JPS6242334B2 - - Google Patents

Info

Publication number
JPS6242334B2
JPS6242334B2 JP55091481A JP9148180A JPS6242334B2 JP S6242334 B2 JPS6242334 B2 JP S6242334B2 JP 55091481 A JP55091481 A JP 55091481A JP 9148180 A JP9148180 A JP 9148180A JP S6242334 B2 JPS6242334 B2 JP S6242334B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
circuit
resistor
signal processing
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55091481A
Other languages
Japanese (ja)
Other versions
JPS5718021A (en
Inventor
Koichi Ikata
Masaaki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9148180A priority Critical patent/JPS5718021A/en
Publication of JPS5718021A publication Critical patent/JPS5718021A/en
Publication of JPS6242334B2 publication Critical patent/JPS6242334B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • G11B5/588Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads
    • G11B5/592Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Control Of Position Or Direction (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【発明の詳細な説明】 本発明は、バイモルフ形ピエゾ素子などの圧電
素子を用いて回転ビデオヘツドなどの機械的位置
を変位させるオート・トラツキング装置に使用し
て有効な圧電素子駆動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a piezoelectric element drive device that is effective for use in an auto-tracking device that uses a piezoelectric element such as a bimorph piezo element to displace the mechanical position of a rotating video head or the like. be.

近年、ビデオテープレコーダなどの磁気テープ
を用いた映像信号磁気記録再生装置または映像信
号磁気再生装置において、再生時に、記録された
トラツクを正確に走査する目的で、いわゆるオー
ト・トラツキング装置が導入され始めた。このオ
ート・トラツキング装置は、記録時のテープ走行
速度と異なつた走行速度で再生するスロー再生、
スチル再生、フアースト再生および逆転再生など
の特殊モード再生において、ノイズバンドのない
再生画像を提供することが可能である。このよう
なオート・トラツキング装置は通常、映像信号再
生用ビデオヘツドを圧電素子の自由端に取り付
け、磁気テープ上のビデオトラツクに対応した電
圧振幅波形を上記圧電素子に供給することによ
り、上記ビデオトラツクをトレースするものであ
る。しかし、上記圧電素子に上記電圧振幅波形を
印加すると上記圧電素子の機械的共振周波数を持
つた機械振動(いわゆるリンギング)が生じ、上
述したトレースが困難になるという問題があつ
た。従来は、この問題を解決するために、上記圧
電素子と共に変位する別の発電用圧電素子を設
け、この発電用圧電素子の出力電圧波形を上記電
圧振幅波形に帰還することにより、上記リンギン
グのダンピングを行うという手段が提案されてい
る。しかしながら、これらの従来例においては、
変位を起こすための圧電素子以外に上記発電用の
圧電素子が必要であるため、構造が複雑になり、
信頼性が低下すると共にコスト高になるという問
題があつた。
In recent years, so-called auto-tracking devices have been introduced for the purpose of accurately scanning recorded tracks during playback in video signal magnetic recording and reproducing devices or video signal magnetic reproducing devices that use magnetic tape, such as video tape recorders. Ta. This auto-tracking device is capable of slow playback, which plays back at a tape running speed that is different from the tape running speed at the time of recording.
In special mode playback such as still playback, fast playback, and reverse playback, it is possible to provide a playback image free of noise bands. Such an auto-tracking device usually attaches a video head for reproducing video signals to the free end of a piezoelectric element, and supplies a voltage amplitude waveform corresponding to the video track on a magnetic tape to the piezoelectric element. It is used to trace. However, when the voltage amplitude waveform is applied to the piezoelectric element, mechanical vibration (so-called ringing) occurs due to the mechanical resonance frequency of the piezoelectric element, making the above-mentioned tracing difficult. Conventionally, in order to solve this problem, another power generation piezoelectric element that is displaced together with the above piezoelectric element is provided, and the output voltage waveform of this power generation piezoelectric element is fed back to the above voltage amplitude waveform, thereby damping the ringing. A method has been proposed to do this. However, in these conventional examples,
In addition to the piezoelectric element for causing displacement, the piezoelectric element for power generation is required, which makes the structure complicated.
There were problems of decreased reliability and increased cost.

