JPS6241331B2 - - Google Patents

Info

Publication number
JPS6241331B2
JPS6241331B2 JP56047700A JP4770081A JPS6241331B2 JP S6241331 B2 JPS6241331 B2 JP S6241331B2 JP 56047700 A JP56047700 A JP 56047700A JP 4770081 A JP4770081 A JP 4770081A JP S6241331 B2 JPS6241331 B2 JP S6241331B2
Authority
JP
Japan
Prior art keywords
electro
optic effect
light
parallel
effect elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56047700A
Other languages
Japanese (ja)
Other versions
JPS57161828A (en
Inventor
Hideto Iwaoka
Sunao Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP4770081A priority Critical patent/JPS57161828A/en
Publication of JPS57161828A publication Critical patent/JPS57161828A/en
Publication of JPS6241331B2 publication Critical patent/JPS6241331B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0322Arrangements comprising two or more independently controlled crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 本発明は、非単色光から1個あるいは複数個の
単色光を分光する分光装置に関するものであつ
て、分光波長あるいは分光波長範囲を簡単に変え
ることができ、実時間分光等にも適した新規な装
置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spectroscopic device that separates one or more monochromatic lights from non-monochromatic light. This provides a new device suitable for spectroscopy, etc.

非単色光を1個あるいは複数個の単色光に分光
するのにあたつては、一般に、プリズム、干渉フ
イルタ、回折格子等が分光素子として用いられて
いる。
In order to separate non-monochromatic light into one or more monochromatic lights, a prism, an interference filter, a diffraction grating, or the like is generally used as a spectroscopic element.

しかし、従来のこれら分光素子では、分光波長
あるいは分光波長範囲は固定化されていて、分光
領域に応じた分光素子を用いなければならない。
また、これら従来の分光素子を用いて時間の変化
にしたがつた実時間分光を行なうためには、構成
が複雑になることは避けられない。
However, in these conventional spectroscopic elements, the spectral wavelength or spectral wavelength range is fixed, and it is necessary to use a spectral element according to the spectral region.
Further, in order to perform real-time spectroscopy according to changes in time using these conventional spectroscopic elements, the configuration inevitably becomes complicated.

本発明は、これらの欠点を解決した新しい分光
装置を実現したものである。
The present invention realizes a new spectroscopic device that solves these drawbacks.

すなわち、本発明に係る装置は、複数の電気光
学効果素子と、互いに平行な偏光面を有する複数
の偏光板と、受光素子列と、電源とを用い、これ
ら電気光学効果素子と偏光板とを各電気光学効果
素子の両面に平行な偏光面を形成するようにして
被分光光の進行方向に沿つて順次重ね合わせ、受
光素子列はこれら重ね合わされた電気光学効果素
子と偏光板の出力面と対向するように配列し、各
電気光学効果素子を共通の電源により並列駆動す
るように構成されている。
That is, the device according to the present invention uses a plurality of electro-optic effect elements, a plurality of polarizing plates having planes of polarization parallel to each other, a light receiving element array, and a power source. Each electro-optic effect element is sequentially stacked along the traveling direction of the light to be separated so as to form parallel polarization planes on both sides, and the light-receiving element array is connected to the output surface of the stacked electro-optic effect element and the polarizing plate. The electro-optic effect elements are arranged so as to face each other, and each electro-optic effect element is driven in parallel by a common power source.

