JPS6242968B2 - - Google Patents

Info

Publication number
JPS6242968B2
JPS6242968B2 JP14212382A JP14212382A JPS6242968B2 JP S6242968 B2 JPS6242968 B2 JP S6242968B2 JP 14212382 A JP14212382 A JP 14212382A JP 14212382 A JP14212382 A JP 14212382A JP S6242968 B2 JPS6242968 B2 JP S6242968B2
Authority
JP
Japan
Prior art keywords
annealing
weight
intermediate annealing
silicon steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14212382A
Other languages
Japanese (ja)
Other versions
JPS5935625A (en
Inventor
Masao Iguchi
Isao Ito
Hiroshi Shimanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14212382A priority Critical patent/JPS5935625A/en
Priority to DE8383304740T priority patent/DE3382043D1/en
Priority to EP83304740A priority patent/EP0101321B1/en
Priority to CA000434820A priority patent/CA1198654A/en
Priority to US06/524,390 priority patent/US4469533A/en
Publication of JPS5935625A publication Critical patent/JPS5935625A/en
Publication of JPS6242968B2 publication Critical patent/JPS6242968B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 この発明は、磁束密度の高く鉄損の低い一方向
性珪(けい)素鋼板の製造方法に関し、とくに、
上記の両物性値の有利な改善向上を確実かつ安定
に実現する過程として、とくに中間焼鈍における
挙動を究明した結果に基づいて、該過程に革新的
配慮を講じた、一方向性珪素鋼板の製造方法を提
案するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a unidirectional silicon steel plate with high magnetic flux density and low iron loss, and in particular,
As a process to reliably and stably realize advantageous improvements in both of the above physical property values, we manufacture unidirectional silicon steel sheets by taking innovative considerations into the process, especially based on the results of investigating the behavior during intermediate annealing. This paper proposes a method.

一方向性珪素鋼板は、主として変圧器その他の
電気機器の鉄心として利用され、ここに磁化特性
が優れていること、すなわち磁化特性として磁束
密度(B10値で代表される)が高く、また鉄損W1
7/50が低いことが要求される。
Unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and have excellent magnetization properties, that is, high magnetic flux density (represented by the B10 value), and Loss W 1
A low 7/50 is required.

とくに一方向性珪素鋼板の磁気特性を向上させ
るためには第一に鋼板中の2次再結晶粒の<001
>軸を圧延方向に高度に揃える必要があり、第二
には最終製品中に残存する不純物や析出物はでき
るだけ少なくする必要がある。
In particular, in order to improve the magnetic properties of unidirectional silicon steel sheets, the first step is to reduce the secondary recrystallized grains in the steel sheets to <001
>It is necessary to align the axes to a high degree in the rolling direction, and secondly, it is necessary to minimize the amount of impurities and precipitates remaining in the final product.

このためN.P.Gossによつて一方向性珪素鋼板
の2段冷却による基本的な製造方法が提案されて
以来、その製造方法に数多くの改善が重ねられ、
一方向性珪素鋼板の磁束密度および鉄損値は年を
追つて改良されて来た。その中で特に代表的なも
のとしては、SbとSeまたはSとをインヒビター
として利用する特公昭51−13469号公報に記載さ
れた提案があり、この方法によればB10が1.89Tを
越える製品が得られるようになつた。
For this reason, since NPGoss proposed a basic manufacturing method using two-stage cooling of unidirectional silicon steel sheets, numerous improvements have been made to the manufacturing method.
The magnetic flux density and core loss values of unidirectional silicon steel sheets have been improved over the years. A particularly representative example of this is the proposal described in Japanese Patent Publication No. 13469/1983, which utilizes Sb and Se or S as inhibitors. is now available.

さらに高磁束密度の製品を得るために、特開昭
55−11108号公報において素材中にMoを複合添加
させる方法やまた特開昭56−93823号公報におい
ては素材中にMoを複合添加させたあと最終冷延
直前の中間焼鈍後に急冷処理を施す方法などの改
良を加えて、B10が1.92T以上の高磁束密度で、鉄
損W17/50が1.05W/Kg以下の超低鉄損を得るこ
とを、開示提案したが、なお充分な低鉄損化につ
き改良すべき点がやはり残されている。
In order to obtain products with even higher magnetic flux density,
No. 55-11108 discloses a method in which Mo is added in a composite manner to the material, and JP-A-56-93823 discloses a method in which Mo is added in a composite manner to the material and then rapid cooling treatment is performed after intermediate annealing immediately before final cold rolling. The disclosure proposed that B 10 would have a high magnetic flux density of 1.92T or more and ultra-low iron loss W 17/50 would be 1.05W/Kg or less by making improvements such as this, but it is still not possible to obtain a sufficiently low iron loss. There are still points that need to be improved regarding iron loss.

とくに最近では、数年前のエネルギー危機を境
にして電力損失のきわめて少ないことの要請が著
しく強まり鉄心材料の用途ではより一層の改良が
のぞまれているからである。
Particularly recently, following the energy crisis a few years ago, the demand for extremely low power loss has increased significantly, and further improvements have been desired in the applications of iron core materials.

この発明は上記の要請に有利に応えるもので、
一方向性珪素鋼板の中間焼鈍方法を変えることに
よる磁気特性の向上を図り、それを有利に実現す
る方法を究明したものである。
This invention advantageously meets the above requirements.
The present invention aims to improve the magnetic properties of unidirectional silicon steel sheets by changing the intermediate annealing method, and has investigated a method to advantageously achieve this.

すなわちこの発明は、従来知られた一方向性珪
素鋼板の前記の如き諸欠点を除去・改善して、
B10が少なくとも1.9Tの高磁束密度と、W17/50
1.00W/Kg以下の超低鉄損を有し、かつ安定した
工程によつて製造することのできる一方向性珪素
鋼板の製造方法を提供することを目的とする。
That is, the present invention eliminates and improves the above-mentioned drawbacks of conventionally known unidirectional silicon steel sheets, and
B 10 has a high magnetic flux density of at least 1.9T and W 17/50
The object of the present invention is to provide a method for manufacturing a grain-oriented silicon steel sheet that has an ultra-low core loss of 1.00 W/Kg or less and can be manufactured using a stable process.

