JPS6241944A - Engine air-fuel ratio control device - Google Patents

Engine air-fuel ratio control device

Info

Publication number
JPS6241944A
JPS6241944A JP60183239A JP18323985A JPS6241944A JP S6241944 A JPS6241944 A JP S6241944A JP 60183239 A JP60183239 A JP 60183239A JP 18323985 A JP18323985 A JP 18323985A JP S6241944 A JPS6241944 A JP S6241944A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
passage
sensor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60183239A
Other languages
Japanese (ja)
Inventor
Fusatoshi Tanaka
房利 田中
Hideo Nakayama
中山 英夫
Shuichi Nakatani
中谷 収一
Hiroyuki Hanabusa
花房 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60183239A priority Critical patent/JPS6241944A/en
Publication of JPS6241944A publication Critical patent/JPS6241944A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To make possible to carry out highly accurate feed-back control over the whole operating range of an engine, by making an exhaust gas recirculation passage for recirculating a part of exhaust gas into an intake-air system, opened to an exhaust passage just upstream of an exhaust gas sensor. CONSTITUTION:In an exhaust passage in an engine body 1, an exhaust gas sensor 10 is attached to an attaching port 9 formed in the downstream side end section of a merging section 3b, and the starting end of an exhaust gas recirculation passage 12 is connected to a take-out port 11 which is attached just upstream of and adjacent to the attaching port 9. During partial load operation in which the amount of exhaust gas is small, a part of exhaust gas flowing through the exhaust gas passage 3 vigorously flows out from the take-out port 11 and into the exhaust recirculation passage 12 communicated with an intake air passage 7 on the negative pressure side. Accordingly, the stream of exhaust gas toward the exhaust sensor 10 is always created in the vicinity of the take- out port 11, and therefore, exhaust gas is positively made to impinge upon the front end of the exhaust gas sensor 10 downstream of and adjacent to the take-out port 11. As a result, the components of the exhaust gas may be always precisely detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内燃機関の空燃比制御装置で、特に排気系に
空燃比フィードバック制御用の排気センサ?r:mえた
ものの改良に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an air-fuel ratio control device for an internal combustion engine, and in particular an exhaust sensor for air-fuel ratio feedback control in an exhaust system. r: Concerns improvements to what has been achieved.

(従来の技術) 一般に、自動車用内燃機関にあって番よ、その排気系に
備えた三元触媒を有効に鋤らかせるなどのために、排気
系に例えば排気ガス中の酸素濃度を検出する酸素(Oj
センサ等の排気センサを設け、該センサからの検出信号
に基づいて空燃比が常に所定の目標m1lk(例えは理
論空燃比)になるようフィードバック制御している。具
体的には、上記酸素センサにより検出した空燃比が目標
1ムよりも礒い場合は薄く、薄い場合は濃くするように
燃料の供給鷲を増減補正するのである。
(Prior Art) In general, in an internal combustion engine for an automobile, in order to effectively plow the three-way catalyst provided in the exhaust system, a method is used to detect the oxygen concentration in the exhaust gas, for example, in the exhaust system. Oxygen (Oj
An exhaust sensor such as a sensor is provided, and feedback control is performed based on a detection signal from the sensor so that the air-fuel ratio always becomes a predetermined target m1lk (eg, stoichiometric air-fuel ratio). Specifically, if the air-fuel ratio detected by the oxygen sensor is higher than the target 1 m, the fuel supply level is increased or decreased so that the fuel is made leaner, and if it is leaner, the fuel is richer.

これらを具体化した従来の技術としては、例えば特開昭
55−87843号公報に示されている。
A conventional technique embodying these techniques is disclosed in, for example, Japanese Patent Laid-Open No. 55-87843.

