JPS6240349A - Manufacture of zirconium base alloy member - Google Patents

Manufacture of zirconium base alloy member

Info

Publication number
JPS6240349A
JPS6240349A JP17901485A JP17901485A JPS6240349A JP S6240349 A JPS6240349 A JP S6240349A JP 17901485 A JP17901485 A JP 17901485A JP 17901485 A JP17901485 A JP 17901485A JP S6240349 A JPS6240349 A JP S6240349A
Authority
JP
Japan
Prior art keywords
zirconium
annealing
alloy
corrosion resistance
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17901485A
Other languages
Japanese (ja)
Inventor
Masatoshi Inagaki
正寿 稲垣
Masatake Fukushima
福島 正武
Kimihiko Akahori
赤堀 公彦
Hideo Maki
牧 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17901485A priority Critical patent/JPS6240349A/en
Publication of JPS6240349A publication Critical patent/JPS6240349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To develop alloy having superior corrosion resistance and low hydrogen absorption characteristic in high temp., high pressure water or steam, by adding specified quantities of Cr, Fe, Ni to corrosion resisting Zr-Sn alloy member used at core part of nuclear reactor, cold working the member, then annealing it under a specified condition. CONSTITUTION:As member used in high temp. water or steam in core part of reactor, Zr alloy contg. by weight 1.0-2.0% Sn, 0.25-0.5% Fe of further 0.05-0.15% Cr or Fe and Ni of the quantity satisfying formulae (1), (2) is used. Ingot of Zr alloy having the compsn. is heated to 1,000 deg.C, cooled rapidly to soln. treatment, hot rolled at 700 deg.C, the plate is annealing treated then alternately subjected to cold rolling and annealing treatment at alpha phase temp. range at plural times. In this case, at least one time in the annealings after cold rolling is performed at >=670 deg.C.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ジルコニウム基合金部材の製造方法に係り、
特に原子炉の炉心用等の高温高圧水中で長期間使用され
る高い耐食性と低い水素吸収特性を有するジルコニウム
基合金部材の製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a zirconium-based alloy member,
In particular, the present invention relates to a method for manufacturing a zirconium-based alloy member having high corrosion resistance and low hydrogen absorption characteristics that can be used for long periods in high-temperature, high-pressure water, such as in the core of a nuclear reactor.

〔発明の背景〕[Background of the invention]

ジルコニウム基合金は、優れた耐食性と小さい中性子吸
収断面積とを有しているため、第1図に示すように、原
子炉内構造部材である燃料被覆管ウォーターロッド1、
チャンネルボックス2.スペーサ3等に使用されている
。これら用途に使用される錫を含むジルコニウム合金と
しては、ジルカロイ−2(Sn :1.20〜1.70
wt%。
Zirconium-based alloys have excellent corrosion resistance and a small neutron absorption cross section, so as shown in FIG.
Channel box 2. Used for spacer 3, etc. Zirconium alloys containing tin used for these purposes include Zircaloy-2 (Sn: 1.20 to 1.70).
wt%.

Fe : 0.07〜0.20wt%、Cr : 0.
05〜0.15wt%、Ni : 0.03〜0.08
wt%。
Fe: 0.07-0.20wt%, Cr: 0.
05-0.15wt%, Ni: 0.03-0.08
wt%.

0 : 900〜1400p p m、残Zr、ただし
、F6+Cr+Ni : 0.18〜0.38wt%)
、ジルカロイ−4(Sn : 1.20〜1.70wt
%。
0: 900-1400 ppm, residual Zr, however, F6+Cr+Ni: 0.18-0.38 wt%)
, Zircaloy-4 (Sn: 1.20-1.70wt
%.

Fe : 0.18〜0.24wt%tcr:o、o’
7〜0.13wt%、○: 1000〜1600 p 
p m 、残Zr、ただし、F a +Cr : 0.
28〜0.38wt%)等がある。
Fe: 0.18-0.24wt%tcr: o, o'
7-0.13wt%, ○: 1000-1600p
p m , residual Zr, however, F a +Cr: 0.
28 to 0.38 wt%).

合金元素のうち、Snは機械的性質の改善と溶解原料で
あるジルコニウムスポンジ中に含まれる窒素が耐食性に
及ぼす悪影響を防止するために添加される。酸素の添加
は引張強さを向上させる。
Among the alloying elements, Sn is added to improve mechanical properties and to prevent the adverse effect of nitrogen contained in the zirconium sponge, which is a melted raw material, on corrosion resistance. Addition of oxygen improves tensile strength.