この目的はC:0.01〜0.06重量%(以下%で示
す)、Si:2.0〜4.0%及びMn:0.01〜0.20%を含
みかつ、SとSeとの何れか1種または2種合計
で0.005〜0.1%に加えて、 Sb:0.005〜0.20%並びにMo:0.003〜0.1%
又は、 B:0.0003〜0.005%並びにCu:0.005〜0.5
%をもあわせ含有し、残部は不可避不純物を除
き実質的にFeの組成になる珪素鋼板を熱延
し、次に均一化焼鈍を施したのち冷延と中間焼
鈍とを適宜繰返して得られる最終製品厚の冷延
鋼板に脱炭を兼ねた1次再結晶焼鈍を施し、さ
らに最終仕上焼鈍を施して{110}<001>方位
の2次再結晶粒を発達させる一連の工程より成
る一方向性珪素鋼板の製造方法において、上記
中間焼鈍の際に、500℃から900℃までの加熱速
度5℃/sec以上、中間焼鈍後の冷却の際、900
℃から500℃までの冷却速度5℃/sec以上とす
る急熱・急冷中間焼鈍を施すことによつて達成
される。
The purpose is to contain C: 0.01 to 0.06% by weight (hereinafter expressed as %), Si: 2.0 to 4.0%, and Mn: 0.01 to 0.20%, and the total amount of either one or both of S and Se is 0.005 to In addition to 0.1%, Sb: 0.005~0.20% and Mo: 0.003~0.1%
Or B: 0.0003-0.005% and Cu: 0.005-0.5
%, and the remainder is essentially Fe excluding unavoidable impurities, is hot-rolled, then subjected to homogenization annealing, and then cold-rolled and intermediate annealed as appropriate. A unidirectional method consisting of a series of steps in which a cold-rolled steel sheet of product thickness is subjected to primary recrystallization annealing that also serves as decarburization, and then final annealing to develop secondary recrystallized grains with {110} <001> orientation. In the method for producing a silicon steel sheet, during the above intermediate annealing, the heating rate from 500°C to 900°C is 5°C/sec or more, and when cooling after the intermediate annealing, the heating rate is 900°C/sec or more.
This is achieved by performing rapid heating/quenching intermediate annealing from °C to 500 °C at a cooling rate of 5 °C/sec or more.

次にこの発明による成功が導かれるに至つた経
過および発明内容を詳細に説明する。
Next, the process that led to the success of this invention and the content of the invention will be explained in detail.

発明者らは高磁束密度で超低鉄損の一方向性電
磁鋼板の製品を得るためには現行の熱処理工程で
は磁気特性が限界であり根本的に熱処理焼鈍サイ
クルを見直すことが必要であると考え、新たに高
速加熱、高速冷却ができるパルス焼鈍炉を建設し
実験を行つた。
The inventors believe that in order to obtain a unidirectional electrical steel sheet product with high magnetic flux density and ultra-low core loss, the current heat treatment process has reached its limit in magnetic properties, and it is necessary to fundamentally review the heat treatment annealing cycle. With this in mind, we constructed a new pulse annealing furnace capable of high-speed heating and rapid cooling, and conducted experiments.

このパルス熱処理方法は特願昭56−208880号明
細書に記載のように複数の輻射加熱ゾーンと冷却
ゾーンとの間で被処理物自体を高速移動させ、そ
の移動制御により任意のヒートサイクルを得るよ
うにしたものである。
This pulse heat treatment method, as described in Japanese Patent Application No. 56-208880, moves the object to be treated at high speed between multiple radiant heating zones and cooling zones, and obtains an arbitrary heat cycle by controlling the movement. This is how it was done.

さてC:0.043%、Si:3.35%、Mn:0.065%、
Se:0.017%、Sb:0.023%およびMo:0.013%を
含有し残部は不可避不純物を除き実質的にFeの
組成になる珪素鋼片を2.7mm厚に熱延したあと、
900℃で3分間の均一化焼鈍を施してから、約70
%の1次冷延を行つた。その後パルス焼鈍装置を
用いて中間焼鈍を行なつた。
Now, C: 0.043%, Si: 3.35%, Mn: 0.065%,
After hot-rolling a silicon steel piece containing 0.017% Se, 0.023% Sb, and 0.013% Mo, with the remainder essentially consisting of Fe excluding unavoidable impurities, to a thickness of 2.7 mm,
After uniform annealing at 900℃ for 3 minutes, approximately 70℃
% primary cold rolling was performed. Thereafter, intermediate annealing was performed using a pulse annealing device.

この中間焼鈍は950℃で3分間にわたらせた
が、昇温の際の加熱速度は500℃から900℃までの
温度範囲で1.5℃/sec以上、また降温の際の冷却
速度は900℃から500℃までの温度範囲で1.5℃/
sec以上で各様な実験条件を用いた。なおこのよ
うな加熱、冷却速度は予め試料に熱電対を取りつ
けて、パルス焼鈍炉に内蔵した試料移動体の速度
を任意に変化させることにより容易に可能であ
る。
This intermediate annealing was carried out at 950°C for 3 minutes, and the heating rate when increasing the temperature was 1.5°C/sec or more in the temperature range from 500°C to 900°C, and the cooling rate when decreasing the temperature was from 900°C to 500°C. Temperature range up to 1.5℃/℃
Various experimental conditions were used over sec. Note that such heating and cooling rates can be easily achieved by attaching a thermocouple to the sample in advance and arbitrarily changing the speed of the sample moving body built into the pulse annealing furnace.

パルス焼鈍装置使用による中間焼鈍後の試料
は、約60%2次冷延を行なつて0.30mm厚の最終冷
延板とした。
After intermediate annealing using a pulse annealing device, the sample was subjected to secondary cold rolling of approximately 60% to obtain a final cold rolled sheet with a thickness of 0.30 mm.

その後820℃の湿水素中で脱炭・1次再結晶粒
鈍を施したあと850℃で50時間の2次再結晶焼鈍
後、1180℃で5時間の純化焼鈍を施したときの製
品の磁気特性値を中間焼鈍の際における急熱速度
を(縦軸)にとり急冷速度を(横軸)にとつた直
角座標にプロツトして第1図に示す。
After that, the product was decarburized and primary recrystallized grain dulled in wet hydrogen at 820°C, followed by secondary recrystallization annealing at 850°C for 50 hours, and then purified annealed at 1180°C for 5 hours. The characteristic values are plotted on rectangular coordinates with the rapid heating rate during intermediate annealing (on the vertical axis) and the rapid cooling rate on the horizontal axis (horizontal axis), and are shown in FIG.

第1図から磁気特性は、中間焼鈍前の急熱速度
と中間焼鈍後の冷却速度に強く影響され、急熱、
冷却両速度が何れも5℃/sec以上で良好な特性
が得られる。とくに中間焼鈍前後の昇温および冷
却両速度が10℃/secにおいて磁束密度B10
1.91T以上、鉄損W17/50が1.00W/Kg以下の超低
鉄損の製品が得られることが注目される。
From Figure 1, the magnetic properties are strongly influenced by the rapid heating rate before intermediate annealing and the cooling rate after intermediate annealing.
Good characteristics can be obtained when both cooling rates are 5° C./sec or higher. In particular, when the heating and cooling rates before and after intermediate annealing are both 10℃/sec, the magnetic flux density B 10 is
It is noteworthy that a product with ultra-low iron loss of 1.91T or more and iron loss W 17/50 of 1.00W/Kg or less can be obtained.