これは一定員圧式燃料供給装置を備えた内燃機関を例に
し7こもので、第6図において、まずエアクリーナーか
ら機関本体θ場に亘って連設した吸気通路(社)内に■
■動抵抗部材であるエア70−センサcA1.lをスプ
リング(財)にて弾持すると共に、その下流位置には鮎
料フロート室に)に連通ずるチャンバ■と、スロットル
バルブ(至)、@を設け、エア70−センサ31)下流
の吸入負圧を吸入空気量の大小に拘わらず一定に保持し
得るように作用させると共に、吸入空気層に応じて変化
応動するエア70−センザCυと一体のニードルKGと
、上記チャンノI−1を上部の耐社ノズル(ロ)とのク
リアランスにより燃料を距゛−し、蟻化用ノズル■から
吸気連結い1内に燃料を供給して所定空燃比の混合気を
生成する。
This is an example of an internal combustion engine equipped with a constant pressure fuel supply system.
■Air 70-sensor cA1, which is a dynamic resistance member. 1 is supported by a spring, and at its downstream position there is provided a chamber ■ communicating with the sweetfish float chamber), a throttle valve (toward), @, and air 70-sensor 31) downstream suction. The needle KG integrated with the air 70-sensor Cυ that acts to keep the negative pressure constant regardless of the amount of intake air and changes in response to the intake air layer, and The fuel is separated by the clearance between the nozzle (b) and the atomizing nozzle (b), and the fuel is supplied from the atomizing nozzle (b) into the intake connection 1 to produce an air-fuel mixture with a predetermined air-fuel ratio.

そして、この空燃比をフィードバック制御するために、
上記チャンバ■に大気を導入するように電磁弁−により
開閉作動するエアブリード■を連設する。この電磁弁−
は排気通路(排気マニホルド)ψ)に設けた酸素センサ
σ4の出力信号を制御回路く→にてパルス幅交換した信
号により、オンオフ時間比率(デユーティ比)が検出空
燃比に応じて制御され、これにより上記チャンバ■に導
入する希釈用空気閂を調整して、換言すれば燃料供給量
を増減補正して、空燃比を目標値にフィードバック制御
するようになっている。
Then, in order to feedback control this air-fuel ratio,
An air bleed (2) which is opened and closed by a solenoid valve (2) is installed in series to introduce atmospheric air into the chamber (1). This solenoid valve
The on-off time ratio (duty ratio) is controlled according to the detected air-fuel ratio by the signal obtained by exchanging the pulse width of the output signal of the oxygen sensor σ4 installed in the exhaust passage (exhaust manifold) ψ) in the control circuit →. Accordingly, the dilution air bolt introduced into the chamber (2) is adjusted, in other words, the amount of fuel supplied is corrected to increase or decrease, and the air-fuel ratio is feedback-controlled to the target value.

ところか、このような従来の空燃比制御装置にあっては
、上述した酸素センサ(2)が、金気筒の平均した酸素
濃度を検出しなければならないと共に全負荷時の排気抵
抗を増大してはいけないなどの理由から、比較的通路径
の大きい排気マニホルドい)の各ブランチ集合部に位置
して設けられるようになっていたため、排気ガス量の多
い(換言すれば、排気圧力の高い)全負荷時には、実際
の酸素濃度を検出するのに必要な量の排気ガスが酸素セ
ンサに)の近傍に充分にいきつくので問題はないが、排
気ガス量の少ない(排気圧力の低い)部分負荷時には、
ガスの偏流等によって酸素センサ傍を通過するガス層が
減り必要な量の排気ガスが酸素七ンサー切の近傍に充分
にいきつくことかでさす、この結果酸素センサー荀の検
出精度か悪いという問題を生じた。
However, in such a conventional air-fuel ratio control device, the above-mentioned oxygen sensor (2) has to detect the average oxygen concentration of the cylinder and increases the exhaust resistance at full load. For some reasons, it was installed at each branch collection point of the exhaust manifold, which has a relatively large passage diameter. When under load, the amount of exhaust gas necessary to detect the actual oxygen concentration is sufficiently close to the oxygen sensor), so there is no problem, but under partial load when the amount of exhaust gas is small (low exhaust pressure),
The gas layer passing near the oxygen sensor is reduced due to gas drift, etc., and the necessary amount of exhaust gas is sufficiently close to the oxygen sensor cutoff.As a result, the detection accuracy of the oxygen sensor is poor. occured.