以下、本発明について、図面を用いて詳細に説
明する。
Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明の原理説明図であつて、P1
〜P4は偏光板、M1〜M3は電気光学効果素
子、Vは電源である。偏光板P1〜P4は、互い
に平行な偏光面を有するものであつて、第1図で
は所定の方向yに対して45度の偏光角を有するも
のを用いている。電気光学効果素子M1〜M3
は、入射される被分光光に対して、印加される電
界の大きさに応じて電気光学効果による複屈折変
化を生じさせるものである。第1図では、電気光
学効果素子M1〜M3として電気光学効果による
複屈折が印加される電界の2乗の大きさに応じて
変化する2次材料を用いる例を示している。な
お、各電気光学効果素子M1〜M3の被分光光の
進行方向xに沿つた長さは、いわゆる半波長電圧
の比率がM1:M2:M3 4:2:1になるよ
うに構成されている。これら偏光板P1〜P4お
よび電気光学効果素子M1〜M3は、各電気光学
効果素子M1〜M3の両面に平行な偏光面を形成
するようにして被分光光の進行方向xに沿つて順
次整合剤を介して重ね合わされる。電源Vは、各
電気光学効果素子M1〜M3の電極EA1〜EA
3、EB1〜EB3に並列に接続されている。
FIG. 1 is an explanatory diagram of the principle of the present invention, and P1
~P4 is a polarizing plate, M1 to M3 are electro-optic effect elements, and V is a power source. The polarizing plates P1 to P4 have polarization planes parallel to each other, and in FIG. 1, those having a polarization angle of 45 degrees with respect to a predetermined direction y are used. Electro-optic effect elements M1 to M3
This causes a change in birefringence due to the electro-optic effect to the incident light to be separated, depending on the magnitude of the applied electric field. FIG. 1 shows an example in which secondary materials are used as the electro-optic effect elements M1 to M3, in which birefringence due to the electro-optic effect changes depending on the magnitude of the square of the applied electric field. The length of each of the electro-optic effect elements M1 to M3 along the traveling direction x of the light to be separated is configured such that the so-called half-wavelength voltage ratio is M1:M2:M3 4:2:1. . These polarizing plates P1 to P4 and electro-optic effect elements M1 to M3 are sequentially provided with a matching agent along the traveling direction are superimposed via. The power supply V connects electrodes EA1 to EA of each electro-optic effect element M1 to M3.
3. Connected in parallel to EB1 to EB3.

このように構成される装置の動作について説明
する。
The operation of the device configured in this way will be explained.

第2図は、第1図における各電気光学効果素子
M1〜M3に印加される電界の大きさVと入射さ
れる被分光光(以下光という)の複屈折の変化量
δとの関係を示す特性図である。第2図から明ら
かなように、同一電界では、複屈折変化δの大き
さはM1:M2:M3=4:2:1となつてい
る。第3図は、第1図の各部における光量の変化
状態を示す特性図であつて、印加する電界の大き
さを一定とした状態での光の波長λの逆数(周波
数γ:γ=2πδ/λ)と透過光量との関係を示
したものである。第3図において、a,b,cは
各電気光学効果素子M3,M2,M1における光
量I3,I2,I1の変化を示し、dは全体の光
量I1・I2・I3の変化を示している。第3図
から明らかなように、各光量I1〜I3の変化の
周期は、I3:I2:I1=1:1/2:1/4とな
り、全体の光量はこれら各光量I1〜I3の積と
なる。すなわち、第1図のように構成された装置
は、印加される電界に応じて特定波長λの光のみ
を通過させてそれ以外の波長の光を通過させない
ように動作する。
FIG. 2 shows the relationship between the magnitude V of the electric field applied to each electro-optic effect element M1 to M3 in FIG. 1 and the amount of change δ in birefringence of the incident light to be separated (hereinafter referred to as light) It is a characteristic diagram. As is clear from FIG. 2, in the same electric field, the magnitude of the birefringence change δ is M1:M2:M3=4:2:1. FIG. 3 is a characteristic diagram showing how the amount of light changes in each part of FIG. λ) and the amount of transmitted light. In FIG. 3, a, b, and c indicate changes in the light quantities I3, I2, and I1 in each electro-optic effect element M3, M2, and M1, and d indicates a change in the total light quantity I1, I2, and I3. As is clear from Fig. 3, the period of change of each light quantity I1 to I3 is I3:I2:I1=1:1/2:1/4, and the total light quantity is the product of these light quantities I1 to I3. Become. That is, the device configured as shown in FIG. 1 operates so as to pass only light of a specific wavelength λ and not pass light of other wavelengths, depending on the applied electric field.