またこの実験で供試鋼としてSe、SbおよびMo
を含むものを用いたが、Seの代りにS、またSb
及びMoを、B及びCuと代替しても、上にのべた
ところとほぼ同等の効果が得られた。
In addition, Se, Sb and Mo were used as test steels in this experiment.
, but instead of Se, S and Sb were used.
Even when B and Cu were substituted for B and Mo, almost the same effect as above was obtained.

ところで発明者らは、さきに特開昭56−93823
号公報において一方向性珪素鋼板の中間焼鈍に引
続く冷却の際、900℃から500℃までの間の冷却速
度を5℃/sec以上に急冷させることにより磁気
特性の良好な製品を得る製造方法を提案したがこ
れに対してこの発明では第1図から明らかなよう
に中間焼鈍後の急冷処理を含む、中間焼鈍前の昇
温急熱処理により磁気特性の極めて良好な製品を
得ることができることを新たに発見したのであ
る。すなわち第2図の従来の中間焼鈍サイクル
(破線)に対するこの発明の中間焼鈍サイクル
(実線)の比較で明らかなように、中間焼鈍熱サ
イクルは従来の徐熱・徐冷よりも、急熱・急冷の
方が磁気特性の良好な2次再結晶粒を発達させる
ことができることを新たに発見したものである。
By the way, the inventors previously published Japanese Patent Application Laid-Open No. 56-93823.
In the publication, a manufacturing method is disclosed in which a product with good magnetic properties is obtained by rapidly cooling a unidirectional silicon steel sheet at a cooling rate of 5°C/sec or more from 900°C to 500°C during cooling subsequent to intermediate annealing. However, in this invention, as is clear from FIG. 1, it is possible to obtain a product with extremely good magnetic properties by rapid heating treatment at elevated temperature before intermediate annealing, including rapid cooling treatment after intermediate annealing. This was a new discovery. In other words, as is clear from the comparison of the intermediate annealing cycle of the present invention (solid line) with the conventional intermediate annealing cycle (broken line) in Figure 2, the intermediate annealing thermal cycle has a faster heating and cooling cycle than the conventional slow heating and slow cooling. It was newly discovered that secondary recrystallized grains with better magnetic properties can be developed by using the method.

とくにこの発明における中間焼鈍における昇温
急熱処理は、中間焼鈍において尖鋭な{110}<
001>方位の1次再結晶集合組織の発達を促進さ
せることを意図したものであり、一般に鉄、鉄合
金の冷延後の1次再結晶核発生の方位順は1974年
のW.B.Huchinson{Metal Science J.、8
(1974)、P.185}で明らかなように、{110}、
{111}、{211}および{100}の順であることか
ら、一方向性珪素鋼板の1次冷却板においても中
間焼鈍における急熱・1次再結晶処理の方が
{110}<001>方位の集合組織を発達させるのに有
利であると考えられる。
In particular, the rapid heating treatment in the intermediate annealing in this invention produces a sharp {110}<
It is intended to promote the development of the primary recrystallization texture in the 001> orientation, and the orientation order of primary recrystallization nuclei generation after cold rolling of iron and iron alloys is generally determined by WB Huchinson {Metal Science, 1974. J., 8
(1974), P.185}, {110},
Since the order is {111}, {211} and {100}, even in the primary cooling plate of unidirectional silicon steel sheet, rapid heating and primary recrystallization treatment in intermediate annealing is better than {110}<001> It is considered to be advantageous for developing directional texture.

加え、一方向性珪素鋼板における{110}<001
>方位の2次再結晶粒の核発生は、最近の発明者
らの透過kossel法による、熱延板から2次再結晶
初期過程までの一種の研究{井口、前田、伊藤、
嶋中:鉄と鋼、68(1982)、P.S545、Y.Inokuti
et al.The Sixth International Conference on
Textures of Materials、(1981)、P.192
(Japan)、およびY.Inokti et al.Ist Ris φ
International Symposium on Metallurgy and
Materials Science、(1980)、P.71(Denmak)}
において、熱延板からのストラクチヤー・メモリ
ーによつて、{110}<001>方位の2次再結晶粒が
鋼板表面近傍に核発生することを示したところか
ら、一方向性珪素鋼板の1次冷延直後の中間焼鈍
時には鋼板表面近傍を急速加熱させることにより
{110}<001>方位の1次再結晶集合組織を優先形
成させることができるため、2次再結晶焼鈍時に
{110}<001>方位の2次再結晶粒を選択的に成長
させることが可能であると考えられる。
In addition, {110}<001 in unidirectional silicon steel plate
> The nucleation of secondary recrystallized grains in the orientation is a kind of study from the hot-rolled sheet to the initial process of secondary recrystallization by the transmission kossel method by the recent inventors {Iguchi, Maeda, Ito,
Shimanaka: Tetsu to Hagane, 68 (1982), P.S545, Y.Inokuti
et al.The Sixth International Conference on
Textures of Materials, (1981), P.192
(Japan), and Y.Inokti et al.Ist Ris φ
International Symposium on Metallurgy and
Materials Science, (1980), P.71 (Denmak)}
In our study, we showed that secondary recrystallized grains with {110} <001> orientation nucleate near the surface of the steel sheet using structure memory from hot-rolled sheets. During intermediate annealing immediately after cold rolling, the primary recrystallization texture with the {110}<001> orientation can be preferentially formed by rapidly heating the vicinity of the steel plate surface, so that during the secondary recrystallization annealing, the {110}<001 It is considered that it is possible to selectively grow secondary recrystallized grains with a > orientation.

次に中間焼鈍に引続く急冷処理による磁気特性
向上に関してはすでに上掲の特開昭56−93823号
公報でのべたと同様、次に2次冷延前に素材中の
析出物が微細・均一に分散していると冷延時に転
位の移動に対する障壁としての働きが増大し、転
位の局部堆積を促進するので、セル構造が微細均
一化する。その結果次の脱炭を兼ねる1次再結晶
組織形成の際、再結晶の早い結晶方位すなわち
{110}<001>や{111}<112>方位のセルが優先
的に再結晶するようになり、他方{100}〜
{112}〜{111}〜<011>方位等Goss方位の2
次再結晶粒の発達を阻害する<011>繊維組織成
分はセル形成し難いと同時に、再結晶も遅れるの
で、これらの不都合な組織成分を減少させること
ができると考えられる。
Next, regarding the improvement of magnetic properties by rapid cooling treatment following intermediate annealing, as already mentioned in the above-mentioned Japanese Patent Application Laid-Open No. 56-93823, the precipitates in the material are fine and uniform before the secondary cold rolling. If it is dispersed in the pores, it acts more as a barrier to the movement of dislocations during cold rolling and promotes the local accumulation of dislocations, resulting in a fine and uniform cell structure. As a result, during the formation of the primary recrystallized structure that also serves as the next decarburization, cells with fast recrystallizing crystal orientations, ie, {110} <001> and {111} <112> orientations, preferentially recrystallize. , on the other hand {100}~
Goss direction 2 such as {112} ~ {111} ~ <011> direction
Since <011> fiber texture components that inhibit the development of subsequent recrystallized grains are difficult to form cells and at the same time delay recrystallization, it is thought that these disadvantageous texture components can be reduced.

