JPS6240503A - Control characteristic diagnostic device for automatic control system - Google Patents

Control characteristic diagnostic device for automatic control system

Info

Publication number
JPS6240503A
JPS6240503A JP60181393A JP18139385A JPS6240503A JP S6240503 A JPS6240503 A JP S6240503A JP 60181393 A JP60181393 A JP 60181393A JP 18139385 A JP18139385 A JP 18139385A JP S6240503 A JPS6240503 A JP S6240503A
Authority
JP
Japan
Prior art keywords
control
transfer function
automatic control
control system
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60181393A
Other languages
Japanese (ja)
Inventor
Hiroto Okitsu
沖津 博人
Shigeo Ishida
成男 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60181393A priority Critical patent/JPS6240503A/en
Publication of JPS6240503A publication Critical patent/JPS6240503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To diagnose and adjust a control characteristic of an automatic control system by an optimum control constant, by performing it by deriving a frequency response characteristic and a step response characteristic, in case when a simple adjustment is enough, and performing it by deriving a Bode diagram, etc., when a precise adjustment is required. CONSTITUTION:When a simple adjustment is enough, a frequency response characteristic and a step response characteristic are derived by a transfer function measuring device 21, and in case when those are unstable, stable frequency response characteristic and step response characteristic are obtained by executing experientially a trial-and-error and adjusting a loop gain of an automatic control device 10. On the other hand, when a precise adjustment is required, a Bode diagram is prepared by a simulating circuit 30, an optimum control constant is calculated, based on this Bode diagram, and a control characteristic of the automatic control device 10 is adjusted by this optimum control constant. In this way, the control characteristic can be standardized and converted to a high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動制御装置の診断、調整に適用する自動制
御系の制御特性診断装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a control characteristic diagnostic device for an automatic control system that is applied to diagnosis and adjustment of an automatic control device.

〔従来の技術〕[Conventional technology]

一般に、製鉄所等の主要設備である圧延機、プロセスラ
インなどの駆8装置は、自動制御系によりきめ細かい速
度制(社)および張力副葬等が行なわれている。したが
って、自動制御系の制御特性が品質および生産性に大き
な影響を与えている。一方、上記主要設備による製造目
標は量的目標から質的目標に移り変わっている。このた
め、主要設備の自動制御系に対する保全もハード点検、
静特性診断のような定性的手法による故障低減を主体と
した保全から、品質1歩留り向上に対応した動特性技術
診断による定量的な保全が強く求められるようになって
きた。
In general, driving equipment such as rolling mills and process lines, which are major equipment in steel works, etc., are subject to detailed speed control, tension control, etc. by automatic control systems. Therefore, the control characteristics of automatic control systems have a great influence on quality and productivity. On the other hand, the manufacturing goals for the above-mentioned major equipment are shifting from quantitative goals to qualitative goals. For this reason, maintenance of the automatic control systems of major equipment is also carried out through hardware inspections.
From maintenance mainly focused on reducing failures using qualitative methods such as static characteristic diagnosis, there has been a strong demand for quantitative maintenance using dynamic characteristic technology diagnosis that corresponds to improvement in quality and yield.

そこで、最近は自動制御系の動特性である伝達関数を伝
達関数測定器等により測定し、この測定結果に基いて自
動制御系の制御特性診断および調整を行なうようになっ
てきた。
Therefore, recently, the transfer function, which is the dynamic characteristic of the automatic control system, has been measured using a transfer function measuring device, and the control characteristics of the automatic control system are diagnosed and adjusted based on the measurement results.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、この場合、自動制御系全体の特性診断は行な
えるが、制御特性が望ましくないときに自動制御系にお
ける数多(の制御定数の中でどの調整部位が不適当なの
か、どの程度の調整部を必要とするのかを判別すること
ができなかった。このため、従来は伝達関数測定器の測
定結果に応じて試行錯誤的に調整していた。したがって
、調整に熟練と長時間を要しており、精度的にも問題が
あり、安定した診断が行なえなかった。
However, in this case, although it is possible to diagnose the characteristics of the entire automatic control system, when the control characteristics are undesirable, it is difficult to determine which adjustment part is inappropriate among the many control constants in the automatic control system, and how much adjustment should be made. Therefore, in the past, adjustments were made by trial and error based on the measurement results of a transfer function measuring instrument.As a result, adjustment required skill and a long time. However, there were problems with accuracy, and stable diagnosis could not be performed.