このように、第1図の装置によれば、電源Vの
出力電圧を変えることによつて、任意の分光波長
を設定することができる。
In this manner, according to the apparatus shown in FIG. 1, by changing the output voltage of the power source V, any spectral wavelength can be set.

また、このように構成された装置を、白色光か
ら特定の色のみを通過させる色可変フイルタとし
て用いることもできる。
Further, the device configured in this manner can also be used as a color variable filter that allows only a specific color to pass from white light.

ところで、第1図における電気光学効果素子M
1〜M3の電極を一定方向に沿つて電気光学効果
による複屈折変化を生じるように所定の形状に形
成することにより、同時に複数個の単色光に分光
する実時間分光が行なえ、かつ、電源Vの出力電
圧を変えることによつて分光波長範囲が変えられ
る装置が実現できる。
By the way, the electro-optic effect element M in FIG.
By forming the electrodes 1 to M3 into a predetermined shape so as to cause birefringence change due to the electro-optic effect along a certain direction, real-time spectroscopy that simultaneously separates multiple monochromatic lights can be performed, and the power supply V By changing the output voltage of the spectral wavelength range, it is possible to realize a device that can change the spectral wavelength range.

第4図は、このような点に着目した本発明の一
実施例を示す構成説明図であつて、第1図と同等
部分には同一符号を付している。第4図におい
て、各電気光学効果素子M1〜M3の電極EA1
〜EA3,EB1〜EB3は、光の進行方向xに沿
つた幅の比率を所定の方向yに沿つた各点で一定
に保ちながら所定の方向yに沿つてその幅が変化
するように形成されている。本実施例では、幅の
比率をM1:M2:M3=4:2:1にした例を
示している。これら各電極EA1〜EA3および
EB1〜EB3は、共通の電源Vに並列に接続され
ている。PAは受光素子列であつて、偏光板P1
と対向するように平行に配列されている。
FIG. 4 is a configuration explanatory diagram showing an embodiment of the present invention focusing on such points, and parts equivalent to those in FIG. 1 are given the same reference numerals. In FIG. 4, electrode EA1 of each electro-optic effect element M1 to M3
~EA3, EB1~EB3 are formed so that the width thereof changes along the predetermined direction y while keeping the width ratio along the light traveling direction x constant at each point along the predetermined direction y. ing. This embodiment shows an example in which the width ratio is M1:M2:M3=4:2:1. Each of these electrodes EA1 to EA3 and
EB1 to EB3 are connected to a common power supply V in parallel. PA is a photodetector array, and polarizing plate P1
are arranged in parallel to face each other.

このようにして構成される装置の動作について
説明する。
The operation of the device constructed in this way will be explained.

電源Vからある一定の出力電圧が印加されてい
るものとすると、電極幅の広い部分は比較的波長
の短い光を通過させ、電極幅の狭い部分は比較的
波長の長い光を通過させることになり、非単色光
である被分光光を複数個の単色光に分光すること
ができる。一方、電源Vの出力電圧を変えること
によつて、分光波長範囲を変えることができる。
すなわち、出力電圧を高くすることにより分光波
長範囲はより短い波長領域に移行し、出力電圧を
低くすることにより分光波長範囲はより長い波長
領域に移行する。このようにして偏光板P1を通
過した各単色光は、偏光板P1と対向するように
平行に配置された受光素子列PAに入力されて電
気信号に変換される。これにより、実時間分光を
行なうことができる。
Assuming that a certain output voltage is applied from the power supply V, the wide part of the electrode allows light with a relatively short wavelength to pass through, and the part with a narrow electrode width allows light with a relatively long wavelength to pass through. Therefore, the light to be separated, which is non-monochromatic light, can be separated into a plurality of monochromatic lights. On the other hand, by changing the output voltage of the power source V, the spectral wavelength range can be changed.
That is, by increasing the output voltage, the spectral wavelength range shifts to a shorter wavelength region, and by lowering the output voltage, the spectral wavelength range shifts to a longer wavelength region. Each monochromatic light that has passed through the polarizing plate P1 in this manner is input to the light receiving element array PA arranged in parallel so as to face the polarizing plate P1, and is converted into an electrical signal. This allows real-time spectroscopy to be performed.

