JPS6241940Y2 - - Google Patents

Info

Publication number
JPS6241940Y2
JPS6241940Y2 JP1983044068U JP4406883U JPS6241940Y2 JP S6241940 Y2 JPS6241940 Y2 JP S6241940Y2 JP 1983044068 U JP1983044068 U JP 1983044068U JP 4406883 U JP4406883 U JP 4406883U JP S6241940 Y2 JPS6241940 Y2 JP S6241940Y2
Authority
JP
Japan
Prior art keywords
tube
packed bed
combustion
double
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983044068U
Other languages
Japanese (ja)
Other versions
JPS59149931U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983044068U priority Critical patent/JPS59149931U/en
Publication of JPS59149931U publication Critical patent/JPS59149931U/en
Application granted granted Critical
Publication of JPS6241940Y2 publication Critical patent/JPS6241940Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【考案の詳細な説明】 本考案は炭化水素改質炉に係り、特に燃料電池
に用いる水素を製造するのに好適な炭化水素改質
炉に関する。
[Detailed Description of the Invention] The present invention relates to a hydrocarbon reforming furnace, and particularly to a hydrocarbon reforming furnace suitable for producing hydrogen used in fuel cells.

燃料電池に供給される水素は、炭化水素原料
(メタン)にスチームを混入して高温の改質炉に
供給し、ここで触媒の存在下に水素リツチガスに
改質し、さらに高温変成炉及び低温変成炉でシフ
ト反応を行ないあ高濃度の水素に生成して燃料電
池に供給される。
Hydrogen to be supplied to the fuel cell is supplied to a high-temperature reformer by mixing steam with a hydrocarbon feedstock (methane), where it is reformed into hydrogen-rich gas in the presence of a catalyst, and then passed through a high-temperature shift furnace and a low-temperature converter. A shift reaction is carried out in the converter furnace to produce highly concentrated hydrogen, which is then supplied to the fuel cell.

このような水素製造システムに用いられる改質
炉として、反応容器内を管板によつて上部の予熱
ゾーンと下部の燃焼ゾーンとに区画し、この管板
に内管を内蔵する二重管式反応管の上部を固定し
た炭化水素改質炉が提案されている。
The reformer used in such hydrogen production systems is a double-tube type in which the inside of the reaction vessel is divided into an upper preheating zone and a lower combustion zone by a tube sheet, and an inner tube is built into this tube sheet. A hydrocarbon reforming furnace in which the upper part of the reaction tube is fixed has been proposed.

このような炭化水素改質炉において管板の熱的
強度及び二重反応管内外の圧力差が管板に直接作
用するため高温状態での使用上許容応力の小さい
領域で材料を選定せざるを得ない問題があり、ま
た管板の耐圧強度上の問題がある。また反応容器
内に管板が存在するために反応容器内に触媒を供
給及び抜出す操作が極めて困難であり、メンテナ
ンスが容易でないという問題があつた。
In such a hydrocarbon reforming furnace, the thermal strength of the tube sheet and the pressure difference between the inside and outside of the double reaction tube act directly on the tube sheet, so materials must be selected in a region with low allowable stress when used in high-temperature conditions. There are also problems with the pressure resistance of the tube sheet. Furthermore, since there is a tube plate inside the reaction vessel, it is extremely difficult to supply and extract the catalyst into the reaction vessel, and maintenance is not easy.

本考案の目的は、上記した従来技術の欠点をな
くし、メンテナンスが容易であるとともに高温オ
フガスの顕熱を有効に利用できる炭化水素改質炉
を提供することにある。
An object of the present invention is to provide a hydrocarbon reforming furnace that eliminates the drawbacks of the prior art described above, is easy to maintain, and can effectively utilize the sensible heat of high-temperature off-gas.

要するに本考案は反応容器内に管板に設けるこ
となく上部の熱粒子充填層と下部の燃焼触媒充填
層によつて予熱ゾーンと燃焼ゾーンとに仕切り、
二重管式反応管の両管間隙の上部に熱粒子を充填
し、下部に改質触媒を充填するとともにその上部
を炉上部に着脱自在に固定することによつて上記
目的を達成せしめたものである。
In short, the present invention partitions the reaction vessel into a preheating zone and a combustion zone by an upper layer filled with thermal particles and a lower layer filled with combustion catalyst without providing a tube plate.
The above purpose is achieved by filling the upper part of the gap between the two tubes of a double-tube reaction tube, filling the lower part with a reforming catalyst, and removably fixing the upper part to the upper part of the furnace. It is.

