JPS624199B2 - - Google Patents

Info

Publication number
JPS624199B2
JPS624199B2 JP54009922A JP992279A JPS624199B2 JP S624199 B2 JPS624199 B2 JP S624199B2 JP 54009922 A JP54009922 A JP 54009922A JP 992279 A JP992279 A JP 992279A JP S624199 B2 JPS624199 B2 JP S624199B2
Authority
JP
Japan
Prior art keywords
tank
flocculant
primary
stirring tank
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54009922A
Other languages
Japanese (ja)
Other versions
JPS55102496A (en
Inventor
Hideki Kamyoshi
Isamu Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP992279A priority Critical patent/JPS55102496A/en
Publication of JPS55102496A publication Critical patent/JPS55102496A/en
Publication of JPS624199B2 publication Critical patent/JPS624199B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アンモニア性窒素共存下の有機高分
子物質を含む廃水(以下、被処理廃液という)の
処理方法に関するものである。 従来、被処理廃水の処理法は第1図に示したよ
うに活性汚泥法と凝集沈殿法を組み合せたも
のが一般的である。 第1図に図示するように活性汚泥法において
は、被処理廃液aは廃液供給管bから曝気槽cに
供給され、空気供給ラインdからの空気の酸素を
得た微生物の働きによつて微生物学的処理をう
け、ついでラインeから一次沈殿槽fにおいて汚
泥の沈殿処理がされ、上記汚泥gの一部は返送汚
泥hとして返送ラインiを経て上記曝気槽cの上
流側へ返送され、他の汚泥は余剰汚泥jとして汚
泥排出ラインkから系外へ排出される。 つぎに、凝集沈殿法においては、上記一次沈
殿槽fからの処理廃液1は一次撹拌槽mでアルミ
ニウム塩、鉄塩などの凝集剤nおよび酸またはア
ルカリ剤Oを添加して適当な時間急速撹拌して凝
集フロツクを生成せしめ、ついで上記急速撹拌槽
mからの一次混合液pを二次撹拌槽qで高分子凝
集剤rを添加して適当な時間緩速撹拌してさらに
凝集フロツクを生成せしめ、この二次混合液sを
二次沈殿槽tに供給して上記凝集フロツクを沈降
分離し、上記二次沈殿槽tでの処理水uはライン
vから系外へ放出し、上記二次沈殿槽tで沈殿し
た凝集フロツクwは、上記汚泥排出ラインkから
系外へ排出していた。 第1図に図示する従来の被処理廃液の処理方法
において、有機高分子物質に共存している有機低
分子物質は、活性汚泥法などの生物処理法によつ
て容易に除去されるが、その際アンモニア性窒素
が共存している場合同時に亜硝酸が発生する。亜
硝酸は活性汚泥に対して毒性をもち活性度を低下
させるだけでなく、CODとして出現するため処
理水のCOD増加を招く原因となる。この現象を
防ぐにはばつ気槽における有機物負荷を高く維持
すればよいが、一方高負荷時にはBOD除去その
ものの性能が低下するという両立し難い状況を生
ぜしめるため現実的にはほとんどコトロールが不
可能であるという欠点がある。 一方有機高分子物質は、活性汚泥法などの生物
処理法ではほとんど除去されず、凝集沈殿法によ
つて除去せざるを得ない。しかし活性汚泥処理水
にアンモニアイオンが残存している場合、その影
響によつて凝集フロツクの性状が悪く、有機高分
子物質に起因するCODの除去効果も薬品注入量
が多量の割に効果があがらず、汚泥量の増加を招
いている。 本発明は、アンモニア性窒素が共存する有機高
分子物質含有廃液にアルカリ剤を添加し生物学的
処理によつてアンモニア性窒素を硝酸性窒素に変
換する第一工程と、上記第一工程からの処理廃液
を一次撹拌槽で凝集剤および酸またはアルカリ剤
を添加して撹拌混合し、ついで上記一次撹拌槽か
らの一次混合液を二次撹拌槽で凝集剤および酸ま
たはアルカリ剤を添加して撹拌混合し凝集フロツ
クを生成せしめる第二工程と、からなることを特
徴とし、その目的とする処は、上記の欠点を解消
し、アンモニア性窒素が共存する有機高分子物質
含有廃液を効率良く処理する方法を提供しようと
するものである。 以下、本発明の最も好ましい一実施例を第2図
に図示する実施例にて説明する。第2図に図示す
る一実施例のフローシイートにおいて、′は本
実施例の第一工程である活性汚泥法であり、′
は本実施例の第二工程である凝集沈殿法である。
また、はし尿、下水汚泥嫌気性脱離液などのよ
うにアンモニア性窒素が共存する有機高分子物質
含有廃液(被処理廃液)、2は上記被処理廃液1
を曝気槽3へ供給する廃液供給管、4は上記曝気
槽3へ供給されるアルカリ剤であり、同アルカリ
剤としては、PHコントロール用でCa(OH)2(消
石灰)、NaOH(カ性ソーダ)、CaCO3(炭酸カル
シウム)、Na2CO3(ソーダ灰)などを使用する。
薬注量は被処理廃水水質によつて異なるが上記曝
気槽3内のPHが7〜8.5に保つように注入され
る。5は上記曝気槽3へ空気を供給する空気供給
ライン、6は上記曝気槽での生物学的処理を受け
た廃液を第一次沈殿槽7へ供給するライン、8は
上記第一次沈殿槽7で沈殿した汚泥、9は上記汚
泥8の一部で返送ライン10から上記曝気槽3の
上流側へ返送される返送汚泥、11は上記汚泥8
の残部である余剰汚泥、12は同余剰汚泥11を
系外へ搬出する汚泥排出ライン、13は上記第一
次沈殿槽7から一次撹拌14へ送給される処理廃
液、15a,15bはライン16a,16bから
上記一次撹拌槽14および第二次撹拌槽17へ添
加される酸またはアルカリ剤であり、同酸または
アルカリ剤15a,15bは、上記一次撹拌槽1
4および上記二次撹拌槽17のPHコントロール用
で各槽内のPHは廃水水質によつて異なるが通常4
〜12の範囲に保たれるように添加される。 18a,18bは、ライン19a,19bから
上記一次撹拌槽14および上記第二次撹拌槽17
へ添加される凝集剤であり、同凝集剤18a,1
8bには、FeCl3(塩化第二鉄)、FeCO4(硫酸
第一鉄)、Fe2(SO43(硫酸第2鉄)、PAC(ポ
リ塩化アルミニウム)、Al3(SO42(硫酸バン