なお、このようにして構成される分光装置にお
ける分光波長の位置は、電極EA,EBの形状を目
的に応じて直線、2次曲線、双曲線等として形成
することにより、任意に設定することができる。
Note that the position of the spectral wavelength in the spectrometer configured in this manner can be arbitrarily set by forming the electrodes EA and EB into straight lines, quadratic curves, hyperbolas, etc., depending on the purpose. .

また、分光波長の選択度は、光の進行方向xに
沿つて重ね合わせる偏光板および電気光学効果素
子の段数を多くすることにより高めることができ
る。
Further, the selectivity of the spectral wavelength can be increased by increasing the number of stages of polarizing plates and electro-optic effect elements that are superimposed along the traveling direction x of light.

なお、上記実施例では、電気光学効果素子とし
て2次材料を用いる例について説明したが、1次
材料を用いても同様な結果が得られる。
In the above embodiments, an example in which a secondary material is used as the electro-optic effect element has been described, but similar results can be obtained even if a primary material is used.

また、上記各実施例では、電気光学効果素子M
1〜M3として各電極の幅の比率がM1:M2:
M3=4:2:1になるように形成されたものを
用い、これら電気光学効果素子M1〜M3を等し
い電圧で駆動する例について説明したが、電気光
学効果素子M1〜M3として一定方向に沿つて電
気光学効果による複屈折変化を生じるように同一
形状に形成されたものを用い、これら電気光学効
果素子M1〜M3を共通の電源の出力電圧を所定
の電圧比になるように分圧して駆動してもよい。
たとえば、2次材料を用いた場合には、各駆動電
圧の比をV1:V2:V3=2:√2:1にすれ
ばよい。このように構成することにより、電気光
学効果素子は1種類のみでよく、製造が容易にな
り、小形化を図ることもできる。
Furthermore, in each of the above embodiments, the electro-optic effect element M
1 to M3, the width ratio of each electrode is M1:M2:
An example has been described in which the electro-optic effect elements M1 to M3 are driven with the same voltage using the electro-optic effect elements formed so that M3=4:2:1. These electro-optic effect elements M1 to M3 are driven by dividing the output voltage of a common power supply to a predetermined voltage ratio. You may.
For example, when a secondary material is used, the ratio of each drive voltage may be set to V1:V2:V3=2:√2:1. With this configuration, only one type of electro-optic effect element is required, which facilitates manufacturing and allows miniaturization.

以上説明したように、本発明によれば、非単色
光から1個あるいは複数個の単色光が分光できる
とともに分光波長あるいは分光波長範囲を簡単に
変えることができて実時間分光等にも適した分光
装置が実現でき、実用上の効果は大きい。
As explained above, according to the present invention, one or more monochromatic lights can be separated from non-monochromatic light, and the spectral wavelength or spectral wavelength range can be easily changed, making it suitable for real-time spectroscopy, etc. A spectroscopic device can be realized, and the practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は第1図
における各電気光学効果素子に印加される電界の
大きさと位相の変化量との関係を示す特性図、第
3図は第1図の各部における光量の変化状態を示
す特性図、第4図は本発明の一実施例を示す構成
説明図である。 P……偏光板、M……電気光学効果素子、V…
…電源、EA,EB……電極、PA……受光素子
列。
FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a characteristic diagram showing the relationship between the magnitude of the electric field applied to each electro-optic effect element in FIG. 1 and the amount of change in phase, and FIG. FIG. 4 is a characteristic diagram showing changes in the amount of light in each part of the figure. FIG. 4 is a configuration explanatory diagram showing an embodiment of the present invention. P...polarizing plate, M...electro-optic effect element, V...
...power supply, EA, EB...electrode, PA...photodetector array.