本発明は、変位を起こすための圧電素子の有す
る特性を巧みに利用することにより、上述した共
振点付近の周波数における機械振動を除去せんと
するものである。以下、本発明を図示の実施例に
基いて説明する。第1図は本発明の一実施例を示
す要部構成図である。同図において、1なバイモ
ルフ構造の短冊形圧電素子を示している。圧電素
子1の先端にはビデオヘツド2が取り付けられて
おり、圧電素子1の後端は支持物3に固定されて
いる。この圧電素子1は例えば第2図に例示する
ように、両面に電極が装着された2枚の圧電屈曲
型振動子1′,1″を貼合せた構造のもので、その
厚さ方向が分極の方向とされているため、振動子
1′,1″の電極に接続された端子4a,4b間に
電圧を供給すると、その印加電圧の大きさに応じ
て振動子1′,1″は分極方向にたわむことにな
る。すなわち機械的に変位する。5は圧電素子駆
動信号発生器であり、その出力は、加算器6、増
幅器7を介して上記圧電素子1の端子4aに印加
される。また、圧電素子1のもう一方の端子4b
は、低抵抗8を介して接地されている。この低抵
抗8により、圧電素子1に流出する電流を電圧信
号に変換している。その電流−電圧変換信号すな
わち、低抵抗8の両端に得られる電圧は、フイル
タ9、移相器10、および利得調整ボリユーム1
1を介して前記加算器6に負帰還される。
The present invention attempts to eliminate mechanical vibrations at frequencies near the resonance point described above by skillfully utilizing the characteristics of a piezoelectric element for causing displacement. Hereinafter, the present invention will be explained based on illustrated embodiments. FIG. 1 is a block diagram of main parts showing an embodiment of the present invention. In the figure, a rectangular piezoelectric element with a bimorph structure is shown. A video head 2 is attached to the tip of the piezoelectric element 1, and the rear end of the piezoelectric element 1 is fixed to a support 3. As illustrated in FIG. 2, this piezoelectric element 1 has a structure in which two piezoelectric bending type vibrators 1' and 1'' are laminated together with electrodes attached on both sides, and the thickness direction is polarized. Therefore, when a voltage is supplied between the terminals 4a and 4b connected to the electrodes of the vibrators 1' and 1'', the vibrators 1' and 1'' will polarize depending on the magnitude of the applied voltage. 5 is a piezoelectric element drive signal generator, the output of which is applied to the terminal 4a of the piezoelectric element 1 via an adder 6 and an amplifier 7. In addition, the other terminal 4b of the piezoelectric element 1
is grounded via a low resistance 8. This low resistance 8 converts the current flowing into the piezoelectric element 1 into a voltage signal. The current-voltage conversion signal, that is, the voltage obtained across the low resistance 8, is transmitted through the filter 9, the phase shifter 10, and the gain adjustment volume 1.
1 and is negatively fed back to the adder 6.

以上の構成は、2ヘツドヘリカルスキヤン型の
ビデオテープレコーダ(以下、VTRと称す)の
オート・トラツキング装置の一部を示したもので
あるが、実際の2ヘツド用オート・トラツキング
装置としては、第1図に示したものと、ほぼ同一
の系がもう一組必要であるが、第1図では省略し
ている。なお、本構成は1ヘツドヘリカルスキヤ
ン型VTRあるいは、その他のタイプのVTRにも
使用できることはいうまでもない。
The above configuration shows part of an auto-tracking device for a two-head helical scan type video tape recorder (hereinafter referred to as VTR), but as an actual two-head auto-tracking device, the Another set of almost the same system as shown in FIG. 1 is required, but it is omitted in FIG. It goes without saying that this configuration can also be used for a one-head helical scan type VTR or other types of VTRs.