土)などを使用する。 薬注量は廃液水質によつて異なるが、各槽に
500〜1000ppm as凝集剤程度注入する。20は
上記一次撹拌槽14から上記二次撹拌槽17へ供
給される一次混合液、21はライン22から上記
二次撹拌槽17へ添加される高分子凝集剤、23
は上記二次撹拌槽17から二次沈殿槽24へ送給
される二次混合液、25は上記二次沈殿槽24か
らのライン26で系外へ排出される処理水、27
は上記二次沈殿槽24の底部から排出される凝集
フロツクである。 本実施例においては、第一工程の活性汚泥法
′と第二工程の凝集沈殿法′はそれぞれ次のよ
うな工程で行なわれる。 第一工程の活性汚泥法′においては、被処理
廃液1は廃液供給管2から曝気槽3へ供給され、
空気供給ライン5からの酸素を得た活性汚泥の働
きによつて微生物学的処理をうける。この場合、
活性汚泥によつて、被処理廃液1中のアンモニア
は(第1式)に示すように硝酸化される。 NH4 ++202→NO2− +2H++H2O ……(第1式) そこで、(第1式)中に示される2H+を中和す
るために曝気槽3にアルカリ剤(NaOH)を注入
すると、上記2H+は(第2式)に示すような反応
によつて中和される。なお、アルカリ剤
(NaOH)の注入量は曝気槽3内でのPHが7〜8.5
に保つように注入する。 2H++20H-→2H2O ……(第2式) 上記の反応過程で被処理廃液1中の有機高分子
物質をとりまくイオン環境は第3図に図示するよ
うに第3図イの状態から第3図ロの状態へと変化
する。すなわち、アルカリ剤(NaOH)を添加し
ない場合には有機高分子物質Pの囲わりにはアン
モニアイオンがとりまいているが、本実施例のよ
うにアルカリ剤(NaOH)を添加すると(第1
式)、(第2式)に示す反応によつて有機高分子物
質Pのまわりにアルカリ剤の陽イオン(Na+)が
取りまき、硝酸イオン(NO3 -)は電気的斤力によ
つて有機高分子物質Pから離脱しアンモニアイオ
ンが有機高分子物質Pをプロテクトする役割を失
う。したがつて、曝気槽3内の被処理廃液1中の
アンモニア性窒素は硝酸性窒素となつて存在す
る。ついで、硝酸性窒素を含有する被処理廃液す
なわち活性汚泥によつて硝化された液はライン6
から一次沈殿槽7に供給され、同一次沈殿槽7で
沈殿分離処理がなされる。沈殿分離処理によつて
一次沈殿槽7底部に沈殿した汚泥8の一部は返送
汚泥9として返送ライン10を経て曝気槽3の上
流側へ返送され、他の汚泥は余剰汚泥11として
汚泥排出ライン12から系外へ排出される。 つぎに、凝集沈殿法′においては、上記活性
汚泥法′で硝化された処理廃液13は一次撹拌
槽14へ供給される。同一撹拌槽14に供給され
た処理廃液13にPHが4〜12の範囲になるように
適量の酸またはアルカリ剤15aをライン16a
から添加し、さらに凝集剤(Fe塩)18aをラ
イン19aから注入して適当な時間急速撹拌を行
う。この急速撹拌によつて(第3式)(第4式)
の反応が処理廃液13中でおこる。 Fe3++20H-→Fe(OH)2 + ……(第3式) Pn−+nFe(OH)2 + →P−nFe(OH)2結合体 ……(第4式) ただし、Pは有機高分子物質 上記の反応過程で生物学的処理廃液13中の有
機高分子物質Pをとりまくイオン環境は第4図に
図示するように第4図イの状態から第4図ロの状
態へと変化する。すなわち、有機高分子物質Pの
まわりにアルカリ剤の陽イオン(Na+)が取りま
きその外側に硝酸イオン(NO3 -)が遊離して取り
まいていた状態は、凝集剤(Fe塩)添加後の適
当な時間急速撹拌によつて(第3式)(第4式)
に示す反応によつてFe(OH)+ 2がNa+と入れ替わ
つて有機高分子物質Pのまわりに吸着され、Na+
は離脱した状態となる。このようにして有機高分
子物質は電気的中和な状態となり、凝集フロツク
が生成し始める。 ついで、一次撹拌槽14で有機高分子物質Pが
充分に電気的中和状態になつた段階で、一次撹拌
槽14の一次混合液20を二次撹拌槽17へ送給
する。 二次撹拌槽17に供給された一次混合液20に
PHが4〜12の範囲になるように適量な酸またはア
ルカリ剤15bをライン16bから添加し、さら
に凝集剤(Fe塩)18bをライン19bから注
入して適当な時間緩速撹拌を行う。この緩速撹拌
によつて、一次撹拌槽14で生じた一次混合液2
0中の有機高分子物質P―鉄結合体はさらに加え
られた凝集剤(Fe塩)18bの作用によつてフ
ロツクが生成され、さらにライン22から供給さ
れる高分子凝集剤21の作用によつて第5図に図
示するようにフロツク間の架橋が生じフロツクが
巨大化する。このようにしてフロツクの生成した
二次混合液23を二次沈殿槽24に供給して上記
凝集フロツクを沈降分離し、二次沈殿槽24での
処理水25はライン26から系外へ放出され、二
次沈殿槽24で沈殿した凝集フロツク27は汚泥
排出ライン12から系外へ排出される。 第1表は第2図のフローシイートにもとづく本
実施例によつて被処理廃水にアルカリ剤として
NaOHを、凝集剤としてFeCl3を添加して実験し
た結果を、第1図のフローシイートにもとづく従
来例による実験結果とを比較して示したものであ
る。
The present invention relates to a method for treating wastewater containing organic polymeric substances in the coexistence of ammonia nitrogen (hereinafter referred to as wastewater to be treated). Conventionally, the common method for treating wastewater is a combination of an activated sludge method and a coagulation-sedimentation method, as shown in FIG. As shown in Figure 1, in the activated sludge method, waste liquid a to be treated is supplied from a waste liquid supply pipe b to an aeration tank c, and microorganisms are generated by the action of microorganisms that have obtained oxygen from the air from an air supply line d. After undergoing chemical treatment, the sludge is then subjected to sedimentation treatment in the