JPS6240857B2 - - Google Patents

Info

Publication number
JPS6240857B2
JPS6240857B2 JP12090582A JP12090582A JPS6240857B2 JP S6240857 B2 JPS6240857 B2 JP S6240857B2 JP 12090582 A JP12090582 A JP 12090582A JP 12090582 A JP12090582 A JP 12090582A JP S6240857 B2 JPS6240857 B2 JP S6240857B2
Authority
JP
Japan
Prior art keywords
oxide film
substrate
trench
semiconductor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12090582A
Other languages
Japanese (ja)
Other versions
JPS5911645A (en
Inventor
Kazutoshi Kamibayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12090582A priority Critical patent/JPS5911645A/en
Publication of JPS5911645A publication Critical patent/JPS5911645A/en
Publication of JPS6240857B2 publication Critical patent/JPS6240857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a semiconductor device.

従来、集積回路製造の際、各トランジスタ間の
素子分離のため、第1図に示す如くシリコン半導
体基板1(以下基板1と略す)の表面に薄い酸化
膜2、窒化膜3を形成し、その後写真蝕刻技術に
より所望の個所に穴を開け、基板1と同種の不純
物を拡散4する。窒化膜3をマスクにして酸化す
ると、第2図の如く各トランジスタ間のチヤネル
ストツパー6,7と厚い酸化膜領域ができる。こ
の厚い酸化膜形成時、窒化膜の下部へ酸化膜が食
い込むように成長するため、厚い酸化膜領域が広
がり微細なトランジスタ形成、集積回路の集積度
向上および高速用トランジスタ製造の障害となつ
ている。
Conventionally, when manufacturing integrated circuits, a thin oxide film 2 and a nitride film 3 are formed on the surface of a silicon semiconductor substrate 1 (hereinafter referred to as substrate 1), as shown in FIG. 1, in order to isolate each transistor. Holes are made at desired locations by photolithography, and impurities of the same type as the substrate 1 are diffused 4 . When oxidation is performed using the nitride film 3 as a mask, channel stoppers 6 and 7 between each transistor and a thick oxide film region are formed as shown in FIG. When this thick oxide film is formed, the oxide film grows into the bottom of the nitride film, which causes the thick oxide film region to spread and become an obstacle to the formation of fine transistors, the improvement of the degree of integration of integrated circuits, and the manufacture of high-speed transistors. .

次に第3図の如くMOS型集積回路のソース、
ドレインを形成する時、前記チヤンネルストツパ
ー領域6、とソース、ドレイン領域10,11,
12,13と接触し、即ち高濃度不純物領域が接
触し耐圧の低下、接合容量の増加となり、ICの
高耐圧化、高速化の障害となつている。
Next, as shown in Figure 3, the source of the MOS type integrated circuit,
When forming a drain, the channel stopper region 6, source and drain regions 10, 11,
12 and 13, that is, the high-concentration impurity regions come into contact, resulting in a decrease in breakdown voltage and an increase in junction capacitance, which is an obstacle to increasing the breakdown voltage and speed of the IC.

本発明の目的は、この従来の障害を除いた半導
体装置の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device that eliminates this conventional obstacle.

本発明の特徴は、半導体基板表面に薄い酸化膜
と誘電体膜を形成する工程と、写真蝕刻により部
分的にこの基板面を露出する工程とこの露出部の
基板を蝕刻し溝部を設ける工程と、この溝部に基
板と同種の不純物を注入する工程と、この溝部の
み選択的に酸化する工程と、この溝部の酸化膜を
残し基板の誘電体膜と酸化膜を除去する工程と、
この溝部のみ多結晶半導体を他部には基板と同種
不純物の単結晶半導体を同時にエピタキシヤル成
長する工程と、この溝部の多結晶半導体部を酸化
することで溝部を酸化膜で埋める工程を有する半
導体装置の製造方法にある。
The features of the present invention include a step of forming a thin oxide film and a dielectric film on the surface of a semiconductor substrate, a step of partially exposing the substrate surface by photolithography, and a step of etching the exposed portion of the substrate to form a groove. , a step of implanting impurities of the same type as the substrate into this groove portion, a step of selectively oxidizing only this groove portion, a step of removing a dielectric film and an oxide film of the substrate while leaving an oxide film in this groove portion,
A semiconductor product that has a process of epitaxially growing a polycrystalline semiconductor only in this groove and a single crystal semiconductor with the same type of impurity as the substrate in other parts, and a process of filling the groove with an oxide film by oxidizing the polycrystalline semiconductor part of this groove. It is in the manufacturing method of the device.

以下、本発明実施例の第4図から第8図につい
て説明する。第4図の如く基板14上に酸化膜1
5、窒化膜16を形成後、ホトレジスト17を塗
布し写真蝕刻技術により現像する。ホトレジスト
17をマスクとして窒化膜16、酸化膜15を除
去する。基板14上に溝部18,19を設ける
が、この際のマスクはホトレジスト17、あるい
は窒化膜16のどちらを使用してもよい。
Hereinafter, FIGS. 4 to 8 of the embodiment of the present invention will be explained. As shown in FIG. 4, an oxide film 1 is formed on the substrate 14.
5. After forming the nitride film 16, a photoresist 17 is applied and developed by photolithography. The nitride film 16 and oxide film 15 are removed using the photoresist 17 as a mask. Grooves 18 and 19 are provided on the substrate 14, and either the photoresist 17 or the nitride film 16 may be used as a mask at this time.