以下添付図面によつて本考案の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図において本体1は耐圧円筒容器からな
り、その上部側及び下部側にはそれぞれ半球型の
上鏡(ヘツドカバー)2及び下鏡3を有する一体
構造となつている。本体1とヘツドカバー2はフ
ランジ4を介して着脱自在となついる。本体1、
ヘツドカバー2、及び下鏡3はそれぞれ耐熱キヤ
スタブルのライニング5で張られており、本体1
と下鏡3は溶接固定されている。ヘツドカバー2
には反応管取付ノズル6が設けられ、この取付ノ
ズルに二重管式反応管7が嵌挿され、フランジ9
を介して固定されている。反応管7の内部には同
心円上に内管8が内蔵され、内管8の下端18は
開口し、また内管8の下端部と反応管7との間に
は多孔板からなる触媒受皿17が取付けられてい
る。反応管7の上端部はキヤツプ16となつて内
管8に溶接固定され、内管8は反応管7の上部よ
り突出した状態で設けられ、反応管7の上部側壁
より枝管10が設けられ、この枝管10はリング
ヘツダー12と接続されている。内管8は枝管1
3を介してリングヘツダー14と接続されてい
る。
In FIG. 1, a main body 1 is made of a pressure-resistant cylindrical container, and has an integral structure having a hemispherical upper mirror (head cover) 2 and a lower mirror 3 on its upper and lower sides, respectively. The main body 1 and the head cover 2 are detachably connected via a flange 4. Main body 1,
The head cover 2 and the lower mirror 3 are each covered with a heat-resistant castable lining 5, and the main body 1
and the lower mirror 3 are fixed by welding. Head cover 2
is provided with a reaction tube attachment nozzle 6, into which a double tube reaction tube 7 is fitted, and a flange 9
has been fixed through. An inner tube 8 is built concentrically inside the reaction tube 7, the lower end 18 of the inner tube 8 is open, and a catalyst receiving tray 17 made of a porous plate is provided between the lower end of the inner tube 8 and the reaction tube 7. is installed. The upper end of the reaction tube 7 serves as a cap 16 and is fixed to the inner tube 8 by welding, the inner tube 8 is provided in a state protruding from the upper part of the reaction tube 7, and a branch pipe 10 is provided from the upper side wall of the reaction tube 7. , this branch pipe 10 is connected to a ring header 12. Inner pipe 8 is branch pipe 1
It is connected to the ring header 14 via 3.

二重管式反応管7の両管の間隔における下部側
には改質触媒19が充填され、その上層側には熱
粒子20が充填されている。また反応容器内の下
層側には燃焼触媒21が充填され、その上層側に
は熱粒子22が充填され、これによつて反応容器
内は熱粒子22からなる予熱ゾーンと燃焼触媒2
1とからなる燃焼ゾーンとに区分けされている。
本体1の側壁には多数の燃焼供給ノズル23が放
射状に設けられ、この燃焼供給ノズル23はリン
グヘツダー25に接続されている。また本体1の
側壁には空気ノズル24が燃焼供給ノズル23に
近接して放射状に設けられ、この空気ノズル24
はリングヘツダー26に接続されている。さらに
二重管式反応管内の改質触媒層の上端面33は反
応容器内の燃焼触媒充填層の上端面32よりも高
い位置となるようになつている。なお図中29は
燃焼ガス排出ノズル、30はハンドホール、31
はマンホールである。
A reforming catalyst 19 is filled in the lower part of the space between the two tubes of the double-tube reaction tube 7, and thermal particles 20 are filled in the upper part of the reforming catalyst 19. Furthermore, the lower layer of the reaction vessel is filled with a combustion catalyst 21, and the upper layer thereof is filled with thermal particles 22, thereby creating a preheating zone consisting of thermal particles 22 and a combustion catalyst 22 inside the reaction vessel.
It is divided into a combustion zone consisting of 1 and 1.
A large number of combustion supply nozzles 23 are radially provided on the side wall of the main body 1, and these combustion supply nozzles 23 are connected to a ring header 25. Further, air nozzles 24 are provided radially on the side wall of the main body 1 in the vicinity of the combustion supply nozzle 23.
is connected to the ring header 26. Furthermore, the upper end surface 33 of the reforming catalyst layer in the double-tube reaction tube is located at a higher position than the upper end surface 32 of the combustion catalyst packed bed in the reaction vessel. In the figure, 29 is a combustion gas discharge nozzle, 30 is a hand hole, and 31
is a manhole.

