JPS6242368Y2 - - Google Patents

Info

Publication number
JPS6242368Y2
JPS6242368Y2 JP1980088445U JP8844580U JPS6242368Y2 JP S6242368 Y2 JPS6242368 Y2 JP S6242368Y2 JP 1980088445 U JP1980088445 U JP 1980088445U JP 8844580 U JP8844580 U JP 8844580U JP S6242368 Y2 JPS6242368 Y2 JP S6242368Y2
Authority
JP
Japan
Prior art keywords
thermal conductivity
gas
flow path
thin film
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980088445U
Other languages
Japanese (ja)
Other versions
JPS5716855U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980088445U priority Critical patent/JPS6242368Y2/ja
Publication of JPS5716855U publication Critical patent/JPS5716855U/ja
Application granted granted Critical
Publication of JPS6242368Y2 publication Critical patent/JPS6242368Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 本考案は、熱伝導度検出器に関し、更に詳しく
は、測定ガス中の各成分ガスが有する熱伝導度を
利用して測定ガスの定性若しくは定量を行なう熱
伝導度検出器に関するものである。
[Detailed Description of the Invention] The present invention relates to a thermal conductivity detector, and more specifically, to thermal conductivity detection that qualitatively or quantitatively determines the measurement gas using the thermal conductivity of each component gas in the measurement gas. It is related to vessels.

第1図は、従来の熱伝導度検出器の回路説明図
であり、図中、1は定電流電源、2は純粋なキヤ
リアガスが流れる参照ガス用流路、3はサンプル
ガスを含むことのあるキヤリアガスが流れる測定
ガス用流路、4a,4cは比較用のタングステン
フイラメント、4b,4dは測定用のタングステ
ンフイラメントであつてフイラメント4a,4
b,4c,4dはホイートストーンブリツジを構
成しており、5,6は差動増幅器、7は可変電圧
電源である。図において、定電流電源1から供給
された所定の電流が、フイラメント4a,4b,
4c,4dに流れジユールの法則に従つて各フイ
ラメントが発熱する。一方、比較ガス用流路2に
は、純粋のキヤリアガスが流れてフイラメント4
a,4cから熱を奪い、測定用ガス流路3にはサ
ンプルガスを含むことのあるキヤリアガスが流れ
てフイラメント4b,4dから熱を奪う。而し
て、サンプルガスの熱伝導度に応じて各フイラメ
ントの熱バランスが変化してホイートストーンブ
リツジに不平衡電圧が発生し、該不平衡電圧は差
動増幅器5により増幅されたのち、可変電圧電源
7と差動増幅器6からなる減算回路でベース電圧
変動および不平衡電圧の初期値が減算されて出力
信号Eoutが与えられる。該出力Eoutは、サンプ
ルガスの熱伝導度に対応しており、該出力Eout
からサンプルガスの定性若しくは定量が行なわれ
る。
Figure 1 is an explanatory circuit diagram of a conventional thermal conductivity detector. In the figure, 1 is a constant current power supply, 2 is a reference gas flow path through which pure carrier gas flows, and 3 is a flow path that may contain a sample gas. 4a and 4c are tungsten filaments for comparison; 4b and 4d are tungsten filaments for measurement;
b, 4c, and 4d constitute a Wheatstone bridge, 5 and 6 are differential amplifiers, and 7 is a variable voltage power supply. In the figure, a predetermined current supplied from a constant current power supply 1 is applied to filaments 4a, 4b,
4c and 4d, each filament generates heat according to Joule's law. On the other hand, pure carrier gas flows through the comparison gas flow path 2 and the filament 4
A carrier gas, which may contain a sample gas, flows through the measurement gas flow path 3 and removes heat from the filaments 4b and 4d. Then, the thermal balance of each filament changes depending on the thermal conductivity of the sample gas, and an unbalanced voltage is generated in the Wheatstone bridge. After the unbalanced voltage is amplified by the differential amplifier 5, A subtraction circuit consisting of a variable voltage power supply 7 and a differential amplifier 6 subtracts the base voltage fluctuation and the initial value of the unbalanced voltage to provide an output signal Eout. The output Eout corresponds to the thermal conductivity of the sample gas, and the output Eout
The sample gas is then qualitatively or quantitatively determined.