Fa、CrおよびNiは耐食性を向上させるために添加
される。
Fa, Cr and Ni are added to improve corrosion resistance.

耐食性向上に顕著な効果を有するFe、CrおよびNi
のうち、Niの添加量が増加すると高温高圧水中あるい
は高温高圧水蒸気中での水素吸収量が増加すると言われ
ており例えば’ TheMetallurgy of 
Zirconium” (D 、 L 、DOUGLA
SS著)p、360に記載されている。吸収された水素
は水素化物として板状に析出し材料の強度低下の原因と
なる。このためNiは、ジルコロイ−2材では、約0.
05wt% と添加量が少なく、ジルカロイ−4材では
添加されていない。
Fe, Cr and Ni have a remarkable effect on improving corrosion resistance
It is said that as the amount of Ni added increases, the amount of hydrogen absorbed in high-temperature, high-pressure water or high-temperature, high-pressure steam increases; for example, 'The Metallurgy of
Zirconium” (D, L, DOUGLA
SS) p. 360. The absorbed hydrogen precipitates in the form of a plate as a hydride, causing a decrease in the strength of the material. For this reason, Ni is approximately 0.0% in Zircoloy-2 material.
The amount added is as small as 0.05 wt%, and it is not added in Zircaloy-4 material.

FeおよびCrは0.1wt%〜0 、5 w t%添
加することにより耐食性が向上すると言われており、例
えばMetallurgy of Zirconium
 (Miller著)P、325に記載されている。F
e、CrおよびNiの中性子吸収断面積はZrに比べて
大であり、できる限り添加量は少ない方が好ましい。
It is said that corrosion resistance is improved by adding Fe and Cr in an amount of 0.1 wt% to 0.5 wt%.
(Miller) P, 325. F
The neutron absorption cross section of e, Cr and Ni is larger than that of Zr, and it is preferable to add as little amount as possible.

以上述べた理由により、現用ジルコニウム合金の組成が
選定されている。
For the reasons stated above, the composition of the current zirconium alloy has been selected.

しかし、耐食性が優れたこれら市販ジルコニウム合金も
、炉内で長時間高温高圧の水にさらされると、丘疹状の
局部腐食(以後ノジュラ腐食と記す)が発生する。ノジ
ュラ腐食の発生は、健全部の肉厚を減少させるので強度
低下の原因となり、ノジュラ腐食が全肉厚を貫通すると
被覆管内の放射性物質が炉水中に漏れる。原子力燃料の
高燃焼度化、運転サイクルの長期化をはかるためには、
現用ジルコニウム合金の耐食性をさらに高める必要があ
る。
However, even these commercially available zirconium alloys, which have excellent corrosion resistance, develop papular localized corrosion (hereinafter referred to as nodular corrosion) when exposed to high-temperature, high-pressure water in a furnace for a long time. Occurrence of nodular corrosion causes a decrease in strength because the wall thickness of healthy parts is reduced, and if nodular corrosion penetrates the entire wall thickness, radioactive materials in the cladding tube will leak into the reactor water. In order to increase the burnup of nuclear fuel and extend the operating cycle,
It is necessary to further improve the corrosion resistance of current zirconium alloys.

ノジュラ腐食の発生は、酸化に伴って発生する水素の吸
収量を高め、ジルコニウム基合金部材を著しく脆化させ
る。
The occurrence of nodular corrosion increases the absorption amount of hydrogen generated due to oxidation, and significantly embrittles the zirconium-based alloy member.

したがって高燃焼度燃料炉心を設計するためには、前記
水素吸収量の低いジルコニウム基合金部材を提供するこ
とも重要である。
Therefore, in order to design a high burnup fuel core, it is also important to provide a zirconium-based alloy member that has a low hydrogen absorption amount.

現用のジルカロイ−2材およびジルカロイ−4材の高耐
食化技術としては例えば特開昭51−110411およ
び特開昭51−110412に記載されているβクエン
チと呼ばれる熱処理技術が公知である。
A heat treatment technique called β quench described in JP-A-51-110411 and JP-A-51-110412 is known as a technique for increasing the corrosion resistance of currently used Zircaloy-2 and Zircaloy-4 materials.

βクエンチとは、ジルコニウム基合金を〔α+β〕相温
度範囲あるいはβ相温度範囲で溶体化処理し。
β-quenching refers to solution treatment of zirconium-based alloys in the [α+β] phase temperature range or β-phase temperature range.