一方、試行錯誤的な調整が困難な場合には、例えばボー
ド線図等を作成し、これに基いて最適間ufflを算出
するものとなっていた。しかるに、このボード線図等を
作成する場合には特殊な知識を有する人が手計算により
高度な解析技術を用いて行なわなければならず、時間が
がかる上、精度的にバラつきを生じるおそれもあった。
On the other hand, if trial and error adjustment is difficult, for example, a Bode diagram or the like is created and the optimal interval uffl is calculated based on this. However, when creating Bode diagrams, etc., people with special knowledge must perform manual calculations using advanced analytical techniques, which is time-consuming and may lead to variations in accuracy. Ta.

そこで本発明は、自動制卸系の1IIJ III特性を
安定かつ簡便にしかも効率よく診断でき、短時間で最適
調整最を得、ひいては自動制卸系のIII ′IA機能
の向上、生産効率の向上および品質1歩留りの向上をは
かり得る自動制御系の制御特性診断装置を提供すること
を目的とする。
Therefore, the present invention is capable of stably, easily and efficiently diagnosing the 1IIJ III characteristics of an automatic control system, achieving optimal adjustment in a short time, and ultimately improving the III'IA function of the automatic control system and improving production efficiency. An object of the present invention is to provide a control characteristic diagnostic device for an automatic control system that can improve quality and yield.

(問題点を解決するための手段) 本発明は上記目的を達成するために次のような手段を講
じたことを特徴としている。すなわち、自動制御系にお
ける制御特性を定量的に表現する伝達関数を伝達関数測
定手段により測定し、この測定された伝達関数に対して
調整すべき制御定数の最適値を制御定数口出手Qにより
暮出し、この副部定数算出手段により算出された制御定
数の最適値と前記伝達関数測定手段により測定された伝
達関数とを総合的に比較検討して前記自動制御系の制御
特性を診断するようにしたことを特徴としている。
(Means for Solving the Problems) The present invention is characterized by taking the following measures to achieve the above object. That is, a transfer function that quantitatively expresses the control characteristics in an automatic control system is measured by a transfer function measuring means, and an optimal value of a control constant to be adjusted for the measured transfer function is determined by a control constant output device Q. and comprehensively compare and examine the optimum value of the control constant calculated by the sub-part constant calculating means and the transfer function measured by the transfer function measuring means to diagnose the control characteristics of the automatic control system. It is characterized by what it did.

(作用) このような手段を講じたことにより、自動制御系におけ
る制御特性の診断および調整を大陸する場合、簡単に得
られる実測値と計締値とに基いて判定することが可能と
なるため、短時間に信頼性の高い診断、調整を行なうこ
とができる。
(Function) By taking such measures, when diagnosing and adjusting control characteristics in an automatic control system, it becomes possible to make judgments based on easily obtained measured values and measured tightening values. , it is possible to perform highly reliable diagnosis and adjustment in a short time.

〔実施例〕〔Example〕

第1図は本発明の一実施例の構成を示すブロック図であ
る。同図において10は診断対象としての自動制御装置
である。20は上記自動制御1g置10における制御特
性を定量的に表現する伝達関数を測定する伝達関数測定
回路であって、伝達関数測定器21.R適定数簡易設定
器22およびX−Yレコーダ23から構成されている。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In the figure, reference numeral 10 indicates an automatic control device to be diagnosed. Reference numeral 20 denotes a transfer function measuring circuit for measuring a transfer function that quantitatively expresses the control characteristics in the automatic control 1g position 10, and includes a transfer function measuring device 21. It is composed of an R suitable constant simple setter 22 and an XY recorder 23.