primary settling tank f from line e, and a portion of the sludge g is returned as return sludge h to the upstream side of the aeration tank c via return line i, and other The sludge is discharged from the sludge discharge line k to the outside of the system as surplus sludge j. Next, in the coagulation-sedimentation method, the treated waste liquid 1 from the primary settling tank f is rapidly stirred for an appropriate period of time by adding a flocculant n such as an aluminum salt or iron salt and an acid or alkali agent O in a primary stirring tank m. Then, a polymer flocculant r is added to the primary mixed liquid P from the rapid stirring tank m in a secondary stirring tank q, and the mixture is slowly stirred for an appropriate period of time to further generate agglomerated flocs. , this secondary mixed liquid s is supplied to the secondary sedimentation tank t to separate the coagulated flocs by sedimentation, and the treated water u in the secondary sedimentation tank t is discharged to the outside of the system from the line v, and the secondary sedimentation tank t is The coagulated floc w precipitated in the tank t was discharged out of the system from the sludge discharge line k. In the conventional wastewater treatment method shown in Figure 1, organic low-molecular substances coexisting with organic high-molecular substances are easily removed by biological treatment methods such as activated sludge method. When ammonia nitrogen coexists, nitrite is generated at the same time. Nitrite is toxic to activated sludge and not only reduces its activity, but also appears as COD, causing an increase in COD in treated water. To prevent this phenomenon, it is possible to maintain a high organic matter load in the aeration tank, but on the other hand, when the load is high, the performance of BOD removal itself deteriorates, creating an irreconcilable situation, making control practically impossible. It has the disadvantage of being. On the other hand, organic polymer substances are hardly removed by biological treatment methods such as activated sludge methods, and must be removed by coagulation and sedimentation methods. However, if ammonia ions remain in the activated sludge treated water, the properties of the coagulated flocs will be poor due to their influence, and the removal effect of COD caused by organic polymer substances will not be as effective even though the amount of chemicals injected is large. This leads to an increase in the amount of sludge. The present invention comprises a first step of adding an alkaline agent to a waste solution containing an organic polymer substance in which ammonia nitrogen coexists and converting the ammonia nitrogen into nitrate nitrogen through biological treatment; A flocculant and an acid or alkali agent are added to the treated waste liquid in a primary stirring tank, and the mixture is stirred.Then, a flocculant and an acid or alkali agent are added to the primary mixed liquid from the primary