JPS6240549B2 - - Google Patents

Info

Publication number
JPS6240549B2
JPS6240549B2 JP4660080A JP4660080A JPS6240549B2 JP S6240549 B2 JPS6240549 B2 JP S6240549B2 JP 4660080 A JP4660080 A JP 4660080A JP 4660080 A JP4660080 A JP 4660080A JP S6240549 B2 JPS6240549 B2 JP S6240549B2
Authority
JP
Japan
Prior art keywords
ignition
circuit
signal
internal combustion
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4660080A
Other languages
Japanese (ja)
Other versions
JPS56143351A (en
Inventor
Toshihiro Saga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4660080A priority Critical patent/JPS56143351A/en
Publication of JPS56143351A publication Critical patent/JPS56143351A/en
Publication of JPS6240549B2 publication Critical patent/JPS6240549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

【発明の詳細な説明】 本発明は磁石発電機を電源とする内燃機関用無
接点点火装置に関し、特に点火時期精度の優れた
電子式点火時期制御装置を安価に得るようにした
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-contact ignition device for an internal combustion engine using a magnet generator as a power source, and in particular, an electronic ignition timing control device with excellent ignition timing accuracy can be obtained at a low cost.

従来、二輪車等の、磁石発電機の出力を点火電
源とする無接点点火装置において、進角を行う方
法として、 幅の狭い信号電圧を発生するセンサと機械ガ
バナを組合せた機械進角方式、 幅の広い信号電圧を発生する進角用信号発電
機を設け、この信号電圧をサイリスタのゲー
ト、カソード間に印加し、回転上昇に伴い波形
が立上がることを利用して進角させる電気進角
方式(信号発電機を用いた波形進角方式)、 磁石発電機の出力の点火に使用しない半波出
力電圧波形を適当な信号電圧変換回路を介して
信号電圧に変換してサイリスタのゲート、カソ
ード間に印加し、と同様に進角させる電気進
角方式(信号電圧変換回路を用いた波形進角方
式)等が公知となつている。
Conventionally, in non-contact ignition systems such as motorcycles that use the output of a magnet generator as the ignition power source, the method of advancing the angle is a mechanical advance method that combines a sensor that generates a narrow signal voltage and a mechanical governor. An electrical advance method in which a signal generator for advance angle that generates a wide signal voltage of (waveform advance method using a signal generator), the half-wave output voltage waveform that is not used for ignition of the output of the magnet generator is converted into a signal voltage via an appropriate signal voltage conversion circuit, and is applied between the gate of the thyristor and the cathode. An electrical advance method (a waveform advance method using a signal voltage conversion circuit), etc., in which the signal voltage is applied to and advanced in the same manner as is known.

ところが、上述した機械進角方式のものでは、
摺動部の摩耗により点火時期にフラツキが生じる
ようになるため寿命が半永久的とは言えない。ま
た、ガバナはクランク軸やカム軸に取付けられる
わけであるが、他の部品との関係上、取付スペー
スが問題になることがある。
However, with the mechanical advance method mentioned above,
The service life cannot be said to be semi-permanent because the ignition timing fluctuates due to wear of the sliding parts. Furthermore, although the governor is attached to the crankshaft or camshaft, the mounting space may become a problem due to the relationship with other parts.

また、信号発電機を用いた波形進角方式のもの
では、点火電源とするための磁石発電機の他に幅
の広い信号電圧を得るため、ロータとステータと
からなる発電機をもう一つ設けることになるの
で、大幅にコストアツプとなる。更に重大な欠点
は進角特性の設定自由度が小さいということであ
る。すなわち信号電圧波形により進角特性が決ま
るため、要求進角特性が変更された場合は、磁極
形状、コア形状等を変更しなければ対応できな
い。
In addition, in the waveform advance method using a signal generator, in addition to the magnet generator used as the ignition power source, another generator consisting of a rotor and a stator is installed in order to obtain a wide signal voltage. As a result, the cost will increase significantly. A further serious drawback is that the degree of freedom in setting the advance angle characteristic is small. That is, since the advance angle characteristic is determined by the signal voltage waveform, if the required advance angle characteristic is changed, it cannot be handled without changing the magnetic pole shape, core shape, etc.

また、信号電圧変換回路を用いた波形進角方式
のものでは進角用信号発電機を持たないため、コ
スト的には有利であるが、磁石発電機の出力を利
用して信号電圧を得るため、信号発電機を用いた
ものと同様に進角特性の自由度が小さい。また、
磁石発電機にフエライト磁石を使用したもので
は、磁石発電機の周温変化に対する点火時期変化
が大きいという欠点がある。
In addition, the waveform advance method using a signal voltage conversion circuit does not have a signal generator for advance angle, so it is advantageous in terms of cost. , the degree of freedom in advance angle characteristics is small, similar to the one using a signal generator. Also,
A magnet generator using a ferrite magnet has a drawback in that the ignition timing changes greatly with changes in the circumferential temperature of the magnet generator.