そこで、L記問題を克服する7こめ、第7図に示すよう
に、酸素センサ(切か取付けられる排気通路6I)に、
該通路Qvを閉じる方向に作動して排気ガスを酸素セン
サ■の近傍に積極的に導く排気流動制御板−を設けると
共に、該制御板惧を排気圧力を感知して排気圧力が低い
時に番ま排気連路c1vを閉じ高い時には排気通路Sυ
を開く方向に作動させる該1ti11御板■を弾支する
スプリングに)1回転軸(4等の手段を設けた空燃比制
御装置か提案されている(例えは実開昭59−1926
46号公報参照)。なお、6θはυト気弁、(ト)はb
p気ボートである。
Therefore, in order to overcome the problem listed in item L, as shown in Fig.
An exhaust flow control plate is provided which operates in the direction of closing the passage Qv to actively guide the exhaust gas to the vicinity of the oxygen sensor (2), and the control plate senses the exhaust pressure and turns on when the exhaust pressure is low. Close the exhaust passage c1v and open the exhaust passage Sυ when the temperature is high.
An air-fuel ratio control device has been proposed that is equipped with a means such as a single rotating shaft (4) on a spring that elastically supports the 1ti11 control plate (2) that operates in the opening direction (for example, in Utility Model Application No. 59-1926).
(See Publication No. 46). In addition, 6θ is υto valve, (g) is b
It is a p-ki boat.

上記空燃比制御装置によれは、排気圧力の低い機関の部
分負荷時等には、上記制御板曽が排気通路りυを閉じる
方向に動作し、排気ガスの大半を酸素センサcI4の近
傍に積極的に導くので、排気ガス量の少ない当該運転時
においても検出に必要な量の排気ガスが充分に酸素セン
サ9Qにいきつく。一方排気圧力の高い機関の全負荷時
等には、該制御板(Iが今度は逆に排気通路6υを曲く
方向に作動し、流路面梱を拡大して排気ガス量の多い当
該運転時において該制御板91が大きな排気抵抗となる
のを回避する。勿論、ガス量が多いので酸素センサ(2
)において検出に必要な排気ガス鰍は充分に得られる。
According to the air-fuel ratio control device, when the exhaust pressure is low and the engine is under partial load, the control plate operates in the direction of closing the exhaust passage υ, and actively directs most of the exhaust gas near the oxygen sensor cI4. Therefore, even during the operation in which the amount of exhaust gas is small, a sufficient amount of exhaust gas necessary for detection reaches the oxygen sensor 9Q. On the other hand, when the engine is under full load with high exhaust pressure, the control plate (I) operates in the opposite direction to bend the exhaust passage 6υ, enlarging the flow passage surface buff during the operation with a large amount of exhaust gas. This prevents the control board 91 from becoming a large exhaust resistance.Of course, since the amount of gas is large, the oxygen sensor (2
), the amount of exhaust gas necessary for detection can be obtained in sufficient quantity.

しかしながら、このような従来の空燃比制御装置におい
ては、排気通路6η内に、排気流th11制御板■かこ
れを開閉自在に弾持するスプリングに)と共にかなりの
空間を占有して設けられている以上これらが、排気ガス
流路中でかなり大きな流体抵抗となることは否定できず
、排気抵抗として悪影−をもたらすことは避けられない
ものである。また、当該制御板−の設置は構造の機雑化
による製作費の上昇を招来するという問題がある。
However, in such a conventional air-fuel ratio control device, the exhaust flow control plate TH11 is installed in the exhaust passage 6η together with the exhaust flow control plate TH11 (or the spring that supports it so that it can be opened and closed freely), occupying a considerable amount of space. As mentioned above, it cannot be denied that these create a considerably large fluid resistance in the exhaust gas flow path, and it is inevitable that they will have negative effects as exhaust resistance. Furthermore, the installation of the control board has the problem of complicating the structure and increasing manufacturing costs.

(発明の目的) 本発明は上述したような従来の問題点を解消するために
なされたもので、排気センサの検知能力を向上させかつ
排気抵抗を減少し、しかも構造を簡単化したエンジンの
空燃比制御装置を提供することを目的とする。
(Object of the Invention) The present invention has been made in order to solve the conventional problems as described above. The purpose of the present invention is to provide a fuel ratio control device.