N.P.Gossにより発見された2段冷延の際の中
間焼鈍処理は{100}<001>や{100}<011>方位
等の集合組織改善のために行なわれていたが、第
2図のaに示したような急熱・急冷中間焼鈍熱サ
イクルでは上記の集合組織改善よりはむしろ、熱
延板表面層に生成した強い{110}<001>方位の
集合組織の有効利用を図るための焼鈍サイクルで
ある。この処理により鋼板表面層では多数の
{110}<001>方位の2次再結晶核発生が可能とな
るため、次の2次再結晶焼鈍において、直接
{110}<001>方位の2次再結晶粒として有効利用
できるため細粒の2次再結晶粒が得られ、特にこ
の工程の採用により超低鉄損化を図ることが可能
である。
As discovered by NPGoss, intermediate annealing during two-stage cold rolling was performed to improve the texture such as {100}<001> and {100}<011> orientation, but In the rapid heating/quenching intermediate annealing thermal cycle as shown, the annealing cycle is not intended to improve the texture described above, but rather to effectively utilize the strong {110} <001> oriented texture generated in the surface layer of the hot rolled sheet. It is. This treatment enables the generation of a large number of secondary recrystallization nuclei in the {110}<001> orientation in the surface layer of the steel sheet, so in the subsequent secondary recrystallization annealing, the secondary recrystallization nuclei in the {110}<001> orientation are directly generated. Since it can be effectively used as crystal grains, fine secondary recrystallized grains can be obtained, and in particular, by adopting this process, it is possible to achieve ultra-low iron loss.

以上この発明を従来の先行技術と対比して説明
したところから明らかなように、この発明の急
熱・急冷中間焼鈍法は、先行諸公知技術と発想の
基本を異にするものであつて、それによつて発揮
される効果もはるかにすぐれている。
As is clear from the above explanation of the present invention in comparison with the conventional prior art, the rapid heating/quenching intermediate annealing method of the present invention is fundamentally different in concept from the prior art known techniques. The effects produced by it are also far superior.

次にこの発明における素材含有成分および工程
条件を限定する理由を以下述べる。
Next, the reasons for limiting the raw material components and process conditions in this invention will be described below.

Cは0.01%より少ないと熱延集合組織制御が困
難で大きな伸長粒が形成されるため磁気特性が劣
化し、またCが0.06%より多く脱炭工程で脱炭に
時間がかかり経済的でないので0.06%以下にする
必要がある。
If C is less than 0.01%, it is difficult to control the hot rolling texture and large elongated grains are formed, resulting in deterioration of magnetic properties, and if C is more than 0.06%, decarburization takes time in the decarburization process and is not economical. It is necessary to keep it below 0.06%.

Siは2.0%より少ないと電気抵抗が低く渦流損
失増大に基づく鉄損失が大きくなり、一方4.0%
より多いと冷延の際に脆性割れを生じ易いため、
2〜4%の範囲内にすることが必要である。
When Si is less than 2.0%, electrical resistance is low and iron loss due to increased eddy current loss increases;
If the amount is higher than that, brittle cracks are likely to occur during cold rolling.
It is necessary to keep it within the range of 2 to 4%.

Mn量は一方向性珪素鋼板の二次再結晶を左右
する分散析出相のMnSあるいはMnSeを決定する
重要な成分である。Mn量が0.01%を下廻ると2
次再結晶を起こさせるのに必要なMnS等の絶対
量が不足し、不完全2次再結晶を起こすと同時
に、ブリスターと呼ばれる表面欠陥が増大する。
一方Mn量が0.2%を越えると、スラブ加熱時にお
いてMnSなどの解離固溶が困難になる。またか
りに解離固溶が行なわれたとしても、熱延時に析
出する分散析出相は粗大化しやすく、抑制剤とし
て望まれる最適サイズ分布は損なわれ、磁気特性
は劣化するので、Mnは0.01〜0.2%以内にす必要
がある。
The amount of Mn is an important component that determines the amount of MnS or MnSe in the dispersed precipitated phase that affects the secondary recrystallization of grain-oriented silicon steel sheets. 2 when the Mn content falls below 0.01%
The absolute amount of MnS etc. required to cause secondary recrystallization is insufficient, causing incomplete secondary recrystallization and at the same time, surface defects called blisters increase.
On the other hand, if the amount of Mn exceeds 0.2%, it becomes difficult to dissociate solid solution such as MnS during slab heating. Furthermore, even if dissociation and solid solution are carried out, the dispersed precipitated phase that precipitates during hot rolling tends to become coarse, the optimum size distribution desired as an inhibitor is lost, and the magnetic properties are deteriorated. Must be within

S、Seは何れも0.1%以下、なかでもSは0.008
〜0.1%、またはSeは0.003〜0.1%の範囲とする
ことが好ましい。それというのはこれらが0.1%
をこえると熱間および冷間加工性が劣化し、また
それぞれ下限値に満たないとMnS、MnSeとして
の1次粒成長抑制機能に格別の効果を生じないか
らであるが、すでに実験例についてのべたように
Sb、MoあるいはB、Cuの如き既知1次粒成長抑
制剤を、有利に併用するので、SおよびSeの下
限値は合計で0.005%で足りる。
Both S and Se are less than 0.1%, especially S is 0.008
~0.1%, or Se is preferably in the range of 0.003 to 0.1%. That means these are 0.1%
If the value exceeds the lower limit, hot and cold workability deteriorates, and if the lower limit is not reached, the primary grain growth suppressing function of MnS and MnSe will not be particularly effective. sticky
Since known primary grain growth inhibitors such as Sb, Mo or B and Cu are advantageously used in combination, a total lower limit of 0.005% for S and Se is sufficient.