然し乍ら、上記従来例においては、フイラメン
ト4a,4b,4c,4dは製品価格が高価な
上、機械的振動にも弱く、またキヤリアガスの流
れが停止するとキヤリアガスによるフイラメント
の冷却が妨げられてフイラメントの発熱が暴走
し、フイラメントの絶縁が害されたり溶断したり
する等の欠点があつた。
However, in the above-mentioned conventional example, the filaments 4a, 4b, 4c, and 4d are not only expensive but also susceptible to mechanical vibrations, and when the flow of the carrier gas is stopped, cooling of the filaments by the carrier gas is hindered, causing heat generation of the filaments. There were drawbacks such as runaway, damaging the insulation of the filament and causing it to melt.

本考案は、かかる欠点に鑑みてなされたもので
あり、その目的は、熱伝導度検出器に使用される
熱伝導度検出端として一般に用いられているタン
グステンフイラメントに比して、機械的振動に強
く且つ量産可能で廉価な熱伝導度検出素子を有す
る熱伝導度検出器を提供するにある。
The present invention was developed in view of these drawbacks, and its purpose is to make it more resistant to mechanical vibrations than the tungsten filament commonly used as a thermal conductivity detection end used in thermal conductivity detectors. It is an object of the present invention to provide a thermal conductivity detector having a strong, mass-producible, and inexpensive thermal conductivity detection element.

本考案の特徴は、熱伝導度を利用して測定ガス
の検出を行なう熱伝導度検出器において、熱電導
性のよいヒートシンクに塔戴された絶縁基板上に
抵抗温度係数が大きい薄膜抵抗を設けてなるもの
を検出素子として用いたことにある。
The feature of this invention is that in a thermal conductivity detector that detects a gas to be measured using thermal conductivity, a thin film resistor with a large temperature coefficient of resistance is installed on an insulating substrate mounted on a heat sink with good thermal conductivity. The reason is that a material made of

以下、本考案について図を用いて詳細に説明す
る。第2図は、本考案の一実施例を示す回路説明
図であり、図中、8a,8b,8c,8dは本考
案に係る検出素子である。尚、第2図において、
第1図と同一記号は同一意味をもたせて使用し、
ここでの説明は省略する。また、第3図は、検出
素子8a,8b,8c,8dの平面図イと側面図
ロであり、図中、9は例えば白金が細帯状に付着
されてなる薄膜抵抗、10a,10bは接続端
子、11は絶縁性材料で基板、12は熱伝導性の
よいヒートシンクである。
Hereinafter, the present invention will be explained in detail using figures. FIG. 2 is a circuit explanatory diagram showing one embodiment of the present invention, and in the figure, 8a, 8b, 8c, and 8d are detection elements according to the present invention. In addition, in Figure 2,
The same symbols as in Figure 1 are used with the same meaning.
The explanation here will be omitted. FIG. 3 is a plan view (A) and a side view (B) of the detection elements 8a, 8b, 8c, and 8d. In the figure, 9 is a thin film resistor made of thin strips of platinum, for example, and 10a, 10b are connections. A terminal, 11 is a substrate made of an insulating material, and 12 is a heat sink having good thermal conductivity.