stirring tank in a secondary stirring tank, and the mixture is stirred. and a second step of mixing to form agglomerated flocs, the purpose of which is to eliminate the above-mentioned drawbacks and efficiently treat waste liquids containing organic polymer substances in which ammonia nitrogen coexists. It is intended to provide a method. The most preferred embodiment of the present invention will be described below with reference to the embodiment shown in FIG. In the flow sheet of one embodiment shown in FIG. 2, ' is the activated sludge method which is the first step of this embodiment, and '
is the coagulation-sedimentation method which is the second step of this example.
In addition, waste liquid containing organic polymer substances (waste liquid to be treated) in which ammonia nitrogen coexists, such as night soil, sewage sludge anaerobic desorption liquid, etc., 2 is the waste liquid to be treated 1 mentioned above.
4 is an alkaline agent that is supplied to the aeration tank 3. The alkaline agents include Ca(OH) 2 (slaked lime), NaOH (caustic soda), etc. for pH control. ), CaCO 3 (calcium carbonate), Na 2 CO 3 (soda ash), etc.
Although the amount of the chemical to be injected varies depending on the quality of the wastewater to be treated, the chemical is injected so as to maintain the pH in the aeration tank 3 at 7 to 8.5. 5 is an air supply line that supplies air to the aeration tank 3; 6 is a line that supplies waste liquid that has undergone biological treatment in the aeration tank to the primary settling tank 7; 8 is the primary settling tank 7 is the precipitated sludge, 9 is a part of the sludge 8 and is returned from the return line 10 to the upstream side of the aeration tank 3, 11 is the sludge 8
12 is a sludge discharge line that carries out the surplus sludge 11 out of the system, 13 is a treated waste liquid sent from the primary settling tank 7 to the primary stirring 14, and 15a and 15b are lines 16a , 16b to the primary stirring tank 14 and the secondary stirring tank 17;
4 and for PH control of the secondary stirring tank 17 mentioned above.The PH in each tank varies depending on the quality of the wastewater, but is usually 4.
It is added to keep it within the range of ~12. 18a, 18b are lines 19a, 19b connected to the primary stirring tank 14 and the secondary stirring tank 17.
It is a flocculant added to the flocculant 18a, 1
8b contains FeCl 3 (ferric chloride), FeCO 4 (ferrous sulfate), Fe 2 (SO 4 ) 3 (ferric sulfate), PAC (polyaluminum chloride), Al 3 (SO 4 ) 2 (van sulfate earth) etc. are used. The amount of chemical injection varies depending on the quality of the waste water, but it is
Inject about 500~1000ppm as flocculant. 20 is a primary mixed liquid supplied from the primary stirring tank 14 to the secondary stirring tank 17; 21 is a polymer flocculant added from the line 22 to the secondary stirring tank 17; 23