これらの欠点を解消し、精度の優れた点火時期
特性を得る方法として演算用コンデンサの充放電
を利用した電子式点火時期制御装置が考案されて
はいるが、それらはいずれもバツテリを電源とし
たものであり、磁石発電機を電源としたものでは
ない。バツテリを用いず磁石発電機のみを用いて
電子式点火時期制御を行うには、磁石発電機の出
力より、何らかの方法で直流電源を作り出せば良
いわけで、この一例として、コンデンサ充電コイ
ルの出力のうち、主コンデンサを充電しない半波
出力を小抵抗を介して短絡し、この抵抗の両端に
生じる電圧により大容量のコンデンサを充電して
直流電源を得る方法が考えられている。この方法
により直流電源を作り出せば、バツテリを用いな
くても電子式点火制御装置を駆動することが可能
となる。
Electronic ignition timing control devices that utilize the charging and discharging of calculation capacitors have been devised as a way to eliminate these drawbacks and obtain highly accurate ignition timing characteristics, but all of them use batteries as their power source. It is not powered by a magnet generator. To perform electronic ignition timing control using only a magnet generator without using a battery, it is sufficient to generate DC power by some method from the output of the magnet generator. Among these methods, a method has been considered in which a half-wave output that does not charge the main capacitor is short-circuited via a small resistor, and a large-capacity capacitor is charged by the voltage generated across this resistor to obtain a DC power source. By creating a DC power source using this method, it becomes possible to drive an electronic ignition control device without using a battery.

ところで、演算用コンデンサの充放電を利用し
て電子式点火時期制御装置の一例として、特開昭
51−120334号公報が公知となつているが、これに
よると演算用コンデンサの充電を開始するための
信号を得る第1のセンサと放電を開始させるため
の信号を得る第2のセンサと低速時の固定進角位
置の信号を得るための第3のセンサとの計3つの
センサが必要である。また、上記公報には第1の
センサの信号発生位置を低速時の固定進角位置と
一致させることにより、2つのセンサで行う方法
も記載されている。この方式を磁石発電機を電源
とする点火装置に適用するならば、磁石発電機の
ロータ(鉄碗)の外周に誘導子を設け、ロータの
外周側にセンサを3ケ又は2ケある機械角をもつ
て配置する必要がある。しかし、ロータ外周側の
エンジンクランクケース内には3ケ又は、2ケの
センサを配置するスペースを取れない場合が有
り、また仮にスペースが取れたとしてもセンサの
数が多いとコスト的に不利であるという問題があ
る。
By the way, as an example of an electronic ignition timing control device that utilizes the charging and discharging of a calculation capacitor,
Publication No. 51-120334 is publicly known, and according to this, a first sensor that obtains a signal to start charging the calculation capacitor, a second sensor that obtains a signal to start discharging, and a low speed A total of three sensors are required, including a third sensor for obtaining a signal at the fixed advance angle position. The above-mentioned publication also describes a method using two sensors by making the signal generation position of the first sensor coincide with the fixed advance angle position at low speed. If this method is applied to an ignition system powered by a magnet generator, an inductor is installed around the outer periphery of the rotor (iron bowl) of the magnet generator, and three or two sensors are installed on the outer periphery of the rotor. It is necessary to place it with However, there are cases where it is not possible to find space for 3 or 2 sensors in the engine crankcase on the outer circumference of the rotor, and even if space is available, having a large number of sensors is disadvantageous in terms of cost. There is a problem.

本発明は上記の問題を解決するため、1つのセ
ンサで1回転につき2の整数倍の信号電圧を発生
させ、この信号電圧と磁石発電機の出力電圧との
論理をとつて2つの整数倍の信号電圧を2系統の
信号電圧に分離し、それぞれを演算用コンデンサ
の充電開始信号及び放電開始信号等に用いること
により、センサ1ケのみで電子式点火時期制御が
可能な磁石発電機式内燃機関用無接点火装置を得
ることを目的とする。
In order to solve the above problem, the present invention generates a signal voltage that is an integral multiple of 2 per rotation with one sensor, and then calculates the signal voltage that is an integral multiple of 2 by calculating the logic between this signal voltage and the output voltage of the magnet generator. Magnet generator type internal combustion engine that enables electronic ignition timing control with only one sensor by separating the signal voltage into two signal voltage systems and using each as a charging start signal and a discharging start signal for the calculation capacitor. The purpose is to obtain a non-contact ignition device for use.