以下、本考案の実施例について詳述する。第2
図において、定電流電源1から供給された所定の
電流が、検出素子8a,8b,8c,8dに供給
され、各検出素子の薄膜抵抗で所定量の発熱が行
なわれている。一方、比較ガス用流路2には、純
粋なキヤリアガスが流れて検出素子8a,8cの
薄膜抵抗から熱を奪い、測定用ガス流路3にはサ
ンプルガスを含むことのあるキヤリアガスが流れ
て検出素子8b,8dの薄膜抵抗から熱を奪う。
而して、サンプルガスの熱伝導度に応じて各検出
素子における薄膜抵抗の熱バランスが変化してホ
イートストーンブリツジに不平衡電圧が発生す
る。該不平衡電圧は差動増幅器5によつて増幅さ
れたのち、可変電圧電源7と差動増幅器6からな
る減算回路でベース電圧変動および不平衡電圧の
初期値が減算されて出力信号Eoutが与えられ
る。該出力Eoutは、サンプルガスの熱伝導度に
対応しており、該出力Eoutからサンプルガスの
定性若しくは定量が行なわれる。更に、第3図に
おいて、薄膜抵抗9の発熱がキヤリアガス等によ
つて奪われる熱量より多い場合には、基板11に
付着されているヒートシンク12によつて余分の
熱量が放熱される。
Examples of the present invention will be described in detail below. Second
In the figure, a predetermined current supplied from a constant current power source 1 is supplied to detection elements 8a, 8b, 8c, and 8d, and a predetermined amount of heat is generated by the thin film resistor of each detection element. On the other hand, a pure carrier gas flows through the comparison gas flow path 2 and removes heat from the thin film resistors of the detection elements 8a and 8c, and a carrier gas that may contain sample gas flows through the measurement gas flow path 3 for detection. Heat is removed from the thin film resistors of elements 8b and 8d.
Thus, the thermal balance of the thin film resistors in each detection element changes depending on the thermal conductivity of the sample gas, and an unbalanced voltage is generated in the Wheatstone bridge. The unbalanced voltage is amplified by a differential amplifier 5, and then the base voltage fluctuation and the initial value of the unbalanced voltage are subtracted by a subtraction circuit consisting of a variable voltage power supply 7 and a differential amplifier 6 to provide an output signal Eout. It will be done. The output Eout corresponds to the thermal conductivity of the sample gas, and the sample gas is qualitatively or quantitatively determined from the output Eout. Furthermore, in FIG. 3, when the heat generated by the thin film resistor 9 is greater than the amount of heat removed by the carrier gas, the excess amount of heat is radiated by the heat sink 12 attached to the substrate 11.

以上、詳しく説明したような本考案の実施例に
よれば、キヤリアガスの流れが停止してキヤリア
ガスによる放熱が妨げられた場合であつても、薄
膜抵抗における余剰の熱量はヒートシンクによつ
て放熱されるために、前記従来例と異なり、検出
素子の発熱が暴走し検出素子の絶縁が害されたり
溶断したりすることはない。また、本考案実施例
における薄膜抵抗は、前記従来例のフイラメント
に比して、量産に適して製品価格が安く且つ機械
的振動にも強いという利点も有している。
According to the embodiment of the present invention as described in detail above, even if the flow of the carrier gas is stopped and the heat dissipation by the carrier gas is prevented, the excess heat in the thin film resistor is dissipated by the heat sink. Therefore, unlike the conventional example, the heat generation of the detection element will not run out of control and the insulation of the detection element will not be damaged or it will not melt. Furthermore, the thin film resistor according to the embodiment of the present invention has the advantage that it is suitable for mass production, has a low product price, and is resistant to mechanical vibrations, as compared to the filament of the conventional example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の熱伝導度検出器の回路説明
図、第2図は、本考案実施例の回路説明図、第3
図は、本考案に係る検出素子を示す平面図と側面
図である。 1……定電流電源、2……参照ガス用流路、3
……測定ガス用流路、4a,4b,4c,4d…
…フイラメント、5,6……差動増幅器、7……
可変抵抗器、8a,8b,8c,8d……検出素
子、9……薄膜抵抗、10a,10b……接続端
子、11……基盤、12……ヒートシンク。
Fig. 1 is a circuit explanatory diagram of a conventional thermal conductivity detector, Fig. 2 is a circuit explanatory diagram of an embodiment of the present invention, and Fig. 3 is an explanatory diagram of a circuit of a conventional thermal conductivity detector.
The figures are a plan view and a side view showing a detection element according to the present invention. 1... Constant current power supply, 2... Reference gas flow path, 3
...Measuring gas flow path, 4a, 4b, 4c, 4d...
...Filament, 5, 6...Differential amplifier, 7...
Variable resistor, 8a, 8b, 8c, 8d...Detection element, 9...Thin film resistor, 10a, 10b...Connection terminal, 11...Base, 12...Heat sink.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 測定ガスが供給される測定ガス流路と、参照ガ
スが供給される比較ガス流路とに、それぞれ抵抗
温度係数が大きい抵抗器からなる検出素子を配置
してこれら検出素子に通電し、測定ガスと参照ガ
スの熱伝導度の差に対応した検出素子間の相対的
抵抗変化に基づいて測定ガスの成分を検出する熱
伝導度検出器において、検出素子として熱電導性
のよいヒートシンクに塔戴された絶縁基板上に抵
抗温度係数が大きい薄膜抵抗を設けてなるものを
用いたことを特徴とする熱伝導度検出器。
Detection elements consisting of resistors with large resistance temperature coefficients are arranged in the measurement gas flow path where the measurement gas is supplied and the comparison gas flow path where the reference gas is supplied, and these detection elements are energized. In a thermal conductivity detector that detects the components of a measurement gas based on the relative resistance change between the detection element corresponding to the difference in thermal conductivity between the gas and the reference gas, the detection element is mounted on a heat sink with good thermal conductivity. A thermal conductivity detector characterized in that it uses a thin film resistor having a large resistance temperature coefficient on an insulating substrate.
JP1980088445U 1980-06-24 1980-06-24 Expired JPS6242368Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980088445U JPS6242368Y2 (en) 1980-06-24 1980-06-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980088445U JPS6242368Y2 (en) 1980-06-24 1980-06-24