上記伝達関数測定器21は、周波数応答とステップ応答
特性などを測定するものであって、これら周波数応答と
ステップ応答などの特性曲線をX−Yレコーダ23に記
録し、これら特性曲線から各種υJwJ定数を求め、良
否判定を行なうものとなっている。
The transfer function measuring device 21 measures frequency response, step response characteristics, etc., records characteristic curves such as frequency response and step response on an X-Y recorder 23, and calculates various υJwJ constants from these characteristic curves. It is used to determine pass/fail.

たとえば、制御特性の安定性診断はゲイン余有および位
相余有にて判定し、応答性診断はしゃ断角周波数および
立上がり時間等で判定し、捩り共振の診断は共振点ゲイ
ンおよび共振周波数等により判定する。なお、測定のタ
イミングは負荷状態と無負荷状態の2通りがあるが、製
品への影響が無視でき、測定時間に問題がなければ、負
荷状態で測定することが望ましい。
For example, stability diagnosis of control characteristics is determined by gain margin and phase margin, responsiveness diagnosis is determined by cutoff angle frequency, rise time, etc., and torsional resonance diagnosis is determined by resonance point gain, resonance frequency, etc. do. Note that there are two timings for measurement: a loaded state and an unloaded state, but if the effect on the product is negligible and there is no problem with the measurement time, it is desirable to perform the measurement in a loaded state.

また、最適定数簡易設定器22は、比例要素。Moreover, the optimum constant simple setter 22 is a proportional element.

微分要素、fa分型要素が任意に選択2組合せ可能な設
定器であって、前記伝達関数測定器21による動特性診
断により異常と判定され、調整を必要とする場合には、
この最適定数B易設定器22によって各制御定数を入替
えながら動特性をX−Yレコーダ23にて確認する。
If the setting device is capable of arbitrarily selecting two combinations of a differential element and an fa type element, and is determined to be abnormal by the dynamic characteristic diagnosis by the transfer function measuring device 21 and requires adjustment,
While each control constant is replaced by the optimum constant B easy setter 22, the dynamic characteristics are confirmed by the X-Y recorder 23.

一方、第1図において30は前記自動制御装置10にお
ける調整すべき制御定数の最適値を算出する副葬定数算
出手段としてのシミュレーション回路であって、パーソ
ナルコンピュータ等からなる演算t11111部31と
、伝達関数測定器21による測定データを演算制御部3
1へ転送するときに用いるインターフェース4oと、各
種データおよび処理結果等を表示するCRT32.プリ
ンタ33゜プロッタ34.ハードコピー35等から構成
されている。また、上記演算制御部31は、データ処理
部36.入力部37.RAMメモリ3日、データテーブ
ル39からなっている。
On the other hand, in FIG. 1, reference numeral 30 denotes a simulation circuit as a burial constant calculation means for calculating the optimal value of the control constant to be adjusted in the automatic control device 10, which includes a calculation unit 31 consisting of a personal computer or the like, and a transfer function. The data measured by the measuring device 21 is calculated by the calculation control unit 3.
1, and a CRT 32.1 for displaying various data, processing results, etc. Printer 33° Plotter 34. It consists of a hard copy 35 and the like. The arithmetic control section 31 also includes a data processing section 36. Input section 37. It consists of 3 days of RAM memory and 39 data tables.