以下本発明を図に示す実施例について説明す
る。本発明を4極の磁石発電機を用いた単気筒4
サイクル内燃機関に適用した場合について説明す
る。第1図において、磁石発電機のコンデンサ充
電コイル1の反コンデンサ充電電流は、小抵抗
(30Ω程度)11およびダイオード3を介して流
れ、この時小抵抗11の両端に現われる電圧によ
りダイオード5を介して大容量(数百μF)のコ
ンデンサ12を充電し、直流電源とする。第6図
に示すごとく磁石発電機の磁性体製のロータ20
の外周には必要進角幅だけの機械角をもつて2ケ
の穴21,22が設けられており(2ケの凹みや
突起でも良い)、ロータ20の外周に配置した永
久磁石23と信号コイル24とを有する電磁ピツ
クアツプよりなるセンサ2には、第3図Dで示す
ごとくロータ20の1回転につき2サイクルの信
号電圧が必要進角幅だけずれて発生する。3,
4,6はダイオード、7はサイリスタ、8は主コ
ンデンサ、9は点火コイル、9a,9bはその1
次コイルと2次コイル、10は点火栓で、これら
により公知のコンデンサ放電式点火回路を構成す
る。13は点火時期制御回路で第2図に内部回路
を示す。点火時期制御回路13には小抵抗11の
電圧、コンデンサ12の電圧、及びセンサ2の信
号電圧が入力として加わり、サイリスタ7をトリ
ガする信号電圧を出力する。コンデンサ12の電
圧は脈流となるため、これを定電圧回路50によ
り安定化し、定電圧V+を得る。この定電圧V+
比較器、論理回路、定電流回路、波形整形回路、
フリツプフロツプ等の電源として用いる。小抵抗
11の電圧、及びコンデンサ12の電圧はそれぞ
れ抵抗103,104、及び101,102によ
り適当な値に分圧して比較器100の入力とす
る。センサ2の出力は波形整形回路150により
整形し、波形整形回路150の出力と比較器10
0の出力はAND回路200を介し、この出力を
フリツプフロツプ350のリセツト信号とする。
また、比較器100の出力はNOT回路250に
より反転し、NOT回路250の出力と波形整形
回路150の出力はAND回路300を介してこ
の出力をフリツプフロツプ350のセツト信号と
する。ここでフリツプフロツプ350のセツト信
号の立上り位置は、高速固定進角位置θHと一致
させ、リセツト信号の立上り位置は低速固定進角
位置θLと一致させてある。演算用コンデンサ1
07はアナログスイツチ500、及び550が共
に開いている状態では定電流回路400により定
電流icで充電され、スイツチ500が閉じ、スイ
ツチ550が開いている状態では、第2図の如く
定電流ic及びidが流れるが、ここでid>icとなる
ように設定してあるため、演算用コンデンサ10
7の電荷は定電流id―icで放電することになる。
スイツチ500はフリツプフロツプ350のQ出
力が“1”の時に閉じるよう構成されている。定
電圧V+は抵抗105,106により分圧し、抵
抗106の両端電圧を基準電圧とし、この基準電
圧と演算用コンデンサ107の電圧とを比較器6
00の入力とし、比較器600の出力とフリツプ
フロツプ350の出力とはNOR回路650を
介し、NOR回路650の出力とフリツプフロツ
プ350のリセツト信号とはDR回路700を介
して、OR回路700の出力をサイリスタ7の点
火信号とする。また、OR回路700の出力が
“1”となつた時に、スイツチ550を閉じ、演
算用コンデンサ107の電荷を瞬時に放電させ
る。
The present invention will be described below with reference to embodiments shown in the drawings. The present invention is a single-cylinder four-cylinder generator using a four-pole magnet generator.
A case where the present invention is applied to a cycle internal combustion engine will be explained. In FIG. 1, the anti-capacitor charging current of the capacitor charging coil 1 of the magnet generator flows through a small resistor (about 30Ω) 11 and a diode 3, and at this time, the voltage appearing across the small resistor 11 causes the anti-capacitor charging current to flow through the diode 5. A capacitor 12 with a large capacity (several hundred μF) is charged, and a DC power source is obtained. As shown in Fig. 6, a rotor 20 made of magnetic material of a magnet generator
Two holes 21 and 22 are provided on the outer periphery of the rotor 20 with a mechanical angle equal to the necessary advance width (two recesses or protrusions may be used), and a permanent magnet 23 arranged on the outer periphery of the rotor 20 and a signal As shown in FIG. 3D, two cycles of signal voltage are generated in the sensor 2, which is an electromagnetic pickup having a coil 24, for each revolution of the rotor 20 and are shifted by the required advance width. 3,
4 and 6 are diodes, 7 is a thyristor, 8 is a main capacitor, 9 is an ignition coil, 9a and 9b are parts 1
A secondary coil, a secondary coil, and a spark plug 10 constitute a known capacitor discharge type ignition circuit. 13 is an ignition timing control circuit whose internal circuit is shown in FIG. The ignition timing control circuit 13 receives the voltage of the small resistor 11, the voltage of the capacitor 12, and the signal voltage of the sensor 2 as inputs, and outputs a signal voltage that triggers the thyristor 7. Since the voltage of the capacitor 12 becomes a pulsating current, this is stabilized by the constant voltage circuit 50 to obtain a constant voltage V + . This constant voltage V + is used for comparators, logic circuits, constant current circuits, waveform shaping circuits,
Used as a power source for flip-flops, etc. The voltage across the small resistor 11 and the voltage across the capacitor 12 are divided into appropriate values by resistors 103, 104, and 101, 102, respectively, and are input to the comparator 100. The output of the sensor 2 is shaped by a waveform shaping circuit 150, and the output of the waveform shaping circuit 150 and the comparator 10 are
The output of 0 is passed through the AND circuit 200, and this output is used as a reset signal for the flip-flop 350.
Further, the output of the comparator 100 is inverted by a NOT circuit 250, and the output of the NOT circuit 250 and the output of the waveform shaping circuit 150 are passed through an AND circuit 300, and this output is used as a set signal for the flip-flop 350. Here, the rising position of the set signal of the flip-flop 350 is made to coincide with the high speed fixed advance angle position θH , and the rising position of the reset signal is made to coincide with the low speed fixed advance angle position θL . Computing capacitor 1
07 is charged with a constant current IC by the constant current circuit 400 when both the analog switches 500 and 550 are open, and when the switch 500 is closed and the switch 550 is open, the constant current IC and IC are charged as shown in FIG. id flows, but since it is set so that id>ic, the calculation capacitor 10
The charge of 7 will be discharged with constant current id-ic.
Switch 500 is configured to close when the Q output of flip-flop 350 is "1". The constant voltage V + is divided by resistors 105 and 106, the voltage across the resistor 106 is used as a reference voltage, and the comparator 6
The output of the comparator 600 and the output of the flip-flop 350 are connected to the NOR circuit 650, the output of the NOR circuit 650 and the reset signal of the flip-flop 350 are connected to the DR circuit 700, and the output of the OR circuit 700 is connected to the thyristor. 7 ignition signal. Further, when the output of the OR circuit 700 becomes "1", the switch 550 is closed and the charge in the calculation capacitor 107 is instantly discharged.