25 is the secondary mixed liquid fed from the secondary stirring tank 17 to the secondary precipitation tank 24, 25 is the treated water discharged from the system through the line 26 from the secondary precipitation tank 24, 27
is the coagulated floc discharged from the bottom of the secondary sedimentation tank 24. In this example, the first step, the activated sludge method, and the second step, the coagulation sedimentation method, are carried out in the following steps. In the first step, the activated sludge method, the waste liquid 1 to be treated is supplied from the waste liquid supply pipe 2 to the aeration tank 3,
Microbiological treatment is carried out by the action of activated sludge, which is supplied with oxygen from the air supply line 5. in this case,
Ammonia in the waste liquid 1 to be treated is nitrified by the activated sludge as shown in equation (1). NH 4 + +20 2 →NO 2- 3 +2H + +H 2 O ... (Equation 1) Therefore, in order to neutralize 2H + shown in (Equation 1), an alkaline agent (NaOH) was added to the aeration tank 3. When injected, the above 2H + is neutralized by the reaction shown in (2nd equation). The amount of alkaline agent (NaOH) to be injected is determined when the pH in the aeration tank 3 is 7 to 8.5.
Inject to maintain the temperature. 2H + +20H - →2H 2 O ... (2nd formula) In the above reaction process, the ionic environment surrounding the organic polymer substance in the waste liquid 1 to be treated changes from the state in Figure 3 A as shown in Figure 3. The state changes to the state shown in Figure 3 (b). That is, when the alkali agent (NaOH) is not added, ammonia ions surround the organic polymer substance P, but when the alkali agent (NaOH) is added as in this example (the first
Through the reactions shown in formulas) and (2nd formula), cations (Na + ) of the alkaline agent surround the organic polymer substance P, and nitrate ions (NO 3 - ) are generated by electric force. The ammonia ions are separated from the organic polymer substance P and lose their role of protecting the organic polymer substance P. Therefore, ammonia nitrogen in the waste liquid 1 to be treated in the aeration tank 3 exists as nitrate nitrogen. Next, the waste liquid to be treated containing nitrate nitrogen, that is, the liquid nitrified by activated sludge, is passed through line 6.
The water is supplied to the primary sedimentation tank 7, where it is subjected to precipitation separation processing. A part of the sludge 8 that has settled at the bottom of the primary settling tank 7 through the sedimentation separation process is returned to the upstream side of the aeration tank 3 as return sludge 9 via a return line 10, and the other sludge is returned to the upstream side of the aeration tank 3 as surplus sludge 11. 12 and is discharged from the system. Next, in the coagulation-sedimentation method', the treated waste liquid 13 nitrified in the activated sludge method' is supplied to the primary stirring tank 14. An appropriate amount of acid or alkali agent 15a is added to the treated waste liquid 13 supplied to the same stirring tank 14 through line 16a so that the pH is in the range of 4 to 12.