第2図は上記演算制御部31における演算フローの概要
を示す流れ図である。先ず、ステップ41としてCRT
32に表示されている自動制御系を見ながら設備名称お
よび回路定数等の諸定数を入力部37から入力する。こ
の際、入力された諸宗教は、ステップ42としてRAM
メモリ38に記憶される。なお、定数一覧表が必要な場
合にはプリンタ33によって作成する。次いで、ステッ
プ43として、ボード線図作成、ブロック線図作成、制
卸増幅器回路図作成、シミュレーション(速度・N流等
の各種過渡応答が演算可能)、伝達関数測定器による特
性とシミュレーションによる特性比較、最適調整部位と
最適調整量の障出等の主処理を入力部36によって選択
し、さらに、ステップ44として、主処理を実行するた
めの条件として、対象範囲(速度制御系、電流制御系)
運転速度(ベースバンド範囲、トップスピード範囲)等
の副処理の選択を行なう。
FIG. 2 is a flow chart showing an overview of the calculation flow in the calculation control section 31. First, in step 41, the CRT
While looking at the automatic control system displayed at 32, the equipment name and various constants such as circuit constants are input from the input section 37. At this time, the input religions are stored in the RAM as step 42.
It is stored in memory 38. Note that if a constant list is required, it is created using the printer 33. Next, as step 43, create a Bode diagram, create a block diagram, create a control amplifier circuit diagram, simulate (various transient responses such as speed and N flow can be calculated), and compare the characteristics with the transfer function measuring device and the simulation. , a main process such as failure of the optimum adjustment part and optimum adjustment amount is selected by the input unit 36, and further, in step 44, a target range (speed control system, current control system) is selected as a condition for executing the main process.
Select sub-processing such as operating speed (baseband range, top speed range).

以上の操作が終了すると、ステップ45として、データ
処理部36において自動的にデータテーブル39から処
理状況に応じた計算式が選択され、またRAMメモリ3
8に記憶されている諸宗教が呼出されて演算が実行され
る。その結果、ステップ46として、必要に応じてボー
ド線図、ブロック線図、最適調整部位と樋等がプロッタ
34に表示されるものとなっている。
When the above operations are completed, in step 45, the data processing section 36 automatically selects a calculation formula according to the processing situation from the data table 39, and also stores the data in the RAM memory 3.
The various religions stored in 8 are called up and the calculation is executed. As a result, in step 46, the Bode diagram, block diagram, optimum adjustment portion, gutter, etc. are displayed on the plotter 34 as necessary.

ところで、一般に、自動III罪系の制御特性を診断し
調整する場合、調整時に要求される緊急度。
By the way, in general, when diagnosing and adjusting the control characteristics of an automatic III system, the degree of urgency required at the time of adjustment.

精度等に応じて簡易調整で済む場合と精密調整の必要が
ある場合とがある。簡易調整の場合には、伝達関数測定
器21によって周波数応答特性およびステップ応答特性
を求め、これらが不安定な場合には経験的に試行錯誤し
て自動シリ御装置10のループゲインを調整し、安定し
た周波数応答”特性およびステップ応答特性を得る。こ
こで、制御回路における抵抗、コンデンサなどの固定定
数の変更が必要な場合には、最適定数簡易設定器22に
よって最適な固定定数を得、この固定定数を変更するこ
とにより簡単に対応できる。また、この最適定数簡易設
定器22を利用して前記伝達関数測定器21により動特
性診断を実施した場合には、前記伝達関数測定器21の
測定タイミングを無負荷状態で測定しても、低負荷によ
る特性変化や機械系のガタなどによる影響を無視するこ
とができ、負荷状態で測定した場合とほぼ同様な結果を
得ることができる。
Depending on the accuracy, there are cases where simple adjustment is sufficient and cases where precise adjustment is required. In the case of simple adjustment, the frequency response characteristic and the step response characteristic are determined using the transfer function measuring device 21, and if these are unstable, the loop gain of the automatic series control device 10 is adjusted empirically by trial and error. Obtain stable frequency response characteristics and step response characteristics.If it is necessary to change fixed constants such as resistors and capacitors in the control circuit, obtain the optimum fixed constants using the optimum constant simple setter 22 and change the fixed constants. This can be easily handled by changing the fixed constant.Furthermore, when performing dynamic characteristic diagnosis with the transfer function measuring device 21 using this optimum constant simple setting device 22, the measurement of the transfer function measuring device 21 Even when timing is measured in a no-load state, it is possible to ignore the effects of changes in characteristics due to low loads and backlash in the mechanical system, and it is possible to obtain almost the same results as when measuring in a loaded state.