圧電素子駆動信号発生器5からは、磁気テープ
(図示せず)上のビデオトラツクを前記ビデオヘ
ツド2が正確にトレースするような波形をもつ駆
動信号が与えられる。その出力信号波形の一例を
第3図に示す。第3図の波形は、2ヘツドヘリカ
ルスキヤン型VTRにおいて、記録時の磁気テー
プ走行速度の3倍の速度で再生した時の波形の一
例である。なお、第3図において、電圧振幅V
は、上記圧電素子1がビデオトラツク(図示せ
ず)の2ピツチ分変位するのに相当する電圧であ
り、このような電圧に対応して上記圧電素子1が
変位すれば、ビデオヘツド2は、ビデオトラツク
をオン・トラツクで走査することができる。
A piezoelectric element drive signal generator 5 provides a drive signal having a waveform such that the video head 2 accurately traces a video track on a magnetic tape (not shown). An example of the output signal waveform is shown in FIG. The waveform shown in FIG. 3 is an example of a waveform when a two-head helical scan VTR reproduces the magnetic tape at a speed three times the running speed of the magnetic tape at the time of recording. In addition, in FIG. 3, the voltage amplitude V
is a voltage corresponding to the displacement of the piezoelectric element 1 by two pitches of a video track (not shown), and if the piezoelectric element 1 is displaced in response to such a voltage, the video head 2 will be moved as follows. Video tracks can be scanned on-track.

第3図に示した波形が圧電素子駆動信号発生器
5から出力され、加算器6に入力される。
The waveform shown in FIG. 3 is output from the piezoelectric element drive signal generator 5 and input to the adder 6.

第4図は前記移相器10の出力信号が利得調整
用ボリユーム11を介して上記加算器6に供給さ
れない場合、すなわち、負帰還ループが成立して
いない状態のビデオヘツド2の先端変位を表わし
た図である。なお、上記圧電素子1の先端変位は
第4図とほぼ同一あるいは、ほぼ比例関係を呈
す。このような負帰還ループが成立していない場
合の上記圧電素子の電流−周波数特性を第5図に
示す。第5図において、横軸は周波数で、縦軸が
電流である。圧電素子1は、第6図の等価回路で
表わされるので、圧電素子1に流入する電流が異
常に増大する周波数nは次式で与えられる。
FIG. 4 shows the tip displacement of the video head 2 when the output signal of the phase shifter 10 is not supplied to the adder 6 via the gain adjustment volume 11, that is, when the negative feedback loop is not established. This is a diagram. Note that the displacement of the tip of the piezoelectric element 1 is approximately the same as that shown in FIG. 4, or exhibits an almost proportional relationship. FIG. 5 shows the current-frequency characteristics of the piezoelectric element when such a negative feedback loop is not established. In FIG. 5, the horizontal axis is frequency and the vertical axis is current. Since the piezoelectric element 1 is represented by the equivalent circuit shown in FIG. 6, the frequency n at which the current flowing into the piezoelectric element 1 abnormally increases is given by the following equation.

第4図におけるリンギングは、上記圧電素子1
およびビデオヘツド2の機械的共振周波数で生じ
る機械的振動であり、機械的共振周波数は圧電素
子1に流出入する電流の異常に増大する周波数
nと同じである。リンギングが生じると、ビデオ
ヘツド2は、ビデオトラツク(図示せず)を正確
にトレースすることができないという問題が生じ
る。圧電素子1に流出入する電流を、低抵抗8に
より電流−電圧変換して、フイルタ9を通した出
力電圧の一例を第7図に示す。ここで、フイルタ
9は、前記機械的共振周波数を通過帯域にもつバ
ンドパスフイルタである。このフイルタ9の出力
電圧を適切なる移相器10および利得(振幅)調
整用ボリユーム11を介して前記加算器6に供給
し、負帰還ループを形成することにより、上記リ
ンギングは第8図に示すように除去される。ここ
で、移相器10はフイルタ9の出力信号の位相
を、上記リンギングが除去されるような位相に移
相する役目をなし、これは、たとえば第9図に示
すような回路構成となつている。第9図におい
て、移相器10は入力端子29、結合コンデンサ
19、バイアス抵抗器20および21、コレクタ
抵抗器22,トランジスタ23、エミツタ抵抗器
24、移相用半固定抵抗器25、移相用コンデン
サ26、電源端子27、接地端子28および出力
端子30で構成されている。
The ringing in FIG. 4 is caused by the piezoelectric element 1
This is a mechanical vibration that occurs at the mechanical resonance frequency of the video head 2, and the mechanical resonance frequency is the frequency at which the current flowing in and out of the piezoelectric element 1 abnormally increases.
Same as n . When ringing occurs, a problem arises in that the video head 2 cannot accurately trace a video track (not shown). FIG. 7 shows an example of the output voltage after the current flowing in and out of the piezoelectric element 1 is converted into voltage by the low resistance 8 and passed through the filter 9. Here, the filter 9 is a bandpass filter whose passband includes the mechanical resonance frequency. By supplying the output voltage of this filter 9 to the adder 6 via an appropriate phase shifter 10 and a gain (amplitude) adjusting volume 11 to form a negative feedback loop, the ringing can be eliminated as shown in FIG. will be removed as follows. Here, the phase shifter 10 serves to shift the phase of the output signal of the filter 9 to a phase such that the above-mentioned ringing is removed. There is. In FIG. 9, the phase shifter 10 includes an input terminal 29, a coupling capacitor 19, bias resistors 20 and 21, a collector resistor 22, a transistor 23, an emitter resistor 24, a semi-fixed phase shift resistor 25, and a phase shift resistor 25. It is composed of a capacitor 26, a power terminal 27, a ground terminal 28, and an output terminal 30.