Further, a flocculant (Fe salt) 18a is injected from line 19a, and rapid stirring is performed for an appropriate period of time. By this rapid stirring (3rd formula) (4th formula)
The following reaction occurs in the treated waste liquid 13. Fe 3+ +20H - →Fe(OH) 2 + ...(3rd formula) P n- +nFe(OH) 2 + →P-nFe(OH) 2 bond ...(4th formula) However, P is organic Polymeric substance During the above reaction process, the ionic environment surrounding the organic polymeric substance P in the biological treatment waste liquid 13 changes from the state shown in Fig. 4 A to the state shown in Fig. 4 B, as shown in Fig. 4. do. In other words, the state in which the cations (Na + ) of the alkaline agent are surrounding the organic polymeric substance P and the nitrate ions (NO 3 - ) are free and surrounding the outside is caused by the addition of a flocculant (Fe salt). By rapid stirring for an appropriate period of time (3rd formula) (4th formula)
Through the reaction shown in , Fe(OH) + 2 replaces Na + and is adsorbed around the organic polymer substance P, forming Na +
is in a detached state. In this way, the organic polymer substance becomes electrically neutralized and agglomerated flocs begin to form. Then, when the organic polymer substance P is sufficiently electrically neutralized in the primary stirring tank 14, the primary mixed liquid 20 in the primary stirring tank 14 is fed to the secondary stirring tank 17. The primary mixed liquid 20 supplied to the secondary stirring tank 17
An appropriate amount of acid or alkaline agent 15b is added through line 16b so that the pH is in the range of 4 to 12, and flocculant (Fe salt) 18b is injected through line 19b, followed by slow stirring for an appropriate period of time. By this slow stirring, the primary mixed liquid 2 generated in the primary stirring tank 14
The organic polymer substance P-iron bond in 0 is further formed into flocs by the action of the added flocculant (Fe salt) 18b, and further by the action of the polymer flocculant 21 supplied from the line 22. As a result, as shown in FIG. 5, crosslinking occurs between the flocs and the flocs become huge. The secondary mixed liquid 23 in which flocs have been generated in this way is supplied to the secondary sedimentation tank 24, where the flocs are separated by sedimentation, and the treated water 25 in the secondary sedimentation tank 24 is discharged from the system through a line 26. The flocs 27 precipitated in the secondary settling tank 24 are discharged from the sludge discharge line 12 to the outside of the system. Table 1 shows how the wastewater to be treated can be used as an alkaline agent according to this example based on the flow sheet shown in Figure 2.
The results of an experiment using NaOH with the addition of FeCl 3 as a flocculant are shown in comparison with the results of a conventional experiment based on the flow sheet of FIG.