以上の如く構成された制御回路での動作を第3
図に示す波形図で説明する。コンデンサ充電コイ
ル1にはロータ20の1回転につき2サイクルの
出力電圧が発生し、主コンデンサ8を充電しない
半波出力により、小抵抗11、ダイオード3を介
して電流が流れ、小抵抗11の両端に現われる電
圧(第3図Aのイ)によりコンデンサ12を充電
する。コンデンサ12の充電電荷は、点火時期制
御回路13を動作させるための電源として働くた
め、コンデンサ12の電圧は第3図Aの口の如く
脈流となる。定電流回路、フリツプフロツプ等を
動作させるための電源電圧が脈流となつていては
不適当であるため、これらを動作させるためにコ
ンデンサ12の電圧は定電圧回路50により安定
化し、定電圧V+を得る。センサ2には第3図D
の如く、ロータの1回転につき2サイクルの信号
電圧が発生する。この信号電圧は波形整形回路1
50により第3図Eの如く、ハ,ニの2つのパル
ス信号となる。また、小抵抗11の電圧(第3図
Aのイ)とコンデンサ12の電圧(第3図Aの
ロ)とは、それぞれ抵抗103,104及び10
1,102により適当な値に分圧して比較器10
0の入力とし、第3図Bの出力を得る。ここで、
比較器100の出力(第3図Bと前記2つのパル
ス信号(第3図Eのハ,ニ)はハが“1”の時、
Bは“0”であり、ニが“1”の時もBも“1”
の位相関係となるようにセンサ2の位置、あるい
は抵抗101〜104の値を適当に設定してい
る。比較器100の出力と波形整形回路150の
出力はAND回路200を介し、この出力をフリ
ツプフロツプ350のリセツト信号としている。
従つて、第3図Eのニのパルス信号がリセツト信
号となる(第3図G)。また、比較器100の出
力はNOT回路250により反転し(第3図C)、
NOT回路250の出力と波形整形回路150の
出力はAND回路300を介して、この出力をフ
リツプフロツプ350のセツト信号とする。従つ
て第3図Eのハパルス信号がセツト信号となる
(第3図F)。すなわち、センサ2に発生した2つ
の信号電圧がフリツプフロツプ350のセツト信
号とリセツト信号との2系統の信号に分離された
わけである。セツト信号の立上り位置は高速回定
進角位置θHと、リセツト信号の立上り位置は低
速固定進角位置θLとそれぞれ一致させているの
で、フリツプフロツプ350のQ出力は第3図H
の如く、高速固定進角位置θHで“1”に立上が
り、低速固定位置θLで“0”に立下がる。フリ
ツプフロツプ350のQ出力が“1”の時、スイ
ツチ500は閉じるため、定電流icにより充電さ
れていた演算用コンデンサ107の電荷はセツト
信号の立下り位置(高速固定進角位置)より定電
流id―icで放電し始め、演算用コンデンサ107
の電圧は低下し始める。そして、この電圧と抵抗
105,106により設定された基準電圧Vsと
を比較器600の入力とし、〔演算用コンデンサ
107の電圧>抵抗105,106の分圧点の電
圧Vs〕の時比較器600の出力は“1”となる
(第3図K)。第3図Kは中速の進角時の状態を表
わすものであり、低速固定進角時及び高速固定進
角時の状態については後述する。比較器600の
出力とフリツプフロツプ350の出力(第3図
I)とはNOR回路650を介し、NOR回路65
0の出力は第3図Lの如くになる。そしてNOR
回路650の出力とフリツプフロツプ350のリ
セツト信号とはOR回路700を介し、OR回路7
00の出力(第3図M)がサイリスタ7をトリガ
させるための点火信号となる。従つて、NOR回
路650の出力の立上がり位置とフリツプフロツ
プ350のリセツト信号の立上り位置(低速固定
進角位置)とで位相の進んだ位置で点火が行なわ
れる。また、点火信号が“1”となるとスイツチ
550は閉じるので、演算用コンデンサ107の
電荷は点火信号の立上り位置で瞬時に放電する。
そして、スイツチ500及び550が共に開く位
置、すなわち、点火信号の立下り位置より演算用
コンデンサ107は再び定電流icで充電が開始さ
れ、演算用コンデンサ107の電圧は第3図Jの
如くになる。
The operation of the control circuit configured as above is explained in the third section.
This will be explained using the waveform diagram shown in the figure. Two cycles of output voltage are generated in the capacitor charging coil 1 per rotation of the rotor 20, and current flows through the small resistor 11 and the diode 3 due to the half-wave output that does not charge the main capacitor 8, and the current flows across the small resistor 11. The capacitor 12 is charged by the voltage appearing at (a in FIG. 3A). Since the charge in the capacitor 12 acts as a power source for operating the ignition timing control circuit 13, the voltage in the capacitor 12 becomes a pulsating current as shown in FIG. 3A. It is inappropriate for the power supply voltage for operating constant current circuits, flip-flops, etc. to be pulsating, so in order to operate these, the voltage of the capacitor 12 is stabilized by a constant voltage circuit 50, and the constant voltage V + get. Sensor 2 is shown in Figure 3D.
Two cycles of signal voltage are generated per rotation of the rotor. This signal voltage is applied to the waveform shaping circuit 1
50, two pulse signals C and D are generated as shown in FIG. 3E. Also, the voltage across the small resistor 11 (A in Figure 3A) and the voltage across the capacitor 12 (B in Figure 3A) are the resistors 103, 104 and 10, respectively.
1,102 to an appropriate value and then the comparator 10
With an input of 0, the output shown in FIG. 3B is obtained. here,
The output of the comparator 100 (FIG. 3B) and the two pulse signals (C and D in FIG. 3E) are "1" when C is "1",
B is “0”, and when D is “1”, B is also “1”
The position of the sensor 2 or the values of the resistors 101 to 104 are appropriately set so that the phase relationship is as follows. The output of the comparator 100 and the output of the waveform shaping circuit 150 are passed through an AND circuit 200, and this output is used as a reset signal for the flip-flop 350.
Therefore, the second pulse signal in FIG. 3E becomes the reset signal (FIG. 3G). Further, the output of the comparator 100 is inverted by the NOT circuit 250 (FIG. 3C),
The output of the NOT circuit 250 and the output of the waveform shaping circuit 150 are passed through an AND circuit 300, and this output is used as a set signal for the flip-flop 350. Therefore, the hapulus signal in FIG. 3E becomes the set signal (FIG. 3F). That is, the two signal voltages generated at the sensor 2 are separated into two signal systems, a set signal and a reset signal for the flip-flop 350. Since the rising position of the set signal is made to coincide with the high-speed rotation fixed advance angle position θH , and the rising position of the reset signal is made to coincide with the low-speed fixed advance angle position θL , the Q output of the flip-flop 350 is made to coincide with the high-speed rotation fixed advance angle position θH.
As shown, it rises to "1" at the high speed fixed advance angle position θH and falls to "0" at the low speed fixed position θL . When the Q output of the flip-flop 350 is "1", the switch 500 is closed, so the charge in the calculation capacitor 107 that was being charged by the constant current IC is increased from the falling position of the set signal (high-speed fixed advance position) to the constant current ID. - IC starts discharging, calculation capacitor 107
voltage begins to drop. Then, this voltage and the reference voltage Vs set by the resistors 105 and 106 are input to the comparator 600, and when [voltage of the calculation capacitor 107>voltage Vs at the voltage division point of the resistors 105 and 106], the comparator 600 The output of is "1" (K in Fig. 3). FIG. 3K shows the state during medium speed advance angle, and the states during low speed fixed advance angle and high speed fixed advance angle will be described later. The output of the comparator 600 and the output of the flip-flop 350 (FIG. 3 I) are connected to the NOR circuit 65 through the NOR circuit 650.
The output of 0 is as shown in FIG. 3L. and N.O.R.
The output of the circuit 650 and the reset signal of the flip-flop 350 are connected to the OR circuit 700 via the OR circuit 700.
The output of 00 (M in FIG. 3) becomes the ignition signal for triggering the thyristor 7. Therefore, ignition is performed at a position where the phase is advanced between the rising position of the output of the NOR circuit 650 and the rising position of the reset signal of the flip-flop 350 (low speed fixed advance angle position). Furthermore, since the switch 550 closes when the ignition signal becomes "1", the charge in the calculation capacitor 107 is instantly discharged at the rising position of the ignition signal.
Then, from the position where both the switches 500 and 550 are opened, that is, from the position where the ignition signal falls, the calculation capacitor 107 starts charging again with a constant current IC, and the voltage of the calculation capacitor 107 becomes as shown in FIG. 3 J. .