このようにして機械的共振周波数付近の電流を
検出して、負帰還ループが成立した時の前記ビデ
オヘツド2の先端変位は、第8図に示すように、
実用上問題とならないレベルにまでリンギングが
減少したものとなる。
When the current near the mechanical resonance frequency is detected in this way and a negative feedback loop is established, the displacement of the tip of the video head 2 is as shown in FIG.
The ringing is reduced to a level that does not pose a practical problem.

第10図に本発明の他の実施例を示す。 FIG. 10 shows another embodiment of the present invention.

同図において、1は先述の実施例で説明したと
同様のバイモルフ構造の短冊形圧電素子を示して
いる。同様に、圧電素子1の先端にはビデオヘツ
ド2が取り付けられており、圧電素子1の後端は
支持物3に固定されている。圧電素子駆動信号発
生器5の出力信号は加算器6、増幅器7を介して
上記圧電素子1の端子4aに印加される。さら
に、上記増幅器7の出力信号は、コンデンサ12
にも加えられる。なお、コンデンサ12の容量
は、上記圧電素子1の電極間容量Cpとほぼ等し
い値に設定する。また、圧電素子1のもう一方の
端子4bは低抵抗8を介して接地されている。同
様にコンデンサ12のもう一方の端子も低抵抗1
3を介して接地されている。この場合、低抵抗8
および13の抵抗値は同一に設定する。上記低抵
抗8および13により、圧電素子1およびコンデ
ンサ12に流出入する電流をそれぞれ電圧信号に
変換している。圧電素子1側の電流−電圧変換信
号すなわち低抵抗8の両端電圧は抵抗14を介し
て演算増幅器16の(+)端子に入力され、コン
デンサ12側の電流−電圧変換信号すなわち低抵
抗13の両端電圧は、抵抗15を介して上記演算
増幅器16の(−)端子に入力される。上記演算
増幅器16の差動利得は、抵抗17および抵抗1
8によつて定められる。ここで、コンデンサ12
の電流−周波数特性を第11図に示す。同第11
図において、横軸は周波数であり、縦軸は電流で
ある。この特性を前述の圧電素子1の電流−周波
数特性を示す第5図と比べてみると、圧電素子1
の電極間容量とコンデンサ12の容量は、ほぼ同
一のため傾斜は同じで、圧電素子に流出入する電
流が異常に増大する機械的共振周波数付近および
機械的***振周波数付近のみ異なる。したがつ
て、演算増幅器16にて両方の差電流(差電圧)
を取りだすと、その演算増幅器16の出力電圧は
例えば第7図に示すような波形となる。上記演算
増幅器16の出力電圧を適切なる移相器10およ
び利得調整用ボリユーム11を介して、上記加算
器6に供給し、負帰還ループを形成することによ
り、リンギングは先述の実施例と同様に第8図に
示すごとく除去される。
In the figure, reference numeral 1 indicates a rectangular piezoelectric element having a bimorph structure similar to that described in the previous embodiment. Similarly, a video head 2 is attached to the tip of the piezoelectric element 1, and the rear end of the piezoelectric element 1 is fixed to a support 3. The output signal of the piezoelectric element drive signal generator 5 is applied to the terminal 4a of the piezoelectric element 1 via an adder 6 and an amplifier 7. Furthermore, the output signal of the amplifier 7 is connected to the capacitor 12.
It can also be added to Note that the capacitance of the capacitor 12 is set to a value approximately equal to the interelectrode capacitance C p of the piezoelectric element 1 . Further, the other terminal 4b of the piezoelectric element 1 is grounded via a low resistance 8. Similarly, the other terminal of the capacitor 12 has low resistance 1.
It is grounded via 3. In this case, low resistance 8
The resistance values of and 13 are set to be the same. The low resistances 8 and 13 convert the currents flowing into and out of the piezoelectric element 1 and the capacitor 12 into voltage signals, respectively. The current-voltage conversion signal on the piezoelectric element 1 side, that is, the voltage across the low resistance 8, is input to the (+) terminal of the operational amplifier 16 via the resistor 14, and the current-voltage conversion signal on the capacitor 12 side, that is, the voltage across the low resistance 13, is input to the (+) terminal of the operational amplifier 16. The voltage is input to the (-) terminal of the operational amplifier 16 via the resistor 15. The differential gain of the operational amplifier 16 is determined by the resistance 17 and the resistance 1.
8. Here, capacitor 12
FIG. 11 shows the current-frequency characteristics of . Same 11th
In the figure, the horizontal axis is frequency and the vertical axis is current. Comparing this characteristic with FIG. 5 showing the current-frequency characteristics of the piezoelectric element 1 described above, it is found that the piezoelectric element 1
Since the capacitance between the electrodes and the capacitance of the capacitor 12 are almost the same, the slopes are the same, and only the difference is near the mechanical resonance frequency and the mechanical anti-resonance frequency where the current flowing into and out of the piezoelectric element increases abnormally. Therefore, in the operational amplifier 16, both difference currents (differential voltages)
, the output voltage of the operational amplifier 16 has a waveform as shown in FIG. 7, for example. By supplying the output voltage of the operational amplifier 16 to the adder 6 via an appropriate phase shifter 10 and gain adjustment volume 11 to form a negative feedback loop, ringing can be suppressed as in the previous embodiment. It is removed as shown in FIG.