(発明の構成) 上述した目的を達成するために本発明では、排気系に空
燃比フィードバック制御用の排気センサを備えた空燃比
制御装置において、上記排気センサ直上流の排気通路に
排気ガスの一部を吸気系に還流する排気還流通路を開設
している。
(Structure of the Invention) In order to achieve the above-mentioned object, the present invention provides an air-fuel ratio control device including an exhaust sensor for air-fuel ratio feedback control in the exhaust system, in which exhaust gas is connected to an exhaust passage immediately upstream of the exhaust sensor. An exhaust recirculation passage has been established to recirculate the exhaust gas back to the intake system.

従って、排気センサ直上流において排気ガス流の一部が
排気還流通路に吸い込まれるように流れ、その除虫じる
排気センサ方向への排気流のため、排気圧力の低い部分
負荷時や排気圧力の高い全負荷時等における排気ガス艦
の多少に拘わらず常に排気ガスは排気センサに積極的に
当てられて排気ガス成分の検知@能が効率良く発揮され
、また排気通路の流体抵抗となるおそれのある排気セン
サの突出量さえも少なくできる等排気抵抗の減少を図り
得て、全運転域において精度の良い空燃比フィードバッ
ク制御を行なうことができるものである。
Therefore, a part of the exhaust gas flow immediately upstream of the exhaust sensor is sucked into the exhaust gas recirculation passage, and the exhaust gas flow is directed toward the exhaust sensor to remove insects. Regardless of the amount of exhaust gas at full load, the exhaust gas is always actively applied to the exhaust sensor to efficiently detect exhaust gas components, and to eliminate the risk of fluid resistance in the exhaust passage. It is possible to reduce exhaust resistance by reducing even the amount of protrusion of a certain exhaust sensor, and to perform accurate air-fuel ratio feedback control over the entire operating range.

(実施例) 第1図乃至第5図に本発明の一実施例を示し、(1)は
エンジン本体、(2)はシリンダヘッド、(3)は排気
通路(排気マニホルド) 、(4)は候数個の取付ボル
ト孔(5)を有する取付7ランジである。シリンダヘッ
ド(2)には、シリンダヘッドカバー(6)が取付けら
れるとともに、吸気通路(7)を介して気化器(8)が
産膜されている。
(Example) Figures 1 to 5 show an example of the present invention, in which (1) is the engine body, (2) is the cylinder head, (3) is the exhaust passage (exhaust manifold), and (4) is the engine body. It is a seven-mount flange having several mounting bolt holes (5). A cylinder head cover (6) is attached to the cylinder head (2), and a carburetor (8) is installed through an intake passage (7).

排気通路(3)は、エンジン側即ち上流側で4本のマニ
ホルド部(3a)に形成され、下流側でそれらの集合部
(3b)に形成されている。集合部(3b)の下流側端
部に設けた取付口(9)には排気(02)センサQOが
取付けられ、その直上流に隣接するように設けた取出口
αυには、排気還流通路04の始端を接続している。集
合部(8b)の端末には排気W(図示せず)を取付ける
ための取付7ランジθ4が設けられる一方、排気センサ
四と前記気化器(8)に取付けた電磁弁a4との間には
信号回路(至)が構成され、中途にマイクロコンピュー
タα0が接続されている。また、排気還流通路Q埠は前
記吸気通路(7)に接続し、中途に部分負荷時に開らく
排気還装置制御弁αηを設けている。
The exhaust passage (3) is formed in four manifold parts (3a) on the engine side, that is, on the upstream side, and in a gathering part (3b) of these parts on the downstream side. The exhaust gas (02) sensor QO is attached to the attachment port (9) provided at the downstream end of the collecting portion (3b), and the exhaust gas recirculation passage 04 is attached to the outlet αυ provided immediately upstream and adjacent thereto. The starting ends of are connected. An attachment 7 lange θ4 for attaching an exhaust W (not shown) is provided at the terminal of the gathering part (8b), while a solenoid valve a4 attached to the exhaust sensor 4 and the carburetor (8) is provided. A signal circuit (to) is constructed, and a microcomputer α0 is connected in the middle. Further, the exhaust gas recirculation passage Q pier is connected to the intake passage (7), and an exhaust gas recirculation device control valve αη that does not open during partial load is provided in the middle.