低速固定進角時、中速進角時、高速固定進角時
の各状態での演算用コンデンサ107の電圧は第
4図NL,NM,NHの如くになる。すなわち、低
速固定進角時は、演算用コンデンサ107の充電
時間が長いため第4図のNLの如く、高速固定進
角位置θHでの電圧が高くなり、基準電圧Vsまで
電圧が低下する位置は、低速固定進角位置θL
り遅れるが、OR回路700により低速固定進角
位置θLで点火が行なわれる。そして回転が上昇
すると充電時間が短くなるため、θHでの演算用
コンデンサ107の電圧は低くなり、このため基
準電圧Vsまで低下する位置も徐々に進角側へ移
行し、やがてθLより進みとなる。つまり、ある
回転数まで上昇すると、低速固定進角位置θL
り進角し始める。この状態が第4図のNMであ
る。更に回転が上昇すると、点火時期は高速固定
進角位置θHに近ずいて行き、やがて演算用コン
デンサ107の電圧は第4図のNHの如く、θH
も基準電圧Vsより低くなる。この状態では、比
較器600の出力は常に“0”となり、点火時期
はフリツプフロツプ350の出力が“0”に立
下る位置、すなわち高速固定進角位置θHとな
る。つまり回転がこれ以上上昇しても点火時期は
θHで固定となる。従つて、回転数Nに対する進
角度θ特性は第5図の如くになる。
The voltages of the calculation capacitor 107 in each state during low-speed fixed advance angle, medium-speed fixed advance angle, and high-speed fixed advance angle are as shown in FIG. 4, N L , NM , and NH . That is, during low-speed fixed advance angle, the charging time of the calculation capacitor 107 is long, so the voltage at the high-speed fixed advance angle position θH becomes high, as shown by N L in FIG. 4, and the voltage decreases to the reference voltage Vs. Although the position lags behind the low speed fixed advance angle position θ L , the OR circuit 700 causes ignition to be performed at the low speed fixed advance angle position θ L. As the rotation increases, the charging time becomes shorter, so the voltage of the calculation capacitor 107 at θ H becomes lower, and therefore the position where it drops to the reference voltage Vs gradually shifts to the advance side, and eventually advances from θ L. becomes. In other words, when the rotational speed increases to a certain level, the angle starts to advance from the low speed fixed advance angle position θ L. This state is N M in FIG. As the rotation further increases, the ignition timing approaches the high-speed fixed advance angle position θ H , and eventually the voltage of the calculation capacitor 107 becomes lower than the reference voltage Vs even at θ H , as shown at N H in FIG. In this state, the output of the comparator 600 is always "0", and the ignition timing is at the position where the output of the flip-flop 350 falls to "0", that is, the high speed fixed advance angle position θH . In other words, even if the rotation increases further, the ignition timing will be fixed at θH . Therefore, the advance angle θ characteristic with respect to the rotational speed N is as shown in FIG.