Publications (2)

Publication Number Publication Date
JPS5716855U JPS5716855U (en) 1982-01-28
JPS6242368Y2 true JPS6242368Y2 (en) 1987-10-30

Family

ID=29450522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980088445U Expired JPS6242368Y2 (en) 1980-06-24 1980-06-24

Country Status (1)

Country Link
JP (1) JPS6242368Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262668U (en) * 1985-10-07 1987-04-18
JP5409076B2 (en) * 2009-03-27 2014-02-05 株式会社堀場製作所 Thermal conductivity sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492788A (en) * 1977-12-30 1979-07-23 Weber Guenther Device for measuring heat transfer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492788A (en) * 1977-12-30 1979-07-23 Weber Guenther Device for measuring heat transfer

Also Published As

Publication number Publication date
JPS5716855U (en) 1982-01-28

Similar Documents

Publication Publication Date Title
US4320655A (en) Quantity of flow meter
KR960015065B1 (en) Control and detection circuitry for mass air-flow sensors
JPH0476412B2 (en)
US5837884A (en) Humidity sensor using temperature sensing resistor controlled to be at constant temperature of more than 150° C.
JP3343801B2 (en) Humidity sensor
US4850714A (en) Apparatus for measuring the thermal conductivity of gases
KR100486141B1 (en) Thermosensitive flow rate detecting device
WO1999028732A1 (en) Differential scanning calorimeter
JPS6242368Y2 (en)
JP2946400B2 (en) Heating resistor temperature control circuit
JPH0318935Y2 (en)
JP3386250B2 (en) Thermal dependency detector
JPS5716343A (en) Thermal conductivity detector
US5148707A (en) Heat-sensitive flow sensor
JPS60194347A (en) Hydrogen gas sensor
JPH08184575A (en) Humidity sensor
US2477526A (en) Thermometric instrument for measuring impregnite in cloth
Katzmann et al. Thin-film AC-DC converter with thermoresistive sensing
JPH06249864A (en) Wind speed sensor
JP3363983B2 (en) Heat wire type acceleration detector
JPH0712771A (en) Gas detector
JP3163558B2 (en) Flow velocity detector
JPH05107099A (en) Liquid level meter
JPH04116464A (en) Fluid velocity sensor
JPH05223770A (en) Heat conduction type absolute humidity sensor