このような炭化水素改質炉において燃料ガス2
7はリングヘツダー25を介して燃焼供給ノズル
から燃焼触媒充填層21内に導入され、また空気
28はリングヘツダー26を介して空気ノズル2
4から燃焼触媒充填層21内に導入される。燃焼
触媒充填層21内において燃料は燃焼を起こし、
これによつて発生した熱は燃焼触媒粒子21を介
して反応管7に伝わり燃焼排ガスは熱粒子22の
充填層において反応管7を加熱した後燃焼ガス排
出ノズル29から炉外に排出される。
In such a hydrocarbon reformer, the fuel gas 2
Air 7 is introduced into the combustion catalyst packed bed 21 from the combustion supply nozzle through the ring header 25, and air 28 is introduced into the air nozzle 2 through the ring header 26.
4 into the combustion catalyst packed bed 21. The fuel causes combustion in the combustion catalyst packed bed 21,
The heat generated thereby is transmitted to the reaction tube 7 via the combustion catalyst particles 21, and the combustion exhaust gas heats the reaction tube 7 in the packed bed of thermal particles 22, and then is discharged from the combustion gas discharge nozzle 29 to the outside of the furnace.

一方メタンとスチームの混合気体から成る改質
原料ガスはリングヘツダー12及び枝管10を介
して反応管7の上端より供給され内管8と反応管
7の環状部を下降する。このとき二重管式反応管
の環状部の上部及び二重管式反応管の管外にはそ
れぞれセラミツクボール等からなる熱粒子20及
び22が充填されているので、改質原料ガスはこ
れらの粒子を媒体として内外から加熱される。こ
のようにして改質原料ガスは改質触媒充填層19
に至るまでに改質反応に必要な温度まで加熱され
る。改質触媒充填層19を通過しつつ改質反応が
進行し、生成ガスは触媒受皿17に形成された孔
部を経て内管18の下端18より内管に流入し上
昇する。このとき生成ガスの顕熱は熱粒子20の
予熱に有効に利用される。次いで生成ガスは枝管
13を経てリングヘツダー14より取出される。
On the other hand, a reforming raw material gas consisting of a mixed gas of methane and steam is supplied from the upper end of the reaction tube 7 via the ring header 12 and the branch pipe 10, and descends through the inner tube 8 and the annular portion of the reaction tube 7. At this time, the upper part of the annular part of the double-tube reaction tube and the outside of the double-tube reaction tube are filled with thermal particles 20 and 22 made of ceramic balls, etc., so that the reforming raw material gas is filled with these particles. It is heated from inside and outside using particles as a medium. In this way, the reforming raw material gas is transferred to the reforming catalyst packed bed 19.
It is heated to the temperature required for the reforming reaction. The reforming reaction progresses while passing through the reforming catalyst packed bed 19, and the generated gas flows into the inner pipe from the lower end 18 of the inner pipe 18 through the hole formed in the catalyst receiving tray 17 and rises. At this time, the sensible heat of the generated gas is effectively used to preheat the thermal particles 20. The produced gas is then taken out from the ring header 14 via the branch pipe 13.

また反応容器内で発生した燃焼ガスは炉上部に
設けられた燃焼排ガスノズルから抜き出すように
なつているために燃焼触媒充填層21内で発生し
た燃焼ガスはその燃焼触媒充填層の上端のレベル
32よりも上方まで十分な顕熱を有しているので
このレベル32よりも上方にある改質触媒19を
も十分に加熱することができる。
Furthermore, since the combustion gas generated in the reaction vessel is extracted from the combustion exhaust gas nozzle provided at the top of the furnace, the combustion gas generated in the combustion catalyst packed bed 21 is discharged to the level 32 at the upper end of the combustion catalyst packed bed. Since it has sufficient sensible heat above this level 32, the reforming catalyst 19 located above this level 32 can also be sufficiently heated.