以上述べた実施例によれば、センサの信号電
圧を1回転につき2サイクル発生させ、この2つ
の信号を2系統に分離し、それぞれを演算用コン
デンサの充電開始信号、及び放電開始信号とする
ため、センサ1ケのみで電子式点火時期制御が可
能となる。信号を2系統に分離するための回路
としてコンデンサ充電コイルの出力電圧と信号電
圧との論理をとる論理回路を用いているため、他
の信号判別用の信号源が不用である。前記充電
開始信号の立下り位置は低速固定進角位置と、放
電開始信号の立上り位置は高速固定進角位置と、
それぞれ一致させているため、この2信号のみで
第5図のような進角特性が可能である。1セン
サで2信号を発生させ、かつこの2信号を判別す
るため、磁石発電機のロータ(鉄碗)に幅の広い
突起を打出し加工により設ける方法があるが、鉄
碗の板厚が厚い場合は打出し加工が不可能となる
ため、例えば幅の広い突起を鉄碗に溶接してから
切削する等、加工工程が複雑になるが、本発明で
は必要進角幅だけずらして鉄碗外周に2ケ穴明け
するのみでできるので非常に簡単である。
According to the embodiment described above, the signal voltage of the sensor is generated two cycles per rotation, and these two signals are separated into two systems, and each is used as a charging start signal and a discharging start signal for the calculation capacitor. , electronic ignition timing control is possible with only one sensor. Since a logic circuit that takes a logic between the output voltage of the capacitor charging coil and the signal voltage is used as a circuit for separating the signals into two systems, no other signal source for signal discrimination is required. The falling position of the charging start signal is a low-speed fixed advance angle position, the rising position of the discharging start signal is a high-speed fixed advance angle position,
Since they are matched, the advance angle characteristics shown in FIG. 5 can be achieved using only these two signals. In order to generate two signals with one sensor and to discriminate between these two signals, there is a method of stamping out wide protrusions on the rotor (iron bowl) of a magnet generator, but the thickness of the iron bowl is thick. In this case, punching is impossible, and the machining process becomes complicated, for example, by welding a wide protrusion to the iron bowl and then cutting it. However, in the present invention, the outer periphery of the iron bowl is shifted by the necessary advance width. It is very easy to do as it only requires drilling two holes.

なお、上述した実施例においては、コンデンサ
充電コイル1の出力電圧によりセンサ2に発生す
る2つの信号を2系統に分離するようにしたが、
磁石発電機としてコンデンサ充電コイル1以外に
ランプ等の負荷の電源をなすランプ負荷電源コイ
ルを有するものにおいては、このランプ負荷電源
コイルの出力を分離用の信号として用いるように
してもよい。
In the above embodiment, the two signals generated in the sensor 2 by the output voltage of the capacitor charging coil 1 are separated into two systems.
In a magnetic generator having a lamp load power supply coil which serves as a power source for a load such as a lamp in addition to the capacitor charging coil 1, the output of the lamp load power supply coil may be used as a separation signal.

また、上述した実施例においては、低速時と高
速時との進角位置を固定するようにしたが、必ず
しも両方の進角位置を固定する必要はない。
Furthermore, in the embodiments described above, the advance angle positions at low speed and high speed are fixed, but it is not necessarily necessary to fix both advance angle positions.

また、上述した実施例においては、コンデンサ
充電コイル1の出力を点火時期制御回路13の電
源として用いるようにしたが、磁石発電機により
充電されるバツテリを有するものにおいては、バ
ツテリを点火時期制御回路13の電源として用い
ることもできる。
Further, in the above-described embodiment, the output of the capacitor charging coil 1 is used as a power source for the ignition timing control circuit 13, but in a device having a battery charged by a magnet generator, the battery is used as a power source for the ignition timing control circuit 13. It can also be used as a power source for 13.

また、上述した実施例においては、1つの演算
用コンデンサを充放電させ、このコンデンサの充
電電圧が所定値になつたときを点火時期とする点
火時期制御回路を用いたが、2つの演算用コンデ
ンサを用い、所定角度幅の間、一方の演算用コン
デンサを充電させてその充電量を保持させ、その
後他方の演算用コンデンサを充電させてこれら両
者の充電電荷の差が所定値になつたときを点火時
期とする点火時期制御回路を用いた場合にも本発
明を適用でき、また演算用コンデンサの代わりに
デイジタルカウンタを用い、このカウンタにより
一定周期のクロツクパルスをカウントしてその蓄
積量(カウント値)に応じて点火時期を決定する
デイジタル式の点火時期制御回路を用いた場合に
も本発明を適用することができる。
In addition, in the above-described embodiment, an ignition timing control circuit was used that charges and discharges one computing capacitor and sets the ignition timing when the charging voltage of this capacitor reaches a predetermined value, but two computing capacitors , one calculation capacitor is charged for a predetermined angular width and the charged amount is held, and then the other calculation capacitor is charged and the difference in charge between the two reaches a predetermined value. The present invention can also be applied when using an ignition timing control circuit that controls the ignition timing, and a digital counter is used in place of the calculation capacitor, and this counter counts clock pulses of a constant period and calculates the accumulated amount (count value). The present invention can also be applied when using a digital ignition timing control circuit that determines the ignition timing according to the ignition timing.

また、上述した実施例においては、磁石発電機
のロータ20に穴21,22を設けたが、内燃機
関により駆動される他の回転体、例えばプーリ等
に穴、凹みあるいは突起よりなる切換信号情報部
を設けてその位置をセンサ2により検出するよう
にしてもよい。
Further, in the above-described embodiment, the holes 21 and 22 are provided in the rotor 20 of the magnet generator, but other rotating bodies driven by the internal combustion engine, such as pulleys, may have holes, recesses, or protrusions for switching signal information. Alternatively, a section may be provided and the position thereof may be detected by the sensor 2.