Sbは発明者らがかつて開示した特公昭38−
8214号公報によれば、0.005〜0.1%含有され、ま
た同様に発明者らがさきに開示した特公昭51−
13469号公報によれば0.005〜0.2%において、微
量のSeまたはSとともに含有されることによ
り、1次粒の成長が抑制されることが知られてい
るとおりであり、Sbは0.005%より少ないと1次
結晶粒抑制効果が少なく、一方0.2%より多い磁
束密度が低下し始めて磁気特性を劣化させるの
で、Sbは0.005〜0.2%の範囲内にする必要があ
る。
Sb was previously disclosed by the inventors in the 1970s.
According to Publication No. 8214, it is contained in 0.005 to 0.1%, and similarly, it is contained in Japanese Patent Publication No.
According to Publication No. 13469, it is known that the growth of primary grains is suppressed by containing a small amount of Se or S at 0.005 to 0.2%, and when Sb is less than 0.005%, The Sb content must be within the range of 0.005 to 0.2% because the effect of suppressing primary crystal grains is small, and on the other hand, magnetic flux density exceeding 0.2% begins to decrease and deteriorates the magnetic properties.

Moについては発明者らが開示した特公昭56−
4613号および特開昭55−11108号各公報により知
られているように0.1%までの少量のMo添加で1
次粒成長抑制効果があり、この発明においても同
様の効果が期待できる。Moが0.1%より多いと熱
間および冷間加工性が低下し、また鉄損が劣化す
るのでMoは0.1%以下の範囲内にする必要があ
り、他方0.003%より低いと、1次結晶粒の成長
抑制効果が小さいためMoは0.003〜0.1%の範囲
内にする必要がある。
Regarding Mo, the inventors disclosed the
4613 and JP-A-55-11108, the addition of a small amount of Mo up to 0.1%
It has the effect of suppressing the growth of secondary grains, and the same effect can be expected in this invention. If Mo is more than 0.1%, hot and cold workability will be reduced, and iron loss will be deteriorated, so Mo needs to be within the range of 0.1% or less. On the other hand, if it is less than 0.003%, primary crystal grains Mo has a small growth inhibiting effect, so Mo needs to be within the range of 0.003 to 0.1%.

上述の如く珪素鋼素材中にC:0.01〜0.06%、
Si:2.0〜4.0%、Mn:0.01〜0.20%を含みかつS
とSeのうち何れか1種または2種を合計で0.005
〜0.10%を、Sb:0.005〜0.20%並びにMo:0.003
〜0.1%又はB:0.0003〜0.005%並びにCu:
0.005〜0.5%とともに含有することを基本とす
る。
As mentioned above, C: 0.01 to 0.06% in the silicon steel material,
Contains Si: 2.0~4.0%, Mn: 0.01~0.20% and S
A total of 0.005 of one or two of Se and
~0.10%, Sb: 0.005~0.20% and Mo: 0.003
~0.1% or B: 0.0003~0.005% and Cu:
Basically, it should be included along with 0.005 to 0.5%.

次にこの発明による一連の製造工程について説
明する。
Next, a series of manufacturing steps according to the present invention will be explained.

まず素材を溶製するにはLD転炉、電気炉、平
炉その他の公知の製鋼方法を用いて行い得ること
は勿論、真空処理、真空溶解を併用することがで
きる。
First, the material can be melted using an LD converter, an electric furnace, an open hearth, or other known steelmaking methods, and vacuum treatment and vacuum melting can be used in combination.

次にスラブ製造は現在歩止り向上と工程省略に
よる大幅な製造コスト低減、スラブ長手方向にお
ける成分あるいは品質の均一性等の経済的技術的
利点のため連続鋳造法が適用されているが、その
ほか従来の造塊法も好適に行なうことができる。
Next, continuous casting is currently being applied to slab manufacturing due to its economical and technical advantages such as improved yield, significant reduction in manufacturing costs due to process omissions, and uniformity of composition and quality in the longitudinal direction of the slab. The agglomeration method can also be suitably carried out.

この発明に従い素材中に含有されるS、Seの
何れか少くとも1種と、SbとMo、ないしはBと
Cuとを溶鋼中に添加するには従来公知の何れの
方法を用いることもでき、例えばLD転炉、RH脱
ガス終了時あるいは造塊時の溶鋼中に添加するこ
とができる。
According to this invention, at least one of S and Se contained in the material, Sb and Mo, or B
Any conventionally known method can be used to add Cu to the molten steel, for example, it can be added to the molten steel at the end of the LD converter, at the end of RH degassing, or at the time of ingot making.

連続鋳造スラブまたは造塊した鋼塊はそれぞれ
公知の方法で熱延に付される。通常スラブを熱延
鋼板に圧延するのは当然であり、得られる熱延板
の厚みは後続の冷延工程より支配されるが通常2
〜5mm厚程度とすることは有利である。
The continuously cast slab or the ingot is hot rolled in a known manner. It is natural to roll a slab into a hot-rolled steel sheet, and the thickness of the hot-rolled sheet obtained is controlled by the subsequent cold rolling process, but usually 2
It is advantageous to have a thickness of about 5 mm.

次に熱延板は均一化焼鈍後に冷延される。冷延
後中間焼鈍前後に昇温あるいは冷却されるが、高
磁束密度で超低鉄損の製品を得るには第1図およ
び第2図に示すように急熱および冷却速度に注意
を払う必要があり、少なくとも最終冷延直前の中
間焼鈍前の昇温速度を500℃から900℃までの範囲
で5℃/sec以上、または中間焼鈍後の冷却速度
を900℃から500℃までの範囲は5℃/sec以上に
管理しなければならない。
The hot rolled sheet is then uniformly annealed and then cold rolled. After cold rolling, the temperature is raised or cooled before and after intermediate annealing, but in order to obtain a product with high magnetic flux density and ultra-low iron loss, it is necessary to pay attention to the rapid heating and cooling rates as shown in Figures 1 and 2. At least the temperature increase rate before intermediate annealing immediately before final cold rolling should be 5℃/sec or more in the range from 500℃ to 900℃, or the cooling rate after intermediate annealing should be 5℃ in the range from 900℃ to 500℃. Must be controlled at ℃/sec or higher.

この中間焼鈍に至る昇温あるいは中間焼鈍に引
続く冷却方法は従来公知の何のような方法でも用
いることができ、例えば公知の連続炉を用いて急
熱昇温する場合、連続炉の加熱帯の能力アツプを
図るとかあるいは加熱帯部に誘導炉を新たに設置
して急熱できるようにすることもできる。
Any conventionally known method can be used for the temperature raising leading to intermediate annealing or the cooling method following intermediate annealing. For example, when rapidly heating a known continuous furnace, the heating zone of the continuous furnace is used. It is also possible to increase the capacity of the heating zone, or to install a new induction furnace in the heating zone to enable rapid heating.