なお、第1図および第10図に示した実施例に
おいては、圧電素子1の形状を短冊形にしたが、
第12図に例示するごとき半円還形状でも、また
は第13図に例示するごとき、円環形状の構造と
しても同等の効果が得られる。なお第12図にお
いて、31は圧電素子を示す。第13図におい
て、32は圧電素子を示し、33,34はそれを
固定する支持物を示す。
In the embodiments shown in FIGS. 1 and 10, the shape of the piezoelectric element 1 is a rectangular shape.
The same effect can be obtained even with a semicircular shape as illustrated in FIG. 12 or a toroidal structure as illustrated in FIG. 13. In addition, in FIG. 12, 31 indicates a piezoelectric element. In FIG. 13, 32 indicates a piezoelectric element, and 33 and 34 indicate supports for fixing it.

なお、以上の説明では圧電素子の共振点付近の
周波数として、機械的共振周波数(n)を用い
て説明したが、第5図における電流の谷を示す周
波数すなわち機械的***振周波数を含めても同様
の負帰還ループが成立する。
In the above explanation, the mechanical resonance frequency ( n ) was used as the frequency near the resonance point of the piezoelectric element, but it is also possible to include the frequency indicating the valley of the current in Fig. A similar negative feedback loop is established.

以上のように本発明は、前述の従来例のように
発電用の圧電素子を必要とせず、圧電素子の共振
点付近の電流を検出し、入力側へ負帰還をかける
ことにより、前述したようなリンギングの減少効
果を簡単な構成で確実に得ることができるもので
あり、特に前述のVTRのオート・トラツキング
装置に応用して極めて有効なものである。
As described above, the present invention does not require a piezoelectric element for power generation unlike the conventional example described above, but detects the current near the resonance point of the piezoelectric element and applies negative feedback to the input side. It is possible to reliably obtain a ringing reduction effect with a simple configuration, and it is extremely effective especially when applied to the above-mentioned VTR auto-tracking device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部構成図、第2
図は本発明に用いる圧電素子の構成例を示す図、
第3図は第1図における圧電素子駆動信号波形
図、第4図は第1図におけるビデオヘツドの先端
変位の一例を示した図、第5図は圧電素子の電流
−周波数特性図、第6図は圧電素子の等価回路
図、第7図および第8図は第1図の各部の信号波
形図、第9図は移相器の構成図、第10図は本発
明の他の実施例の要部構成図、第11図はコンデ
ンサの電流−周波数特性例図、第12図および第
13図は本発明で使用し得る圧電素子の別の形状
例を示した図である。 1,31,32……圧電素子、5……圧電素子
駆動信号発生器、6……加算器、7……増幅器、
8……抵抗器、9……フイルタ、10……移相
器、11……利得調整用ボリユーム、12……コ
ンデンサ、13……低抵抗、16……演算増幅
器。
Fig. 1 is a main part configuration diagram of an embodiment of the present invention, Fig. 2
The figure shows an example of the configuration of a piezoelectric element used in the present invention,
3 is a piezoelectric element drive signal waveform diagram in FIG. 1, FIG. 4 is a diagram showing an example of the tip displacement of the video head in FIG. 1, FIG. 5 is a current-frequency characteristic diagram of the piezoelectric element, and FIG. The figure is an equivalent circuit diagram of a piezoelectric element, Figures 7 and 8 are signal waveform diagrams of each part in Figure 1, Figure 9 is a configuration diagram of a phase shifter, and Figure 10 is a diagram of another embodiment of the present invention. FIG. 11 is a diagram showing an example of current-frequency characteristics of a capacitor, and FIGS. 12 and 13 are diagrams showing other examples of shapes of piezoelectric elements that can be used in the present invention. 1, 31, 32...piezoelectric element, 5...piezoelectric element drive signal generator, 6...adder, 7...amplifier,
8...Resistor, 9...Filter, 10...Phase shifter, 11...Gain adjustment volume, 12...Capacitor, 13...Low resistance, 16...Operation amplifier.

Claims (1)

【特許請求の範囲】 1 圧電素子駆動信号を圧電素子の電極間に供給
することにより該圧電素子を機械的に変位させる
ようにした駆動回路と、前記圧電素子の共振点も
しくは、その付近において流れる電流に相当する