Claims (1)

【特許請求の範囲】 1 一定方向に沿つて電気光学効果による複屈折
変化を生じるように所定の形状に電極が形成され
た複数の電気光学効果素子と、互いに平行な偏光
面を有する複数の偏光板と、受光素子列と、電源
とからなり、 これら電気光学効果素子と偏光板とは各電気光
学効果素子の両面に平行な偏光面を形成するよう
にして被分光光の進行方向に沿つて順次重ね合わ
され、受光素子列はこれら重ね合わされた電気光
学効果素子と偏光板の出力面と対向するように平
行に配列され、各電気光学効果素子のそれぞれの
電極は共通の電源のそれぞれの出力端子に並列に
接続されたことを特徴とする分光装置。
[Scope of Claims] 1. A plurality of electro-optic effect elements each having an electrode formed in a predetermined shape so as to cause a change in birefringence due to an electro-optic effect along a certain direction, and a plurality of polarized lights having planes of polarization parallel to each other. It consists of a plate, a light receiving element array, and a power source, and these electro-optic effect elements and polarizing plates are arranged along the traveling direction of the light to be separated so as to form polarization planes parallel to both sides of each electro-optic effect element. The photodetector arrays are sequentially stacked one on top of the other, and are arranged in parallel to face the output surfaces of the stacked electro-optic effect elements and polarizing plate, and each electrode of each electro-optic effect element is connected to each output terminal of a common power source. A spectroscopic device characterized by being connected in parallel to.
JP4770081A 1981-03-31 1981-03-31 Spectorscope Granted JPS57161828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4770081A JPS57161828A (en) 1981-03-31 1981-03-31 Spectorscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4770081A JPS57161828A (en) 1981-03-31 1981-03-31 Spectorscope

Publications (2)

Publication Number Publication Date
JPS57161828A JPS57161828A (en) 1982-10-05
JPS6241331B2 true JPS6241331B2 (en) 1987-09-02

Family

ID=12782564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4770081A Granted JPS57161828A (en) 1981-03-31 1981-03-31 Spectorscope

Country Status (1)

Country Link
JP (1) JPS57161828A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497017A (en) * 1972-05-09 1974-01-22
JPS5492766A (en) * 1977-12-27 1979-07-23 Hughes Aircraft Co Optical filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497017A (en) * 1972-05-09 1974-01-22
JPS5492766A (en) * 1977-12-27 1979-07-23 Hughes Aircraft Co Optical filter

Also Published As

Publication number Publication date
JPS57161828A (en) 1982-10-05

Similar Documents

Publication Publication Date Title
US8174696B2 (en) Device for sorting and concentrating electromagnetic energy and apparatus comprising at least one such device
CA1241429A (en) Acousto-optic dispersive light filter
JPH11142752A (en) Variable transmission wavelength interference filter and spectroscope using the filter
JPS6311822A (en) Diffraction grating
Ninomiya Ultrahigh resolving electrooptic prism array light deflectors
WO1985004730A1 (en) Optical spatial frequency filter
Miller et al. Multispectral imaging with a liquid crystal tunable filter
SU578910A3 (en) System for spectral analysis
JP2021099485A (en) Polarization spectral filter, polarization spectral filter array, and polarization spectral sensor
US6424451B1 (en) Phase array acousto-optic tunable filter based on birefringent diffraction
US3626511A (en) Digital light deflector using electro-optic grating
JP2995985B2 (en) Depolarizing plate
JPS6241331B2 (en)
Rosenberg Tunable birefringent filters
JPS6228623A (en) Photometer
JP4340833B2 (en) Depolarizing plate and optical device using depolarizing plate
JPH05173196A (en) Optical switch and its manufacture and optical controller using the switch
JPH0658817A (en) Light wavelength meter
JPH05215918A (en) Depolarization plate
Poger et al. Multispectral sensors in computer vision
Patel et al. Multiwavelength tunable liquid-crystal etalon filter
Xia et al. Advances in polarization-based liquid crystal optical filters
JP2665995B2 (en) Solid streak camera
US6654167B2 (en) Polarization scrambler and monochromator
JP2559815B2 (en) Color identification device