また上述した実施例においては、ロータ20の
1回転につき2サイクルの信号をセンサ2に発生
させるようにしたが、気筒数が3気筒以上であれ
ば、ロータ20の外周に2の整数倍の切換信号情
報部を設けてロータ20の1回転につき2の整数
倍個の信号をセンサ2に発生させればよい。
Further, in the above-described embodiment, the sensor 2 generates two cycles of signals per one revolution of the rotor 20, but if the number of cylinders is three or more, the outer circumference of the rotor 20 has an integral multiple of two switching signals. A signal information unit may be provided to cause the sensor 2 to generate an integral multiple of 2 signals per rotation of the rotor 20.

また、上述した実施例においては、コンデンサ
放電式の点火回路を有するものに本発明を適用し
たが、電流遮断式等の他の無接点点火回路にも本
発明を適用することができる。
Further, in the embodiments described above, the present invention is applied to a capacitor discharge type ignition circuit, but the present invention can also be applied to other non-contact ignition circuits such as a current interrupt type.

以上述べたように本発明においては、電子式点
火信号発生回路における蓄積素子の蓄積状態を2
つの状態に切換えるための2系統の切換信号をパ
ルス列的に1つのセンサに発生させ、このセンサ
の出力信号と磁石発電機の出力との論理を論理回
路によりとり、前記の2系統の切換信号を各系統
別に分離して電子式点火信号発生回路に印加する
から、1ケのセンサを設けるのみで磁石発電機の
出力を有効に利用して点火時期演算用の分離した
2系統の切換信号を得ることができ、これによ
り、スペース的に有利で、安価な磁石発電機式内
燃機関用無接点点火装置を提供することができる
という優れた効果がある。
As described above, in the present invention, the storage state of the storage element in the electronic ignition signal generation circuit is
Two systems of switching signals for switching between the two states are generated in one sensor in the form of a pulse train, and a logic circuit is used to determine the logic between the output signal of this sensor and the output of the magnet generator. Since each system is separated and applied to the electronic ignition signal generation circuit, by installing only one sensor, the output of the magnet generator can be effectively used to obtain two separate switching signals for ignition timing calculation. This has the advantageous effect of providing a non-contact ignition device for a magnet generator type internal combustion engine that is advantageous in terms of space and is inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す電気回路
図、第2図は第1図図示装置における点火時期制
御回路13を詳細に示す電気回路図、第3図は第
2図図示回路の作動説明に供する各部波形図、第
4図は第2図図示回路における演算用コンデンサ
107の充放電波形図、第5図は第2図図示回路
における点火進角度特性図、第6図は第1図図示
装置におけるセンサ2部分の構成を模式的に示す
斜視図である。 1…磁石発電機のコンデンサ充電コイル、2…
電磁ピツクアツプよりなるセンサ、3,4,6,
7,8,9,10…コンデンサ放電式点火回路を
構成するダイオード、サイリスタ、主コンデン
サ、点火コイル、点火栓、20…磁石発電機のロ
ータ、21,22…切換信号情報部としての穴、
200,300,250…論理回路を構成する
AND回路、NOT回路、350,400,45
0,500,550,600,650,700,
105,106,107…電子式点火信号発生回
路を構成するフリツプフロツプ、定電流回路、ア
ナログスイツチ、比較器、NOR回路、OR回路、
抵抗、演算用コンデンサ(蓄積素子)。
FIG. 1 is an electric circuit diagram showing one embodiment of the device of the present invention, FIG. 2 is an electric circuit diagram showing details of the ignition timing control circuit 13 in the device shown in FIG. 1, and FIG. 3 is a circuit diagram of the circuit shown in FIG. 2. 4 is a waveform diagram of the calculation capacitor 107 in the circuit shown in FIG. 2. FIG. 5 is an ignition advance angle characteristic diagram in the circuit shown in FIG. FIG. 2 is a perspective view schematically showing the configuration of a sensor 2 portion in the illustrated device. 1...Capacitor charging coil of magnet generator, 2...
Sensor consisting of electromagnetic pickup, 3, 4, 6,
7, 8, 9, 10... Diodes, thyristors, main capacitors, ignition coils, spark plugs constituting a capacitor discharge type ignition circuit, 20... Rotor of magnet generator, 21, 22... Holes as switching signal information section,
200, 300, 250...configure a logic circuit
AND circuit, NOT circuit, 350, 400, 45
0,500,550,600,650,700,
105, 106, 107... Flip-flop, constant current circuit, analog switch, comparator, NOR circuit, OR circuit, which constitute the electronic ignition signal generation circuit,
Resistor, calculation capacitor (storage element).

Claims (1)