電気信号を得る信号処理回路と、その信号処理回
路の出力信号を前記駆動回路の入力側へ負帰還す
る負帰還回路を具備してなり、前記信号処理回路
は、前記圧電素子の給電路中に直列に挿入された
抵抗と、その抵抗の両端電圧が入力され、かつ前
記圧電素子の機械的共振周波数を通過帯域にもつ
バンドパスフイルタを含めて構成され、前記負帰
還回路は、前記バンドパスフイルタの出力位相を
移相する移相器および振幅調整器を含めて構成さ
れていることを特徴とする圧電素子駆動装置。 2 圧電素子駆動信号を圧電素子の電極間に供給
することにより該圧電素子を機械的に変位させる
ようにした駆動回路と、前記圧電素子の共振点も
しくは、その付近において流れる電流に相当する
電気信号を得る信号処理回路と、その信号処理回
路の出力信号を前記駆動回路の入力側へ負帰還す
る負帰還回路を具備してなり、前記信号処理回路
は、前記圧電素子の給電路中に直列に挿入された
第1の抵抗と、前記圧電素子と前記第1の抵抗の
直列接続回路に対して並列に接続されたコンデン
サと第2の抵抗の直列回路と、前記第1の抵抗の
両端および前記第2の抵抗の両端からそれぞれ得
られる電圧の差を得る演算増幅器を含めて構成さ
れ、かつ前記コンデンサの容量を前記圧電素子の
電極間容量と等しく、もしくは、ほぼ等しく、前
記第1および第2の抵抗の値を等しく、もしく
は、ほぼ等しく選定したことを特徴とする圧電素
子駆動装置。
[Scope of Claims] 1. A drive circuit that mechanically displaces the piezoelectric element by supplying a piezoelectric element drive signal between the electrodes of the piezoelectric element, and a drive circuit that mechanically displaces the piezoelectric element by supplying a piezoelectric element drive signal between the electrodes of the piezoelectric element, and The signal processing circuit includes a signal processing circuit that obtains an electric signal corresponding to a current, and a negative feedback circuit that negatively feeds back an output signal of the signal processing circuit to the input side of the drive circuit, and the signal processing circuit The negative feedback circuit includes a resistor inserted in series in a power supply path, and a bandpass filter to which the voltage across the resistor is input and whose passband is the mechanical resonance frequency of the piezoelectric element, and the negative feedback circuit includes: A piezoelectric element driving device characterized in that it is configured to include a phase shifter and an amplitude adjuster that shift the output phase of the bandpass filter. 2. A drive circuit that mechanically displaces the piezoelectric element by supplying a piezoelectric element drive signal between the electrodes of the piezoelectric element, and an electric signal corresponding to a current flowing at or near the resonance point of the piezoelectric element. and a negative feedback circuit that negatively feeds back an output signal of the signal processing circuit to the input side of the drive circuit, and the signal processing circuit is connected in series in a power supply path of the piezoelectric element. a first resistor inserted; a series circuit of a capacitor and a second resistor connected in parallel to the series connection circuit of the piezoelectric element and the first resistor; The capacitor is configured to include an operational amplifier that obtains a difference between the voltages obtained from both ends of the second resistor, and the capacitance of the capacitor is equal to or approximately equal to the inter-electrode capacitance of the piezoelectric element, and A piezoelectric element driving device characterized in that the resistance values of are selected to be equal or approximately equal.
JP9148180A 1980-07-03 1980-07-03 Driving device of piezoelectric element Granted JPS5718021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9148180A JPS5718021A (en) 1980-07-03 1980-07-03 Driving device of piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9148180A JPS5718021A (en) 1980-07-03 1980-07-03 Driving device of piezoelectric element