しかるに、簡易調整には自ずから限界がある。However, simple adjustment naturally has its limits.

したがって、より最適調整を実施すればさらに品質1歩
留り等の向上が期待できる場合や制御特性の安定化に限
界がある場合には、シミュレーション回路30によって
ボード線図あるいはブロック線図または最適調整部位と
最適調整ω等を算出する。
Therefore, in cases where it is expected that further improvements in quality 1 yield, etc. can be expected by implementing more optimal adjustment, or when there is a limit to stabilization of control characteristics, the simulation circuit 30 can be used to calculate the Bode diagram, block diagram, or optimal adjustment portion. Calculate the optimal adjustment ω, etc.

第3図はシミュレーション回路30による1事例として
のボード線図作成手順を示す流れ図である。先ず、制御
アンプ、モータ、′2i力変換器、線路等の定数および
機械系の諸宗教を入力部37により入力する(ステップ
51)。次いで、ボード線図の作成を指示し、並びに速
度制卸系、運転速度等の処理選択を行なう(ステップ5
2)。そうすると、データ処理部36において前記入力
部37により入力された諸宗教に基く計算式が選択され
(ステップ53)、この計算式によってゲインおよび位
相の計韓が実行される(ステップ54)。そして、ゲイ
ンが正から負に変化した。か否かを監視しくステップ5
5)、変化した場合にはしゃ断角周波数、ゲイン余有2
位相余有等の各定数が計算される(ステップ56)。そ
の結果、この計算値に基いてブロック34にボード線図
が作図される(ステップ57)。
FIG. 3 is a flowchart showing an example of a Bode diagram creation procedure by the simulation circuit 30. First, constants of the control amplifier, motor, '2i force transducer, line, etc., and various religions of the mechanical system are input through the input section 37 (step 51). Next, the system instructs the creation of a Bode diagram, and selects processes such as the speed control system and operating speed (step 5).
2). Then, the data processing section 36 selects the calculation formula based on various religions input by the input section 37 (step 53), and calculates the gain and phase using this calculation formula (step 54). Then, the gain changed from positive to negative. Step 5
5) If changed, cutoff angle frequency, gain margin 2
Constants such as phase margins are calculated (step 56). As a result, a Bode diagram is drawn in block 34 based on this calculated value (step 57).

第4図(a)は上記シミュレーション回路30によって
作成されたボード線図を示しており、同図(b)は実測
により求めた周波数応答特性を示している。第4図(a
)(b)から明らかなように、周波数応答特性の計算例
すなわちボード線図と実測例とは極めて類似している。
FIG. 4(a) shows a Bode diagram created by the simulation circuit 30, and FIG. 4(b) shows the frequency response characteristic obtained by actual measurement. Figure 4 (a
) As is clear from (b), the calculation example of the frequency response characteristic, that is, the Bode diagram, and the actual measurement example are extremely similar.

したがって、前記伝達関数測定器21にて求められる伝
達関数により周波数応答が不安定な場合、前記シミュレ
ーション回路30によってボード線図を作成し、このボ
ード線図に基いて最適な制御定数を算出し、この最適な
制御定数によって前記自動制御II波装置0の制御特性
を調整する。こうすることにより、制願特性解析の標準
化、高精度化等をはかり得る。
Therefore, if the frequency response is unstable due to the transfer function determined by the transfer function measuring device 21, a Bode diagram is created by the simulation circuit 30, and optimal control constants are calculated based on this Bode diagram. The control characteristics of the automatic control II wave device 0 are adjusted using the optimum control constants. By doing so, it is possible to standardize and improve the accuracy of application characteristic analysis.