【特許請求の範囲】 1 内燃機関に同期して回転する電源としての磁
石発電機と、蓄積素子の蓄積状態を内燃機関の所
定回転角度ごとに発生する2系統の切換信号によ
つて2つの状態に切換え、この蓄積素子の蓄積量
が所定の値になつた時点を点火時期として点火信
号を発生する電子式点火信号発生回路と、この電
子式点火信号発生回路よりの点火信号によつて点
火栓に点火火花を発生させる点火回路と、前記内
燃機関に同期して回転する回転体に、前記2系統
の切換信号の発生位置に対応して所定間隔で設け
られた2系統の切換信号情報部と、この2系統の
切換信号情報部の位置を検出して前記2系統の切
換信号をパルス列的に発生する1つのセンサと、
前記磁石発電機の出力と前記センサの出力信号と
の論理をとり、前記2系統の切換信号を各系統別
に分離して前記電子式点火信号発生回路に印加す
るための論理回路とを備えることを特徴とする磁
石発電機式内燃機関用無接点点火装置。 2 前記点火回路はコンデンサ放電式点火回路よ
りなり、この点火回路の電源をなす前記磁石発電
機のコンデンサ充電コイルの出力が前記論理回路
に切換信号分離用の信号として印加されているこ
とを特徴とする特許請求の範囲第1項記載の磁石
発電機式内燃機関用無接点点火装置。 3 前記2系統の切換信号のうち一方は低速固定
進角位置と一致させ、他方は高速固定進角位置と
一致させたことを特徴とする特許請求の範囲第1
項あるいは第2項記載の磁石発電機式内燃機関用
無接点点火装置。 4 前記2系統の切換信号情報部は前記磁石発電
機の磁性体製のロータに所定間隔で設けた穴より
なり、前記センサはこの穴の位置を検出する電磁
ピツクアツプよりなることを特徴とする特許請求
の範囲第1項あるいは第2項あるいは第3項記載
の磁石発電機式内燃機関用無接点点火装置。
[Scope of Claims] 1. A magnetic generator as a power source that rotates in synchronization with the internal combustion engine, and a storage state of the storage element that can be changed into two states by switching signals of two systems that are generated at every predetermined rotation angle of the internal combustion engine. An electronic ignition signal generation circuit generates an ignition signal with the ignition timing set at the time when the storage amount of the storage element reaches a predetermined value, and the ignition plug is activated by the ignition signal from this electronic ignition signal generation circuit. an ignition circuit that generates an ignition spark at the internal combustion engine; and two switching signal information sections provided at predetermined intervals on a rotating body that rotates in synchronization with the internal combustion engine, corresponding to the generation positions of the two switching signals. , one sensor that detects the positions of the switching signal information sections of the two systems and generates the switching signals of the two systems in the form of a pulse train;
and a logic circuit for calculating a logic between the output of the magnet generator and the output signal of the sensor, separating the switching signals of the two systems for each system, and applying the separated switching signals to the electronic ignition signal generation circuit. A non-contact ignition device for magnetic generator type internal combustion engines. 2. The ignition circuit is comprised of a capacitor discharge type ignition circuit, and the output of the capacitor charging coil of the magnet generator, which serves as a power source for the ignition circuit, is applied to the logic circuit as a signal for separating switching signals. A non-contact ignition device for a magnet generator type internal combustion engine according to claim 1. 3. Claim 1, wherein one of the two systems of switching signals is made to coincide with a low-speed fixed advance angle position, and the other is made to coincide with a high-speed fixed advance angle position.
A non-contact ignition device for a magnet generator type internal combustion engine according to item 1 or 2. 4. A patent characterized in that the switching signal information section for the two systems is comprised of holes provided at predetermined intervals in the magnetic rotor of the magnet generator, and the sensor is comprised of an electromagnetic pickup that detects the position of the hole. A non-contact ignition device for a magnet generator type internal combustion engine according to claim 1, 2, or 3.
JP4660080A 1980-04-08 1980-04-08 Contactless ignition device for magneto internal combustion engine Granted JPS56143351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4660080A JPS56143351A (en) 1980-04-08 1980-04-08 Contactless ignition device for magneto internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4660080A JPS56143351A (en) 1980-04-08 1980-04-08 Contactless ignition device for magneto internal combustion engine

Publications (2)

Publication Number Publication Date
JPS56143351A JPS56143351A (en) 1981-11-09
JPS6240549B2 true JPS6240549B2 (en) 1987-08-28

Family

ID=12751785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4660080A Granted JPS56143351A (en) 1980-04-08 1980-04-08 Contactless ignition device for magneto internal combustion engine

Country Status (1)

Country Link
JP (1) JPS56143351A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032568U (en) * 1983-08-10 1985-03-05 三菱電機株式会社 magnetic igniter
US4624234A (en) * 1984-03-21 1986-11-25 Nippondenso Co., Ltd. Electronic ignition timing adjusting system for internal combustion engines
SE447595B (en) * 1984-05-11 1986-11-24 Electrolux Ab CONNECTOR ENGINE CONDENSOR TENDER SYSTEM
JPS639464U (en) * 1986-07-03 1988-01-22

Also Published As

Publication number Publication date
JPS56143351A (en) 1981-11-09

Similar Documents

Publication Publication Date Title
US4924831A (en) Capacitor discharge ignition system with microprocessor timing control
US4095576A (en) Dwell time control system
GB2024322A (en) Apparatus for detecting angular position of engine crankshaft
JPS6240549B2 (en)
US3280810A (en) Semiconductor ignition system
EP0066975B2 (en) Internal combustion engine function control system
US5123390A (en) Ignition timing control apparatus for an internal combustion engine
JPS6138355B2 (en)
JPS6217671B2 (en)
JPS63628B2 (en)
JPH0118846Y2 (en)
JPS6217670B2 (en)
JPS6056269B2 (en) magneto igniter
JPS6146216Y2 (en)
JPH0751935B2 (en) Non-contact ignition device for internal combustion engine with magnet generator
RU2208179C2 (en) Electronic ignition system
JPH0324586B2 (en)
JPS6149503B2 (en)
JPS585091Y2 (en) internal combustion engine ignition system
JPH01200059A (en) Condenser electric discharge type ignitor for internal combustion engine
JPS6140941Y2 (en)
SU601446A1 (en) Device for battery ignition system of internal combustion engines
JPS63626B2 (en)
US4702222A (en) Ignition system for multi-cylinder 4 cycle engine
JPS6020583B2 (en) Non-contact ignition system for 4-stroke internal combustion engine