Publications (2)

Publication Number Publication Date
JPS5718021A JPS5718021A (en) 1982-01-29
JPS6242334B2 true JPS6242334B2 (en) 1987-09-08

Family

ID=14027590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9148180A Granted JPS5718021A (en) 1980-07-03 1980-07-03 Driving device of piezoelectric element

Country Status (1)

Country Link
JP (1) JPS5718021A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237110A (en) * 1985-04-15 1986-10-22 Sanyo Electric Co Ltd Piezoelectric element driving device
JPS6263317A (en) * 1986-09-16 1987-03-20 Hitachi Ltd Minute displacement generator
JPH0816206B2 (en) * 1987-12-28 1996-02-21 株式会社サクラクレパス Aqueous erasable marking pen ink composition
JPH0644545A (en) * 1991-12-24 1994-02-18 Mitsubishi Electric Corp Magnetic recording/reproducing device
JP2550461B2 (en) * 1992-06-02 1996-11-06 トウフク株式会社 Construction material and its manufacturing method
JPH073910A (en) * 1993-04-30 1995-01-06 Takeshi Doi Manufacture of non-combustible building material by recycling of resources

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117107A (en) * 1976-03-19 1977-10-01 Ampex Device for braking deflecting transducer vibration
JPS573496A (en) * 1980-06-06 1982-01-08 Matsushita Electric Ind Co Ltd Piezoelectric element drive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117107A (en) * 1976-03-19 1977-10-01 Ampex Device for braking deflecting transducer vibration
JPS573496A (en) * 1980-06-06 1982-01-08 Matsushita Electric Ind Co Ltd Piezoelectric element drive device

Also Published As

Publication number Publication date
JPS5718021A (en) 1982-01-29

Similar Documents

Publication Publication Date Title
US4106065A (en) Drive circuitry for controlling movable video head
US4080636A (en) System for damping vibrations in a deflectable transducer
US4594526A (en) Bimorph electromechanical transducer and control circuit device therefor
US4410918A (en) Helical scan VTR with deflectable head
JPS6127808B2 (en)
JPS5818686B2 (en) converter device
US4169276A (en) Drive circuit for controlling a movable magnetic head
JPS633375B2 (en)
CA1128201A (en) Open loop servo-system for accurate tracking in a video signal reproducing apparatus
JPS5996880A (en) Electromechanical transducer
JPS6242334B2 (en)
US5025329A (en) Electronically controlled magnetic tape editing device
JPS58179934A (en) Position control method and apparatus for magnetic head
GB1582486A (en) Methods of recording video signals
JPS622475B2 (en)
JPS6242333B2 (en)
JPS6030009B2 (en) automatic tracking device
JPH0555945B2 (en)
JPS6161170B2 (en)
JP2841852B2 (en) Recording amplifier circuit
JPS6326457B2 (en)
JPS6232347Y2 (en)
KR830001200B1 (en) Tracking device of magnetic head
JPS6145288B2 (en)
JPS631646B2 (en)