窒化膜16あるいはホトレジスト17をマスク
に溝部18,19の低部へ基板14と同種の不純
物をイオン注入する。これがチヤンネルストツパ
ー部20である。第5図は窒化膜16をマスクと
し溝部18,19の低部、側面を酸化した状態で
ある。次に第5図の窒化膜16を除去し、酸化膜
15の全面と酸化膜22,23の一部を除去す
る。ここで溝部の酸化膜22,23の一部を残す
ことが特徴である。その後基板表面にエピタキシ
ヤル成長を行う。この際第6図に示す如く、酸化
膜のある溝部24,25は多結晶半導体27,2
8が成長し、他部は基板14と同種の不純物を有
する単結晶半導体16が成長する。この後全面を
酸化すると溝部のポリシリ27,28は単結晶部
より20〜50%酸化速度が早いので、溝部29,3
0が全て酸化膜となる。この時、多結晶部が酸化
膜へ変わると体積が30%〜40%増加するため第7
図の如く、溝部29,30は酸化膜で埋つてしま
う。その後、トランジスタのソース、ドレイン部
を形成すると第8図の如くなるが、チヤンネルス
トツパー部20,21とソース、ドレイン領域3
1,32,33,34は接触しないため、ソー
ス、ドレイン領域の接合容量は増さず、また、高
耐圧トランジスタに適する。
Using the nitride film 16 or the photoresist 17 as a mask, ions of impurities of the same type as the substrate 14 are implanted into the lower parts of the grooves 18 and 19. This is the channel stopper section 20. FIG. 5 shows a state in which the bottom and side surfaces of the grooves 18 and 19 are oxidized using the nitride film 16 as a mask. Next, the nitride film 16 shown in FIG. 5 is removed, and the entire surface of the oxide film 15 and part of the oxide films 22 and 23 are removed. The feature here is that a portion of the oxide films 22 and 23 in the groove portions are left. Epitaxial growth is then performed on the substrate surface. At this time, as shown in FIG.
A single crystal semiconductor 16 having the same type of impurity as that of the substrate 14 is grown in the other portion. After that, when the entire surface is oxidized, the oxidation rate of the polysilicon 27 and 28 in the grooves is 20 to 50% faster than that of the single crystal part, so the grooves 29 and 3
All 0's become oxide films. At this time, when the polycrystalline part changes to an oxide film, the volume increases by 30% to 40%, so the seventh
As shown in the figure, the grooves 29 and 30 are filled with an oxide film. After that, when the source and drain parts of the transistor are formed, the result will be as shown in FIG.
Since 1, 32, 33, and 34 are not in contact with each other, the junction capacitance of the source and drain regions does not increase, and is suitable for a high voltage transistor.

更に従来技術による第3図と本発明の第8図を
比較すると、第3図では厚い酸化膜8,9を形成
する際横方向に深さ方向とほぼ同じだけ酸化膜が
成長するのに対し、第8図では厚い酸化膜20,
21を形成してもほとんど横方向に酸化膜が広が
らない。従つてトランジスタの微細化、高速化に
対して現状の製法に比し、有利となる。
Furthermore, when comparing FIG. 3 according to the prior art and FIG. 8 according to the present invention, it is found that when forming the thick oxide films 8 and 9 in FIG. , in FIG. 8, the thick oxide film 20,
Even if 21 is formed, the oxide film hardly spreads in the lateral direction. Therefore, this method is more advantageous than the current manufacturing method for miniaturizing and increasing the speed of transistors.