次に反応容器内の粒子の抜出し及び充填操作に
ついて説明する。反応容器1内の粒子を抜き出す
場合、まずマンホール31を取外し反応容器の底
部から燃焼触媒21及び熱粒子22を抜き出すこ
とができる。次いでマンホール31を閉じハンド
ホール30から新しい触媒又は熱粒子を充填でき
る。また二重管式反応管を取外す場合、反応管7
に接続する枝管10を図中11で示す溶接継手部
分を溶接切断し、また内管8と接続する枝管13
を図中15で示す溶接継手部分を溶接切断する。
さらにフランジ9部分の締付固定を取外すことに
よつて反応容器から二重管式反応管を上方に持ち
上げて取外すことができる。さらにメンテナンス
の必要に応じて本体フランジ4の締付け部分を取
外し本体1からヘツドカバーを取外すことによつ
てヘツドカバー2に二重管式反応管を取付けたま
まの状態で取外すこともできる。
Next, the operations for extracting and filling particles in the reaction container will be explained. When extracting the particles in the reaction vessel 1, the manhole 31 is first removed and the combustion catalyst 21 and the thermal particles 22 can be extracted from the bottom of the reaction vessel. The manhole 31 can then be closed and fresh catalyst or thermal particles can be filled through the handhole 30. In addition, when removing the double tube type reaction tube, the reaction tube 7
The branch pipe 10 connected to the inner pipe 8 is welded and cut at the welded joint portion indicated by 11 in the figure, and the branch pipe 13 connected to the inner pipe 8 is cut by welding.
The welded joint portion indicated by 15 in the figure is welded and cut.
Furthermore, by removing the fastening of the flange 9, the double-tube reaction tube can be lifted upward and removed from the reaction vessel. Further, if maintenance is required, by removing the tightening portion of the main body flange 4 and removing the head cover from the main body 1, the double-tube reaction tube can be removed from the head cover 2 while still being attached.

以上のように本考案によれば管板を用いること
なく二重管式反応管を反応容器内に固定している
ので管板が存在することによる触媒交換、清浄等
のメンテナンスの困難さを解消することができ、
また反応容器内の上部及び二重管式反応管の両管
間隙の上部には熱粒子が充填されているので高温
オフガスの顕熱を有効に利用でき、改質反応性能
を高めることができる。
As described above, according to the present invention, the double-tube reaction tube is fixed in the reaction vessel without using a tube sheet, which eliminates the difficulty of maintenance such as catalyst replacement and cleaning caused by the presence of the tube sheet. can,
In addition, since the upper part of the reaction vessel and the upper part of the gap between the two tubes of the double-tube reaction tube are filled with thermal particles, the sensible heat of the high-temperature off-gas can be used effectively, and the reforming reaction performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す正面断面図であ
る。 1……本体、2,3……ヘツドカバー、4……
本体フランジ、6……反応管取付ノズル、7……
反応管、8……内管、9……取付フランジ、1
0,13……枝管、11,15……溶接継手部、
19……改質触媒、20,22……熱粒子、21
……燃焼触媒、12,14,25,26……リン
グヘツダー、29……燃焼ガス排出ノズル、30
……ハンドホール、、31……マンホール。
FIG. 1 is a front sectional view showing an embodiment of the present invention. 1: main body, 2, 3: head cover, 4:
Body flange, 6... Reaction tube mounting nozzle, 7...
Reaction tube, 8... inner tube, 9... mounting flange, 1
0, 13: branch pipe; 11, 15: welded joint;
19... reforming catalyst, 20, 22... heat particles, 21
. . . Combustion catalyst, 12, 14, 25, 26 . . . Ring header, 29 . . . Combustion gas exhaust nozzle, 30
...Handhole,,31...Manhole.