かくして、本実施例によれば、自動制御系の制(lす特
性に調整を要するときには、簡単な入力操作によってし
かも辺時間で最適な制御定数を得ることができるので、
自動制御系における制御特性の診断および調整を精密に
しかも簡便に行なうことができる。その結果、自動制御
系によって制御される設面による製造品の品質および歩
留りの向上。
Thus, according to this embodiment, when the control characteristics of the automatic control system require adjustment, the optimum control constants can be obtained by simple input operations and in short time.
Diagnosis and adjustment of control characteristics in an automatic control system can be performed precisely and easily. As a result, the quality and yield of manufactured products are improved due to the design surface being controlled by automatic control systems.

生産効率の向上、設備破損の防止等といった多大な効果
を奏する。
It has great effects such as improving production efficiency and preventing equipment damage.

?発明の効果〕 以上詳述したように本発明は、自動制御系にお()るシ
II IIl特性を定量的に表現する伝達関数を伝達関
数測定手段により測定し、この測定された伝達係数に対
して前記自動制御系における調整すべき制傭1定数の最
適値を制御定数算出手段により算出し、前記伝達関数測
定手段にて求められた伝達関数と上記制御定数算出手段
にて算出された制御定数とを総合検討して前記自動制御
系の制御特性を診断するようにしたものである。
? [Effects of the Invention] As described in detail above, the present invention measures a transfer function that quantitatively expresses the II characteristic in an automatic control system using a transfer function measurement means, and On the other hand, the control constant calculation means calculates the optimum value of one constant to be adjusted in the automatic control system, and the transfer function calculated by the transfer function measurement means and the control constant calculated by the control constant calculation means are calculated. The control characteristics of the automatic control system are diagnosed by comprehensively examining the constants.

したがって、本発明によれば、自動υ1111系におけ
る制御特性の診断および調整を簡単に得られる実測値と
計専値とに基いて行なうことができるので、自動制御系
の制御特性を安定かつ簡便にしかも効率よく診断でき、
短時間で最適調整量を得ることが可能で、ひいては自動
制′aO系の制n口機能の向上、生産効率の向上および
品質1歩留りの向上をはかり得る自動制御系の制御特性
診断装置を提供できる。
Therefore, according to the present invention, diagnosis and adjustment of the control characteristics of the automatic υ1111 system can be performed based on easily obtained measured values and measured values, so that the control characteristics of the automatic control system can be stably and easily adjusted. Moreover, it can be diagnosed efficiently,
We provide a control characteristic diagnostic device for automatic control systems that can obtain the optimum adjustment amount in a short time, and can also improve the control function of automatic control systems, improve production efficiency, and improve quality yield. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図(a)(b)は本発明の−゛実施例を示
す図であって、第1図は構成を示すブロック図、第2図
はシミュレーション回路を説明するための流れ図、第3
図はボード線図を作成するための流れ図、第4図(a)
(b)はボード線図の計算例と実測例とを示す図である
。 10・・・自動制御装置、20・・・伝達関数測定回路
、21・・・伝達関数測定器、22・・・最適定数簡易
設定器、23・・・X−Yコーグ、30・・・シミュレ
ーション回路、31・・・演4制圓部、32・・・CR
T、33・・・プリンタ、34・・・プロッタ、35・
・・ハードコピー、36・・・データ処理部、37・・
・入力部、38・・・RAMメモリ、39・・・データ
テーブル。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図
1 to 4 (a) and (b) are diagrams showing embodiments of the present invention, in which FIG. 1 is a block diagram showing the configuration, and FIG. 2 is a flow chart for explaining the simulation circuit. , 3rd
The figure is a flowchart for creating a Bode diagram, Figure 4 (a)
(b) is a diagram showing a calculation example and an actual measurement example of a Bode diagram. DESCRIPTION OF SYMBOLS 10... Automatic control device, 20... Transfer function measuring circuit, 21... Transfer function measuring device, 22... Optimum constant simple setting device, 23... X-Y Korg, 30... Simulation Circuit, 31... Performance 4 system round part, 32... CR
T, 33...Printer, 34...Plotter, 35.
...Hard copy, 36...Data processing section, 37...
- Input section, 38... RAM memory, 39... data table. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 自動制御系における制御特性を定量的に表現する伝達関
数を測定する伝達関数測定手段と、この伝達関数測定手
段により測定された伝達関数に対して前記自動制御系に
おける調整すべき制御定数の最適値を算出する制御定数
算出手段とを具備し、前記制御定数算出手段により算出
された制御定数の最適値と前記伝達関数測定手段により
測定された伝達関数とに基いて前記自動制御系の制御特
性を診断するようにしたことを特徴とする自動制御系の
制御特性診断装置。
A transfer function measuring means for measuring a transfer function quantitatively expressing control characteristics in an automatic control system, and an optimum value of a control constant to be adjusted in the automatic control system with respect to the transfer function measured by the transfer function measuring means. and control constant calculation means for calculating the control characteristics of the automatic control system based on the optimum value of the control constant calculated by the control constant calculation means and the transfer function measured by the transfer function measurement means. A control characteristic diagnostic device for an automatic control system, characterized in that it performs diagnosis.
JP60181393A 1985-08-19 1985-08-19 Control characteristic diagnostic device for automatic control system Pending JPS6240503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60181393A JPS6240503A (en) 1985-08-19 1985-08-19 Control characteristic diagnostic device for automatic control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60181393A JPS6240503A (en) 1985-08-19 1985-08-19 Control characteristic diagnostic device for automatic control system