また急冷する場合冷却ガスの噴射あるいは水冷
噴射による急冷設備の使用により好適に行なうこ
とができる。また公知の連続炉以外に急熱・急冷
熱処理サイクルのできるものであれば充分で、焼
鈍炉、方法での制限は加えない。
In addition, rapid cooling can be suitably carried out by using a rapid cooling equipment that uses cooling gas injection or water cooling injection. Further, any type of annealing furnace other than the known continuous furnace that can perform a rapid heating/quenching heat treatment cycle is sufficient, and there are no restrictions on the annealing furnace or method.

急熱・急冷中間焼鈍された鋼板は冷延に付され
る。冷延は少なくとも1回以上施すが、この発明
の目的とする高磁束密度で低鉄損の特性を有する
製品を得るには最終冷延率に次のような注意を払
う必要がある。
The steel plate that has undergone rapid heating and rapid cooling intermediate annealing is subjected to cold rolling. Although cold rolling is performed at least once, it is necessary to pay attention to the final cold rolling rate as follows in order to obtain a product having the characteristics of high magnetic flux density and low core loss, which is the objective of this invention.

冷延は通常850℃から1050℃の中間焼鈍をはさ
んで2回施し最初の圧下率は50%から80%程度、
最終の圧下率は55%〜75%程度で0.30mmから0.35
mm厚の最終板厚にする。
Cold rolling is usually performed twice with intermediate annealing between 850℃ and 1050℃, and the initial rolling reduction is about 50% to 80%.
The final reduction rate is about 55% to 75%, and from 0.30mm to 0.35
The final plate thickness is mm.

最終冷延を終り、製品板厚となつた鋼板は次に
脱炭に付される。この焼鈍は冷延組織を1次再結
晶組織にすると同時に最終焼鈍で{110}<001>
方位の2次再結晶粒を発達させる場合に有害なC
を除去するのが目的で、例えば750℃から850℃で
3〜15分程度の湿水素中での焼鈍のように既に公
知になつているどのような方法をも用いることが
できる。
After completing the final cold rolling, the steel sheet that has reached the product thickness is then subjected to decarburization. This annealing transforms the cold-rolled structure into a primary recrystallized structure, and at the same time, the final annealing changes {110}<001>
C which is harmful when developing secondary recrystallized grains in the orientation
Any known method can be used, such as annealing in wet hydrogen at 750° C. to 850° C. for about 3 to 15 minutes.

最終焼鈍は{110}<001>方位の2次再結晶粒
を充分発達させるため施されるもので、通常箱焼
鈍によつて直ちに1000℃以上に昇温し、その温度
に保持することによつて行なわれる。この最終焼
鈍は通常マグネシア等の焼鈍分離剤を塗布し、箱
焼鈍によつて施されるが、この発明において
{110}<001>方位に極度に揃つた2次再結晶組織
を発達させるためには820℃から900℃の低温で保
定焼鈍する方が有利であるが、あるいは例えば
0.5〜15℃/hrの昇温速度の徐熱焼鈍でも良い。
Final annealing is performed to sufficiently develop secondary recrystallized grains with {110}<001> orientation, and is usually performed by immediately raising the temperature to 1000℃ or higher by box annealing and maintaining it at that temperature. It is carried out with This final annealing is usually performed by applying an annealing separator such as magnesia and box annealing, but in this invention, in order to develop a secondary recrystallized structure that is extremely aligned in the {110}<001> direction, It is more advantageous to carry out retention annealing at a low temperature of 820℃ to 900℃, or for example
Slow annealing with a heating rate of 0.5 to 15°C/hr may also be used.

次に本発明を実施例について説明する。 Next, the present invention will be explained with reference to examples.

実施例 1 C:0.043%、Si:3.33%、Mn:0.068%、Se:
0.017%、Sb:0.023%およびMo:0.013%を含有
し残部は不可避不純物を除き実質的にFeの組成
になる鋼塊を熱間圧延により3.0mm厚に仕上げ950
℃で3分間の均一化焼鈍したあと、70%の冷間圧
延を施し、次いで950℃で3分間の中間焼鈍を施
した。
Example 1 C: 0.043%, Si: 3.33%, Mn: 0.068%, Se:
A steel ingot containing 0.017%, Sb: 0.023%, and Mo: 0.013%, with the remainder being essentially Fe, excluding unavoidable impurities, is hot-rolled to a thickness of 3.0 mm950
After homogenization annealing at 950°C for 3 minutes, 70% cold rolling was performed, followed by intermediate annealing at 950°C for 3 minutes.

中間焼鈍の際の500℃から900℃までの温度範囲
を15℃/secで急熱し、また中間焼鈍後900℃から
500℃までの温度範囲を22℃/secで冷却したあ
と、再び65%の最終冷延を施して0.3mm厚の最終
ゲージにした。次いで820℃の湿水素中で脱炭
後、850℃で50時間の2次再結晶焼鈍後1180℃で
純化焼鈍を施した。そのときの製品の磁気特性は
下記のようであつた。
The temperature range from 500℃ to 900℃ during intermediate annealing is rapidly heated at 15℃/sec, and after intermediate annealing from 900℃ to 900℃.
After cooling at a rate of 22°C/sec over a temperature range of up to 500°C, it was again subjected to a final cold rolling of 65% to a final gauge of 0.3 mm thick. Next, after decarburizing in wet hydrogen at 820°C, secondary recrystallization annealing was performed at 850°C for 50 hours, and purification annealing was performed at 1180°C. The magnetic properties of the product at that time were as follows.

B10:1.92T W17/50:0.97W/Kg 実施例 2 C:0.045%、Si:3.35%、Mn:0.066%、Se:
0.016%、Sb:0.025%およびMo:0.015%を含有
し残部は不可避不純物を除き実質的にFeの組成
になる連鋳スラブを熱延して2.7mm厚の熱延板に
仕上げ、900℃で3分間の均一化焼鈍したあと約
70%で冷延圧延し、950℃で3分間の中間焼鈍を
施した。
B 10 : 1.92T W 17/50 : 0.97W/Kg Example 2 C: 0.045%, Si: 3.35%, Mn: 0.066%, Se:
A continuous cast slab containing 0.016%, Sb: 0.025% and Mo: 0.015%, with the remainder being essentially Fe excluding unavoidable impurities, was hot-rolled into a 2.7mm thick hot-rolled plate and heated at 900℃. After homogenization annealing for 3 minutes, approx.
It was cold rolled at 70% and intermediate annealed at 950°C for 3 minutes.