【表】【table】

【表】 第1表に明らかなごとく、本発明に係る実施例
による処理水は従来の方法に比べて非常に良質な
ものとなつている。 このように、本発明によれば、アルカリ剤4添
加による活性汚泥法′によつて、被処理廃水1
は硝酸化されるので、有機高分子物質Pを包囲す
るアンモニウムイオンが離脱される。したがつ
て、後処理の凝集沈殿法′において、凝集剤1
5aによつて有機高分子物質Pをとりまく陽イオ
ンが排出されやすく、したがつて、従来のような
アンモニウムイオンによる弊害がなくなる。 また、凝集剤15aの陽イオンによる有機高分
子物質Pの電気的中和が十分達成された後、フロ
ツクが生ずるため、上記フロツクは凝集フロツク
の核となり凝集が安定化する。 さらに、凝集剤15a,15bの陽イオンが有
機高分子物質Pの電気的中和とフロツクの生成と
の2段階に分けて注入されるので、各段階で効率
よく利用でき、したがつて、凝集剤15a,15
b注入量が低減できる。 さらにまた、有機高分子物質Pの電気的中和が
終了してから凝集剤15bおよび高分子凝集剤2
1を添加して緩速撹拌を行うので、高分子凝集剤
21の架橋作用がフロツク生成の際に妨害されな
いため、凝集剤15bおよび高分子凝集剤21の
注入量を低減できる。 なお、本発明に適用され被処理廃水は上記実施
例の場合のようにし尿、下水汚泥嫌気性消化脱離
液のみにかぎらずごみ埋立汚水、ごみ焼却汚水な
どのようにアンモニア性窒素を共存する有機高分
子物質を含む廃水ならばすべてに適用出来る。ま
た、生物学的処理法としては活性汚泥法のみなら
ず散水床法、回転円板法、没水床法などの生
物学的処理法によつて適当なPHにおいてアンモニ
ア性窒素を硝酸性窒素へ変換しても良い。
[Table] As is clear from Table 1, the quality of the treated water according to the examples of the present invention is much higher than that of the conventional method. As described above, according to the present invention, by the activated sludge method with the addition of 4 alkaline agents, 1
is nitrated, so ammonium ions surrounding the organic polymer substance P are released. Therefore, in the post-treatment coagulation-sedimentation method, flocculant 1
The cations surrounding the organic polymer substance P are easily discharged by 5a, and therefore, the conventional adverse effects caused by ammonium ions are eliminated. In addition, flocs are generated after the organic polymer substance P is sufficiently electrically neutralized by the cations of the flocculant 15a, and the flocs become the core of the flocculation and stabilize the flocculation. Furthermore, since the cations of the flocculants 15a and 15b are injected in two stages: electrical neutralization of the organic polymer substance P and generation of flocs, they can be used efficiently in each stage, and therefore the flocculation agent 15a, 15
bThe amount of injection can be reduced. Furthermore, after the electrical neutralization of the organic polymer substance P is completed, the flocculant 15b and the polymer flocculant 2
Since the polymer flocculant 15b and the polymer flocculant 21 are added and stirred at a slow speed, the crosslinking action of the polymer flocculant 21 is not interfered with during floc formation, so that the injection amounts of the flocculant 15b and the polymer flocculant 21 can be reduced. In addition, the wastewater to be treated applied to the present invention is not limited to human waste and sewage sludge anaerobic digestion and desorption liquid as in the above embodiments, but also wastewater that coexists with ammonia nitrogen such as wastewater from landfills and wastewater from waste incineration. It can be applied to all wastewater containing organic polymeric substances. In addition, biological treatment methods include not only the activated sludge method but also the sprinkled bed method, rotating disk method, and submerged bed method to convert ammonia nitrogen to nitrate nitrogen at an appropriate pH. You can convert it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法のフローシイート、第2図は本
発明の一実施例のフローシイート、第3図および
第4図はその一実施例における有機高分子物質を
取りまくイオンの変化状況の説明図、第5図は凝
集フロツクの生成状況の説明図である。 1……被処理廃水、3……曝気槽、4……アル
カリ剤、14……一次撹拌槽、15a,15b…
…酸またはアルカリ剤、17……二次撹拌槽、1
8a,18b……凝集剤、20……一次混合液、
27……凝集フロツク、P……有機高分子物質、
′……活性汚泥法、′……凝集沈殿法。
Figure 1 is a flow sheet of the conventional method, Figure 2 is a flow sheet of an embodiment of the present invention, Figures 3 and 4 are explanatory diagrams of changes in ions surrounding an organic polymer substance in that embodiment, FIG. 5 is an explanatory diagram of the state of formation of agglomerated flocs. 1...Wastewater to be treated, 3...Aeration tank, 4...Alkaline agent, 14...Primary stirring tank, 15a, 15b...
...Acid or alkaline agent, 17...Secondary stirring tank, 1
8a, 18b...flocculant, 20...primary mixed liquid,
27...Agglomerated floc, P...Organic polymer substance,
′...Activated sludge method, ′...Coagulation sedimentation method.

