductor device manufacturing reticle and method of correcting manufacturing error of exposure apparatus
JP4052691B2 (en) Charged particle beam equipment
JP3237022B2 (en) Projection exposure equipment
JP2785142B2 (en) Alignment device