Publications (1)

Publication Number Publication Date
JPS6240503A true JPS6240503A (en) 1987-02-21

Family

ID=16099956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60181393A Pending JPS6240503A (en) 1985-08-19 1985-08-19 Control characteristic diagnostic device for automatic control system

Country Status (1)

Country Link
JP (1) JPS6240503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161640A (en) * 1989-11-20 1991-07-11 Misawa Homes Co Ltd Installation structure for lower part of panel having opening
JPH0488401A (en) * 1990-07-26 1992-03-23 Nippon Steel Corp Fuzzy simulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161640A (en) * 1989-11-20 1991-07-11 Misawa Homes Co Ltd Installation structure for lower part of panel having opening
JPH0488401A (en) * 1990-07-26 1992-03-23 Nippon Steel Corp Fuzzy simulator

Similar Documents

Publication Publication Date Title
US4003246A (en) Specimen crack stress intensity control loop for test device
KR950000938B1 (en) Method and apparatus for controlling engine characteristic test
EP3220217B1 (en) Method and device for simulation of a mechanical system
US20070118237A1 (en) Autocontrol simulating system and method
JPS6240503A (en) Control characteristic diagnostic device for automatic control system
JPH11258135A (en) Method and apparatus for evaluating, testing process characteristic of metallic material
JP3858833B2 (en) Material testing machine
JP2594060B2 (en) Decoupling control system for engine bench test equipment.
JPS6144326B2 (en)
JP2005258717A (en) Parameter-setting method, device and program for controller
JPH05157592A (en) Electronics performance test device
JPS59226907A (en) Evaluating device for servo characteristic of closed loop control system
JPH062290B2 (en) Deterioration diagnosis method for hydraulic servo system for rolling mill
JPS63154085A (en) Detector for unknown variable parameter in physical system
JPH02159250A (en) Inclined magnetic field power supply
JPH05157655A (en) On-line earthquake response load experiment device
JP2844636B2 (en) Program control unit
WO2024086497A1 (en) Method and system using pre-qualified reference data in vibration system
JPH0342561A (en) Automatic temperature control type x-ray diffraction apparatus
JPS63239508A (en) Plant simulation device
CN114995335A (en) Servo valve testing method and device
CN116560270A (en) Multidimensional vibration controller
JPS61164133A (en) Vibration testing method
JP2624847B2 (en) Engine test equipment
JPS63163254A (en) Control method for material testing machine