Claims (1)

【特許請求の範囲】[Claims] 1 アンモニア性窒素が共存する有機高分子物質
含有廃液にアルカリ剤を添加し生物学的処理によ
つてアンモニア性窒素を硝酸性窒素に変換する第
一工程と、上記第一工程からの処理廃液を一次撹
拌槽で凝集剤および酸またはアルカリ剤を添加し
て撹拌混合し、ついで上記一次撹拌槽からの一次
混合液を二次撹拌槽で凝集剤および酸またはアル
カリ剤を添加して撹拌混合し凝集フロツクを生成
せしめる第二工程と、からなることを特徴とする
有機物含有廃液の処理方法。
1. A first step of adding an alkaline agent to the organic polymer substance-containing waste solution in which ammonia nitrogen coexists and converting the ammonia nitrogen into nitrate nitrogen through biological treatment; A flocculant and an acid or alkaline agent are added and mixed in the primary stirring tank, and then a flocculant and an acid or alkaline agent are added to the primary mixed liquid from the primary stirring tank in a secondary stirring tank, and the mixture is stirred and coagulated. A method for treating organic matter-containing waste liquid, comprising: a second step of generating flocs.
JP992279A 1979-01-31 1979-01-31 Treatment of organics-containing waste water Granted JPS55102496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP992279A JPS55102496A (en) 1979-01-31 1979-01-31 Treatment of organics-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP992279A JPS55102496A (en) 1979-01-31 1979-01-31 Treatment of organics-containing waste water

Publications (2)

Publication Number Publication Date
JPS55102496A JPS55102496A (en) 1980-08-05
JPS624199B2 true JPS624199B2 (en) 1987-01-29

Family

ID=11733573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP992279A Granted JPS55102496A (en) 1979-01-31 1979-01-31 Treatment of organics-containing waste water

Country Status (1)

Country Link
JP (1) JPS55102496A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5992371B2 (en) * 2013-06-26 2016-09-14 住友重機械エンバイロメント株式会社 Coagulation sedimentation activated sludge treatment system and operation method thereof
CN104192995B (en) * 2014-08-08 2016-01-27 中国市政工程西北设计研究院有限公司 Integrative aerobic particle sludge composite purification device and the method for disposing of sewage

Also Published As

Publication number Publication date
JPS55102496A (en) 1980-08-05

Similar Documents

Publication Publication Date Title
US5427691A (en) Lime neutralization process for treating acidic waters
JPH0480758B2 (en)
KR20010067402A (en) Method for conditioning and dewatering thermophilic aerobically digested biosolids
JPH09108690A (en) Treatment of phosphorus containing sewage
JP3442205B2 (en) Treatment method for phosphorus-containing wastewater
JPS624199B2 (en)
JPS6339308B2 (en)
JPS62262789A (en) Method for removing phosphorus
JPH03221200A (en) Treatment of organic sewage
JP2006297301A (en) Powder wastewater treatment agent containing oyster shell as main component
JPH0141110B2 (en)
JPS641200B2 (en)
JPS61161191A (en) Treatment of heavy metal ion-containing solution
JP2003071487A (en) Method and apparatus for treating organic wastewater
KR100327735B1 (en) A Physical Chemical Disposal Method Of Organic Wastewater Having High Concentration
JP2002143883A (en) Method for treating organic polluted water containing phosphorus
JP4141554B2 (en) Method for preventing phosphorus from being eluted in sludge and phosphorus elution preventing agent for sludge
Lei et al. Pretreatment of methane fermentation effluent by physico-chemical processes before applied to soil trench system
JP4145406B2 (en) Method for preventing phosphorus from being eluted in sludge and phosphorus elution preventing agent for sludge
JPH0314519B2 (en)
KR930010763B1 (en) Fluorine and cianide removing method from waste water
JP2001079590A (en) Treatment of sulfate group-containing organic waste water and device therefor
JP2004174386A (en) Treatment method for phosphoric acid-containing wastewater
JPS63258692A (en) Treatment of organic sewage
JPH0585240B2 (en)