このときの中間焼鈍の際の500℃から900℃まで
の温度範囲を25℃/secで急熱し、また中間焼鈍
後900℃から500℃までの温度範囲を30℃/secで
冷却したあと65%の2次冷延(0.3mm仕上厚)を
行つた。次に脱炭焼鈍と850℃で50時間の2次再
結晶焼鈍を施した後1200℃で5時間水素中で仕上
焼鈍を行つた。得られた製品の磁気特性は次の通
りであつた。
At this time, during intermediate annealing, the temperature range from 500℃ to 900℃ is rapidly heated at 25℃/sec, and after intermediate annealing, the temperature range from 900℃ to 500℃ is cooled at 30℃/sec, and then 65% Secondary cold rolling (0.3mm finishing thickness) was performed. Next, decarburization annealing and secondary recrystallization annealing were performed at 850°C for 50 hours, followed by final annealing at 1200°C for 5 hours in hydrogen. The magnetic properties of the obtained product were as follows.

B10:1.93T W17/50:0.96W/Kg 実施例 3 C:0.043%、Si:3.30%、Mn:0.068%、S:
0.018%、Sb:0.025%およびMo:0.015%を含有
し残部は不可避不純物を除き実質的にFeの組成
になる熱延板(2.4mm厚)を900℃で5分間の均一
化焼鈍を施した。その後950℃で3分間の中間焼
鈍をはさんで2回の冷延を行なつて0.30mmの最終
板厚に仕上げた。
B 10 : 1.93T W 17/50 : 0.96W/Kg Example 3 C: 0.043%, Si: 3.30%, Mn: 0.068%, S:
A hot-rolled sheet (2.4 mm thick) containing 0.018%, Sb: 0.025%, and Mo: 0.015%, with the remainder being essentially Fe excluding unavoidable impurities, was uniformly annealed at 900°C for 5 minutes. . Thereafter, it was cold-rolled twice with an intermediate annealing at 950°C for 3 minutes to give a final thickness of 0.30 mm.

この中間焼鈍の際には500℃から900℃までの温
度範囲を35℃/secで急熱し、また中間焼鈍後900
℃から500℃までの温度範囲を35℃/secで急冷却
処理した。次に脱炭焼鈍と850℃で50時間の2次
再結晶焼鈍を施した後1200℃で5時間の純化焼鈍
を行つた。得られた製品の磁気特性は次の通りで
あつた。
During this intermediate annealing, the temperature range from 500℃ to 900℃ is rapidly heated at 35℃/sec.
The temperature range from ℃ to 500℃ was rapidly cooled at 35℃/sec. Next, decarburization annealing and secondary recrystallization annealing were performed at 850°C for 50 hours, followed by purification annealing at 1200°C for 5 hours. The magnetic properties of the obtained product were as follows.

B10:1.92T W17/50:1.00W/Kg 実施例 4 C:0.044%、Si:3.21%、Mn:0.058%、S:
0.025%、B:0.0018%およびCu:0.35%を含有
し、残部は不可避不純物を除き実質的にFeの組
成になる連鋳スラブを熱延して2.8mm厚さの熱延
板とした。その後950℃で3分間の均一化焼鈍を
施したあと、950℃の中間焼鈍をはさんで2回の
冷延を行なつて最終冷延板(0.30mm厚)とした。
この中間焼鈍の際の500℃から900℃までの温度範
囲を25℃/secで急熱し、また中間焼鈍後900℃か
ら500℃までの温度範囲を35℃/secで急冷却処理
した。次に830℃の湿水素中で脱炭焼鈍したあと
1200℃で最終焼鈍を施して製品とした。そのとき
の製品の磁気特性は次の通りであつた。
B 10 : 1.92T W 17/50 : 1.00W/Kg Example 4 C: 0.044%, Si: 3.21%, Mn: 0.058%, S:
A continuous cast slab containing 0.025%, B: 0.0018%, and Cu: 0.35%, with the remainder being essentially Fe except for unavoidable impurities, was hot-rolled into a hot-rolled plate with a thickness of 2.8 mm. After that, uniform annealing was performed at 950°C for 3 minutes, and then cold rolling was performed twice with intermediate annealing at 950°C to obtain a final cold-rolled sheet (0.30 mm thick).
During this intermediate annealing, the material was rapidly heated at a rate of 25°C/sec from 500°C to 900°C, and after the intermediate annealing, it was rapidly cooled from 900°C to 500°C at a rate of 35°C/sec. Next, after decarburization annealing in wet hydrogen at 830℃
Final annealing was performed at 1200°C to produce a product. The magnetic properties of the product at that time were as follows.

B10:1.94T W17/50:0.98W/Kg (発明の効果) 第1、第2両発明とも高磁束密度の下に低鉄損
の一方向性珪素鋼板が安定に製造される。
B 10 : 1.94T W 17/50 : 0.98W/Kg (Effects of the Invention) In both the first and second inventions, unidirectional silicon steel sheets with low iron loss are stably manufactured under high magnetic flux density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は中間焼鈍前後の昇温および冷却速度と
磁気特性との関係を示す図、第2図は本発明の急
熱・急冷中間焼鈍サイクル(実線)と従来の中間
焼鈍サイクル(点線)の比較を示す図である。
Figure 1 shows the relationship between the temperature rise and cooling rate before and after intermediate annealing and magnetic properties, and Figure 2 shows the relationship between the rapid heating/quenching intermediate annealing cycle of the present invention (solid line) and the conventional intermediate annealing cycle (dotted line). It is a figure showing a comparison.

Claims (1)