このような構成のため、排気通路(3)を流れる排気ガ
スの一部は排気ガス量の少ない部分負荷時においては、
取出口Oυより負圧側の吸気通路(7)に連通ずる排気
還流通路0′4に勢よく流出する。従って、取出口Qυ
の近傍には排気センサσ1方向への排気ガス流が常に生
じ、下流側に隣接して設けた排気センサσqの先端部に
排気ガスは積極的に当てられその結果排気ガス成分は該
センサαQにより常に確実に検出されることになる。該
センサ(1Gによる検出信号は信号回路(至)に設けら
れたマイクルコンビニ一タリ時に入力され7このち、そ
の出力は気化器(8)での空燃比をフィードバック制御
するため設けられたエアブリードを1閉作動する電磁弁
(1美を制御するようになっている。
Because of this configuration, a part of the exhaust gas flowing through the exhaust passage (3) during partial load with a small amount of exhaust gas,
The exhaust gas flows out vigorously from the outlet Oυ to the exhaust gas recirculation passage 0'4, which communicates with the intake passage (7) on the negative pressure side. Therefore, the outlet Qυ
An exhaust gas flow always occurs in the direction of the exhaust sensor σ1 near the exhaust sensor σ1, and the exhaust gas is actively applied to the tip of the exhaust sensor σq installed adjacent to the downstream side, and as a result, the exhaust gas components are It will always be reliably detected. The detection signal from the sensor (1G) is input to the microconverter provided in the signal circuit (to) 7, and its output is sent to the air bleeder provided for feedback control of the air-fuel ratio in the carburetor (8). A solenoid valve that operates 1 close (1 beauty is controlled).

(発明の効果) 以上説明したようにこの発明によれば、排気通路に設け
た排気センサの直上流に排気還流通路を開設しているた
め、排気ガスが常に排気センサに積極的に当てられるこ
とになり、排気ガス成分を精度良く把握できて全運転域
において精度の良い空燃比フィードバック制御を可能と
し、また従来装置のように排気通路内に流体抵抗となる
ような部材を全く設けることがないので排気抵抗に悪彰
wを与えることはなく、また排気センサには上記のよう
に排気ガスが常に積極的に当てられるため排気通路への
排気センサの突出量を多くせずに済むため排気抵抗の減
少及び該センサの過熱による損傷を少なくでき、更に構
造上も排気還流通路を設けるだけで済むため簡単であり
製作饋の軽減に貢献できるものである。
(Effects of the Invention) As explained above, according to the present invention, since the exhaust gas recirculation passage is provided immediately upstream of the exhaust sensor provided in the exhaust passage, exhaust gas is always positively applied to the exhaust sensor. This makes it possible to accurately grasp exhaust gas components and perform accurate air-fuel ratio feedback control over the entire operating range, and unlike conventional systems, there is no need to install any members that create fluid resistance in the exhaust passage. Therefore, the exhaust resistance will not be given a bad name, and since the exhaust gas is always actively applied to the exhaust sensor as mentioned above, there is no need to increase the amount of the exhaust sensor protruding into the exhaust passage, so the exhaust resistance will be reduced. It is possible to reduce the damage caused by overheating of the sensor and to reduce damage to the sensor due to overheating.Furthermore, the structure is simple because only an exhaust gas recirculation passage is provided, and it can contribute to reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の平面図、第2図は第1図の1
−1視向面図、第3図は第1図のlI[−II視視向面
図第4図は第1図のmV−F/矢視図、第5図は第4図
のV−■矢視断面図である。第6図は従来の空燃比制御
装置の概略構成図、第7図は他の従来の空燃比制御装置
の要部断面図である。 (1)・・・エンジン本体 (3)・・・排気通路 (
9)・・・取付口 00・・・排気センサ αυ・・・
取出口 0の・・・排気還流通路 特 許出願人 マツダ株式会社
Fig. 1 is a plan view of an embodiment of the present invention, and Fig. 2 is a plan view of an embodiment of the present invention.
-1 side view, Figure 3 is lI [-II side view of Figure 1, Figure 4 is mV-F/arrow view of Figure 1, and Figure 5 is V- of Figure 4. ■It is an arrow sectional view. FIG. 6 is a schematic configuration diagram of a conventional air-fuel ratio control device, and FIG. 7 is a sectional view of a main part of another conventional air-fuel ratio control device. (1)...Engine body (3)...Exhaust passage (
9)...Mounting port 00...Exhaust sensor αυ...
Exhaust recirculation passage patent for outlet 0 Patent applicant Mazda Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] エンジンの排気通路に排気ガス成分を検出する排気セン
サを臨設し、該排気センサの出力に基づいて、エンジン
に供給する混合気の空燃比をフィードバック制御するよ
うにしたエンジンの空燃比制御装置において、上記排気
センサの直上流の排気通路に排気ガスの一部を吸気系に
還流する排気還流通路を開設したことを特徴とするエン
ジンの空燃比制御装置。
In an air-fuel ratio control device for an engine, an exhaust sensor for detecting exhaust gas components is installed in the exhaust passage of the engine, and the air-fuel ratio of the air-fuel mixture supplied to the engine is feedback-controlled based on the output of the exhaust sensor. An air-fuel ratio control device for an engine, characterized in that an exhaust recirculation passage is provided in the exhaust passage immediately upstream of the exhaust sensor to recirculate part of the exhaust gas to the intake system.
JP60183239A 1985-08-20 1985-08-20 Engine air-fuel ratio control device Pending JPS6241944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183239A JPS6241944A (en) 1985-08-20 1985-08-20 Engine air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183239A JPS6241944A (en) 1985-08-20 1985-08-20 Engine air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JPS6241944A true JPS6241944A (en) 1987-02-23