以上MOS型集積回路について述べたがバイポ
ーラ型集積回路の各素子間の誘電体分離へも同様
に適用できることは明らかである。
Although MOS type integrated circuits have been described above, it is clear that the present invention can be similarly applied to dielectric isolation between elements of bipolar type integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は各々従来技術の製法
を工程順に示す断面図、第4図、第5図、第6
図、第7図、第8図は各々本発明の実施例の工程
順断面図、である。 なお図において、1……シリコン半導体基板、
2……薄い酸化膜、3……窒化膜、4,5……チ
ヤンネルストツパー用領域、6,7……チヤンネ
ルストツパー用領域、8,9……厚い酸化膜、1
0,11,12,13……ソース、ドレイン領
域、14……シリコン半導体基板、15……薄い
酸化膜、16……窒化膜、17……ホトレジス
ト、18,19……半導体基板上の溝部、20,
21……チヤンネルストツパー領域、22,2
3,24,25……溝部の酸化膜、26……エピ
タキシヤル成長した単結晶半導体部、27,28
……溝部へ成長した多結晶半導体部、29,30
……溝部の酸化膜、31,32,33,34……
ソース、ドレイン領域、である。
Figures 1, 2, and 3 are cross-sectional views showing the conventional manufacturing method in order of process, and Figures 4, 5, and 6 are
7, and 8 are sectional views in the order of steps of an embodiment of the present invention. In the figure, 1... silicon semiconductor substrate,
2... Thin oxide film, 3... Nitride film, 4, 5... Channel stopper area, 6, 7... Channel stopper area, 8, 9... Thick oxide film, 1
0, 11, 12, 13... Source, drain region, 14... Silicon semiconductor substrate, 15... Thin oxide film, 16... Nitride film, 17... Photoresist, 18, 19... Groove portion on semiconductor substrate, 20,
21...Channel stopper area, 22,2
3, 24, 25... Oxide film in the trench, 26... Epitaxially grown single crystal semiconductor part, 27, 28
...Polycrystalline semiconductor portion grown into the groove, 29, 30
...Oxide film in the groove, 31, 32, 33, 34...
These are the source and drain regions.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板表面に薄い酸化膜と誘電
体膜を形成する工程と、写真蝕刻により部分的に
該基板面を露出する工程と、該露出部の該基板を
蝕刻し溝部を設ける工程と、該溝部に一導電型不
純物を注入する工程と、該溝部のみ選択的に酸化
する工程と、該溝部の酸化膜を残し該基板の誘電
体膜と酸化膜を除去する工程と、該溝部のみ多結
晶半導体を他部には一導電型の単結晶半導体を同
時にエピタキシヤル成長する工程と、該溝部の多
結晶半導体部を酸化することで該溝部を酸化膜で
埋める工程を有することを特徴とする半導体装置
の製造方法。
1. A step of forming a thin oxide film and a dielectric film on the surface of a semiconductor substrate of one conductivity type, a step of partially exposing the surface of the substrate by photolithography, and a step of etching the exposed portion of the substrate to form a groove. , a step of implanting one conductivity type impurity into the trench, a step of selectively oxidizing only the trench, a step of removing a dielectric film and an oxide film of the substrate leaving an oxide film in the trench, and a step of removing only the trench. It is characterized by comprising the steps of simultaneously epitaxially growing a polycrystalline semiconductor and a single-crystalline semiconductor of one conductivity type on other parts, and filling the trench with an oxide film by oxidizing the polycrystalline semiconductor part in the trench. A method for manufacturing a semiconductor device.
JP12090582A 1982-07-12 1982-07-12 Manufacture of semiconductor device Granted JPS5911645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12090582A JPS5911645A (en) 1982-07-12 1982-07-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12090582A JPS5911645A (en) 1982-07-12 1982-07-12 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5911645A JPS5911645A (en) 1984-01-21
JPS6240857B2 true JPS6240857B2 (en) 1987-08-31

Family

ID=14797895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12090582A Granted JPS5911645A (en) 1982-07-12 1982-07-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5911645A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008180A (en) * 1989-04-07 1991-04-16 Eastman Kodak Company Photographic recording material containing a cyan dye-forming coupler
KR960014452B1 (en) * 1993-12-22 1996-10-15 금성일렉트론 주식회사 Method of isolation of a semiconductor device
US5438016A (en) * 1994-03-02 1995-08-01 Micron Semiconductor, Inc. Method of semiconductor device isolation employing polysilicon layer for field oxide formation
US5472904A (en) * 1994-03-02 1995-12-05 Micron Technology, Inc. Thermal trench isolation
US5753962A (en) * 1996-09-16 1998-05-19 Micron Technology, Inc. Texturized polycrystalline silicon to aid field oxide formation
KR100444607B1 (en) * 2002-10-24 2004-08-16 주식회사 하이닉스반도체 Method of forming an isolation layer in a semiconductor device

Also Published As

Publication number Publication date
JPS5911645A (en) 1984-01-21

Similar Documents

Publication Publication Date Title
US5011788A (en) Process of manufacturing semiconductor integrated circuit device and product formed thereby
JPH02260660A (en) Manufacture of mos type semiconductor device
US5286672A (en) Method for forming field oxide regions
GB2296817A (en) A method of making a f.e.t
KR100321889B1 (en) A semiconductor device and a method of manufacturing the same
JPS6240857B2 (en)
JPH08195433A (en) Semiconductor device and its manufacture
KR0151053B1 (en) Fabrication method of semiconductor device with soi structure
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JPH07297275A (en) Manufacture of semiconductor device
JP3204872B2 (en) MOSFET and manufacturing method thereof
KR940010920B1 (en) Manufacturing method of soi structure semiconductor
JPS6211516B2 (en)
JPS6237543B2 (en)
JPH0344077A (en) Manufacture of semiconductor device
JPH067596B2 (en) Method for manufacturing semiconductor device
JPH1092922A (en) Semiconductor device and manufacture thereof
KR100356793B1 (en) Method for fabricating bc-soi device
JPS60111439A (en) Formation of isolation region
JPH0423828B2 (en)
JPS60211958A (en) Semiconductor device
JPS6129151B2 (en)
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPS62165364A (en) Semiconductor device
JPS60171738A (en) Semiconductor device