Claims (1)

【実用新案登録請求の範囲】 (1) 上部の熱粒子充填層と、該熱粒子充填層より
下方の燃焼触媒充填層とにより内部が管板を用
いることなく予熱ゾーンと燃焼ゾーンとに仕切
られた反応容器と、外管の内部にほぼ同心円上
に内管を内蔵する二重管の両管間隙の上部に熱
粒子が充填され、下部に改質触媒が充填される
とともにその上部は炉上部に着脱自在に固定さ
れた二重反応管と、を備えた炭化水素改質炉。 (2) 実用新案登録請求の範囲第1項において、前
記二重反応管内の改質触媒充填層の上端面を、
前記反応容器内の燃焼触媒充填層の上端面より
も高くしたことを特徴とする炭化水素改質炉。 (3) 実用新案登録請求の範囲第1項において、前
記二重反応管の外管にフランジが取付けられ、
このフランジを炉上部のヘツドカバーに取付け
たフランジに締付固定するように構成されてい
ることを特徴とする炭化水素改質炉。
[Claims for Utility Model Registration] (1) The interior is partitioned into a preheating zone and a combustion zone by an upper thermal particle packed bed and a combustion catalyst packed bed below the thermal particle packed bed without using a tube plate. Thermal particles are filled in the upper part of the gap between the two tubes of the double tube, in which the inner tube is built almost concentrically inside the outer tube, and the lower part is filled with the reforming catalyst, and the upper part is connected to the upper part of the furnace. A hydrocarbon reforming furnace equipped with a double reaction tube that is detachably fixed to the . (2) In claim 1 of the utility model registration claim, the upper end surface of the reforming catalyst packed bed in the double reaction tube is
A hydrocarbon reforming furnace characterized in that the height is higher than the upper end surface of the combustion catalyst packed bed in the reaction vessel. (3) In claim 1 of the utility model registration claim, a flange is attached to the outer tube of the double reaction tube,
A hydrocarbon reforming furnace characterized in that the flange is configured to be tightened and fixed to a flange attached to a head cover at the top of the furnace.
JP1983044068U 1983-03-25 1983-03-25 Hydrocarbon reforming furnace Granted JPS59149931U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983044068U JPS59149931U (en) 1983-03-25 1983-03-25 Hydrocarbon reforming furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983044068U JPS59149931U (en) 1983-03-25 1983-03-25 Hydrocarbon reforming furnace

Publications (2)

Publication Number Publication Date
JPS59149931U JPS59149931U (en) 1984-10-06
JPS6241940Y2 true JPS6241940Y2 (en) 1987-10-27

Family

ID=30174598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983044068U Granted JPS59149931U (en) 1983-03-25 1983-03-25 Hydrocarbon reforming furnace

Country Status (1)

Country Link
JP (1) JPS59149931U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821410B2 (en) * 1985-12-27 1996-03-04 ヤマハ発動機株式会社 Fuel reformer for fuel cell
JP2002274807A (en) * 2001-03-14 2002-09-25 Osaka Gas Co Ltd Multitubular reaction apparatus
CA2520103A1 (en) * 2003-04-15 2004-10-28 Nuvera Fuel Cells, Inc. Modular fuel reformer with removable carrier
EP2861529B1 (en) * 2012-06-14 2019-08-14 Nuvera Fuel Cells, LLC Steam reformer

Also Published As

Publication number Publication date
JPS59149931U (en) 1984-10-06

Similar Documents

Publication Publication Date Title
KR101357977B1 (en) Internal combustion exchanger reactor for endothermic reaction in fixed bed
CN102176962A (en) Fluidized-bed reactor and insert for said fluidized-bed reactor
WO2008056724A1 (en) Reformer, reforming unit, and fuel cell system
JPS6241940Y2 (en)
JPH06127903A (en) Fuel cell reformer
US4229419A (en) Tube reactor for endothermic gas reactions
US4336229A (en) Apparatus for the production of ammonia synthesis gas from purified coke oven gas
US3595628A (en) Apparatus for reforming hydrocarbons
JPH0624704A (en) Reformer of fuel cell
JPS60153936A (en) Reactor with heat pipe
JPH09306532A (en) Fuel cell reactor
JPH06219704A (en) Reformer
JPH06219706A (en) Adiabatic reformer reactor
CN108624360A (en) A kind of gasification furnace and coal gasification method
KR102544436B1 (en) boiling water reactor
JP3094435B2 (en) Insulated reformer
JPH07223801A (en) Fuel-reforming device
JPH09165202A (en) Steam reformer
JPH0271834A (en) Steam reforming device
JPS647119B2 (en)
US3450507A (en) Integrated reforming of hydrocarbons
JPH07187603A (en) Heat transmitting method in reformer
JPH0679664B2 (en) Fuel reformer
CN110283628A (en) A kind of cracking gasification reactor
JPH0124533B2 (en)