Family

ID=16132210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183239A Pending JPS6241944A (en) 1985-08-20 1985-08-20 Engine air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS6241944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969445A (en) * 1988-10-28 1990-11-13 Daimler-Benz Aktiengesellschaft Device for exhaust gas recirculation on a multi-cylinder diesel internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367009A (en) * 1976-11-26 1978-06-15 Nippon Denso Co Ltd Air fuel ratio detector
JPS56146046A (en) * 1980-04-14 1981-11-13 Fuji Electric Co Ltd Measuring device for flow rate of exhaust of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367009A (en) * 1976-11-26 1978-06-15 Nippon Denso Co Ltd Air fuel ratio detector
JPS56146046A (en) * 1980-04-14 1981-11-13 Fuji Electric Co Ltd Measuring device for flow rate of exhaust of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969445A (en) * 1988-10-28 1990-11-13 Daimler-Benz Aktiengesellschaft Device for exhaust gas recirculation on a multi-cylinder diesel internal combustion engine

Similar Documents

Publication Publication Date Title
US5273014A (en) Intake system for engine
US6170469B1 (en) Integrated internal combustion engine control system with high-precision emission controls
US4409949A (en) Exhaust gas recirculation control means for multiple cylinder engine having means for controlling air-fuel ratio in accordance with a signal from an exhaust gas sensor
JP2777817B2 (en) Multi-cylinder engine intake system
US4517947A (en) Multiple cylinder engine having air-fuel ratio control means in accordance with a signal from an exhaust gas sensor
JP3723086B2 (en) Intake device for internal combustion engine
JPS6241944A (en) Engine air-fuel ratio control device
JPH09228902A (en) Exhaust gas circulating device for engine
JP3907262B2 (en) Evaporative fuel purge system for engine
JPS6296776A (en) Fuel feeder for itnernal combustion engine
JPS60192869A (en) Exhaust recirculation controller for internal- combustion engine for car
JP2000054917A (en) Control device for egr valve
JP3421120B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPS618444A (en) Air-fuel ratio control device
JPH11280517A (en) Exhaust device for multi-cylinder internal combustion engine
JPS636463Y2 (en)
JP2621032B2 (en) Fuel injection control device
JPH09100751A (en) Intake air control device of internal combustion engine
JPS628358Y2 (en)
JPH11311140A (en) Engine intake system
JPH04101055A (en) Electronic controller of internal combustion engine
JP3470468B2 (en) Control unit for diesel engine
JPS6329040A (en) Fuel supply controller for internal combustion engine
JPS6270632A (en) Air-fuel ratio control device of internal combustion engine
JPH07293357A (en) Vapor fuel treatment device for internal combustion engine