【特許請求の範囲】 1 C:0.01〜0.06重量% Si:2.0〜4.0重量%及び Mn:0.01〜0.20重量% を含みかつ、 SとSeのうち少なくとも一方を合計で0.005〜
0.1重量%を、 Sb:0.005〜0.20重量%並びに Mo:0.003〜0.1重量% とともに含有し、残部は不可避不純物を除き実質
的にFeの組成になる珪素鋼片を熱延し、次に均
一化焼鈍を施したのち、冷延と、中間焼鈍を適宜
繰返して得られる最終製品厚の冷延鋼板に、脱炭
を兼ねた1次再結晶焼鈍を施し、さらに最終仕上
げ焼鈍を施して{110}<001>方位の2次再結晶
粒を発達させる一連の工程よりなる一方向性珪素
鋼板の製造方法において、 上記中間焼鈍の際に、500℃から900℃までの加
熱強度を毎秒5℃以上、中間焼鈍に引続く降温の
際に、900℃から500℃までの冷却速度を毎秒5℃
以上とする、急熱急冷中間焼鈍を施す ことを特徴とする、磁束密度の高く鉄損の低い一
方向性珪素鋼板の製造方法。 2 C:0.01〜0.06重量% Si:2.0〜4.0重量%及び Mn:0.01〜0.20重量% を含みかつ、 SとSeのうち少なくとも一方を合計で0.005〜
0.1重量%を、 B:0.0003〜0.005重量%並びに Cu:0.005〜0.5重量% とともに含有し、残部は不可避不純物を除き実質
的にFeの組成になる珪素鋼片を熱延し、次に均
一化焼鈍を施したのち、冷延と、中間焼鈍を適宜
繰返して得られる最終製品厚の冷延鋼板に、脱炭
を兼ねた1次再結晶焼鈍を施し、さらに最終仕上
げ焼鈍を施して{110}<001>方位の2次再結晶
粒を発達させる一連の工程よりなる一方向性珪素
鋼板の製造方法において、 上記中間焼鈍の際に、500℃から900℃までの加
熱強度を毎秒5℃以上、中間焼鈍に引続く降温の
際に、900℃から500℃までの冷却速度を毎秒5℃
以上とする、急熱急冷中間焼鈍を施す ことを特徴とする、磁束密度の高く鉄損の低い一
方向性珪素鋼板の製造方法。
[Claims] 1 Contains C: 0.01 to 0.06% by weight, Si: 2.0 to 4.0% by weight, and Mn: 0.01 to 0.20% by weight, and at least one of S and Se in a total of 0.005 to 0.005% by weight.
A silicon steel slab containing 0.1% by weight, Sb: 0.005 to 0.20% by weight, and Mo: 0.003 to 0.1% by weight, with the remainder having a composition of essentially Fe, excluding unavoidable impurities, is hot-rolled, and then homogenized. After annealing, cold rolling and intermediate annealing are repeated as appropriate to obtain a cold rolled steel sheet with a final product thickness, which is then subjected to primary recrystallization annealing that also serves as decarburization, and then final finish annealing {110} In a method for manufacturing a unidirectional silicon steel sheet that includes a series of steps for developing secondary recrystallized grains in the <001> orientation, during the above intermediate annealing, the heating intensity is increased from 500°C to 900°C at a temperature of 5°C per second or more. During temperature reduction following intermediate annealing, the cooling rate from 900℃ to 500℃ is 5℃ per second.
The method for producing a unidirectional silicon steel sheet having high magnetic flux density and low core loss, which is characterized by subjecting it to rapid heating, rapid cooling, and intermediate annealing as described above. 2 Contains C: 0.01-0.06% by weight Si: 2.0-4.0% by weight and Mn: 0.01-0.20% by weight, and at least one of S and Se in a total of 0.005-0.005% by weight
A silicon steel slab containing 0.1% by weight, B: 0.0003 to 0.005% by weight, and Cu: 0.005 to 0.5% by weight, with the remainder being essentially Fe except for inevitable impurities, is hot rolled, and then homogenized. After annealing, cold rolling and intermediate annealing are repeated as appropriate to obtain a cold rolled steel sheet with a final product thickness, which is then subjected to primary recrystallization annealing that also serves as decarburization, and then final finish annealing {110} In a method for manufacturing a unidirectional silicon steel sheet that includes a series of steps for developing secondary recrystallized grains in the <001> orientation, during the above intermediate annealing, the heating intensity is increased from 500°C to 900°C at a temperature of 5°C per second or more. During temperature reduction following intermediate annealing, the cooling rate from 900℃ to 500℃ is 5℃ per second.
The method for producing a unidirectional silicon steel sheet with high magnetic flux density and low core loss, which is characterized by subjecting it to rapid heating, rapid cooling, and intermediate annealing as described above.
JP14212382A 1982-08-18 1982-08-18 Manufacture of anisotropic silicon steel plate with high magnetic flux density and small iron loss Granted JPS5935625A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14212382A JPS5935625A (en) 1982-08-18 1982-08-18 Manufacture of anisotropic silicon steel plate with high magnetic flux density and small iron loss
DE8383304740T DE3382043D1 (en) 1982-08-18 1983-08-16 METHOD FOR PRODUCING CORNORIENTED SHEETS OR TAPES FROM SILICON STEEL WITH HIGH MAGNETIC INDUCTION AND LOW IRON LOSS.
EP83304740A EP0101321B1 (en) 1982-08-18 1983-08-16 Method of producing grain oriented silicon steel sheets or strips having high magnetic induction and low iron loss
CA000434820A CA1198654A (en) 1982-08-18 1983-08-17 Method of producing grain oriented silicon steel sheets or strips having high magnetic induction and low iron loss
US06/524,390 US4469533A (en) 1982-08-18 1983-08-18 Method of producing grain oriented silicon steel sheets or strips having high magnetic induction and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14212382A JPS5935625A (en) 1982-08-18 1982-08-18 Manufacture of anisotropic silicon steel plate with high magnetic flux density and small iron loss

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9874787A Division JPH066747B2 (en) 1987-04-23 1987-04-23 Method for producing unidirectional silicon steel sheet having high magnetic flux density and low iron loss

Publications (2)

Publication Number Publication Date
JPS5935625A JPS5935625A (en) 1984-02-27
JPS6242968B2 true JPS6242968B2 (en) 1987-09-10

Family

ID=15307919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14212382A Granted JPS5935625A (en) 1982-08-18 1982-08-18 Manufacture of anisotropic silicon steel plate with high magnetic flux density and small iron loss

Country Status (1)

Country Link
JP (1) JPS5935625A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283421A (en) * 1985-10-04 1987-04-16 Sumitomo Metal Ind Ltd Production of grain oriented electrical steel sheet
JPH0657856B2 (en) * 1986-03-25 1994-08-03 川崎製鉄株式会社 Method for producing low iron loss unidirectional silicon steel sheet having excellent surface properties
US5203928A (en) * 1986-03-25 1993-04-20 Kawasaki Steel Corporation Method of producing low iron loss grain oriented silicon steel thin sheets having excellent surface properties
JP2670108B2 (en) * 1988-10-21 1997-10-29 川崎製鉄株式会社 Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet
JP6436316B2 (en) * 2016-01-05 2018-12-12 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS5935625A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
JP5991484B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
EP0101321B1 (en) Method of producing grain oriented silicon steel sheets or strips having high magnetic induction and low iron loss
JPH0241565B2 (en)
JP3160281B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
KR20240035911A (en) Method for producing grain-oriented electrical steel sheet
KR20240035910A (en) Method for producing grain-oriented electrical steel sheet
JP5287615B2 (en) Method for producing grain-oriented electrical steel sheet
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JPH059580A (en) Production of grain-oriented silicon steel sheet extremely excellent in magnetic property
JPS6242968B2 (en)
JP4258156B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPH0784615B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density
KR970007030B1 (en) Method of manufacturing preparation of electrical steel sheet having higt flux density
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP7221480B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JPH066747B2 (en) Method for producing unidirectional silicon steel sheet having high magnetic flux density and low iron loss
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPS6237688B2 (en)
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
CN114829657A (en) Oriented electrical steel sheet and method for manufacturing the same
KR101568020B1 (en) Grain-orinented electrical steel sheet and method for manufacturing the same
JPS6256205B2 (en)