つづいてその温度範囲から急冷(冷却温度=30℃/秒
〜300℃/秒)する熱処理であり、βクエンチするこ
とにより合金中に析出しているzr(Cr、Fe)x、
Zrz (Ni、Fe)等の金属化合物相はマトリック
ス中に固溶し、冷却過程で析出する金属間化合物相はβ
クエンチする前のものより微細化する。βクエンチより
耐食性は向上するが、マトリックスは、Fe、Crおよ
びNiの過飽和固溶体であるため延性が著しく低下し、
βクエンチ後強加工を施すと割れが発生する。
This is followed by a heat treatment of rapid cooling from that temperature range (cooling temperature = 30°C/sec to 300°C/sec), and by β-quenching, zr(Cr, Fe)x, which is precipitated in the alloy,
Metal compound phases such as Zrz (Ni, Fe) are dissolved in the matrix, and intermetallic compound phases that precipitate during the cooling process are β
It becomes finer than before quenching. Corrosion resistance is improved compared to β-quenching, but since the matrix is a supersaturated solid solution of Fe, Cr and Ni, ductility is significantly reduced.
If strong processing is applied after β-quenching, cracks will occur.

燃料被覆管の製造工程を例にとると、溶解されたインゴ
ットは、熱間鍛造(1000℃)、溶体化処理(約10
00℃で数時間)、熱間鍛造(700’C〜750℃)
の後、熱間押出しにより円筒状ビレットに成形される0
通常、この円筒状ビレットは焼なましの後冷間圧延と焼
なましとを交互に3回繰返し燃料被覆管に成形される。
Taking the manufacturing process of fuel cladding tubes as an example, the molten ingot is hot forged (1000℃) and solution treated (approximately 100℃).
00°C for several hours), hot forging (700'C to 750°C)
After that, it is formed into a cylindrical billet by hot extrusion.
Usually, after annealing, this cylindrical billet is formed into a fuel cladding tube by repeating cold rolling and annealing three times alternately.

高耐食燃料被覆管を得るために、最終工程でβクエンチ
すると延性が低下し被覆管の仕様を満足しなくなる。し
たがって延性を付与するために。
In order to obtain a highly corrosion-resistant fuel cladding tube, β-quenching is performed in the final step, resulting in a decrease in ductility and the cladding tube specifications no longer being met. Thus to impart ductility.

βクエンチをいずれかの冷間圧延工程の前に施し。β-quenching is applied before any cold rolling process.

βクエンチ後冷間圧延を焼なましを交互に繰返すことに
より金属組織が再結晶組織となるように製造工程も提案
されている。しかし、βクエンチ材は強加工を施すこと
ができないので、通常の製造工程よりも冷間圧延および
焼なましの繰返し回数が1〜2回増加するなど生産コス
トの上昇の問題があり、また、βクエンチ後、焼なまし
を長時間にわたり施すと、マトリックス中に過飽和に固
溶したFe、CrおよびNiは、金属間化合物相として
析出しかつ粗大化してくるので、耐食性は徐徐に低下し
てしまう問題が生じる。
A manufacturing process has also been proposed in which the metal structure becomes a recrystallized structure by alternately repeating cold rolling and annealing after β-quenching. However, since β-quenched materials cannot be subjected to heavy working, there is a problem of increased production costs, such as the number of cold rolling and annealing cycles being increased by 1 to 2 times compared to the normal manufacturing process. If annealing is performed for a long time after β-quenching, Fe, Cr, and Ni, which are supersaturated in solid solution in the matrix, will precipitate and coarsen as an intermetallic compound phase, resulting in a gradual decline in corrosion resistance. A problem arises.

前述のとおり、チャンネルボックス、燃料被覆管、スペ
ーサ等の原子炉炉内構造部材として使用されるジルコニ
ウム基合金は、熱処理により耐食性が変化せずかつ高い
耐食性を有していることが望ましいにもかかわらず、そ
れを解決するジルコニウム基合金の製造方法が未だなく
、それらの特性を有するジルコニウム基合金部材を容易
に製造する製造技術の開発が待たれていた。
As mentioned above, it is desirable for zirconium-based alloys used as internal reactor structural members such as channel boxes, fuel cladding tubes, and spacers to have high corrosion resistance without changing their corrosion resistance through heat treatment. First, there is still no method for manufacturing zirconium-based alloys that solves these problems, and the development of manufacturing techniques that can easily manufacture zirconium-based alloy members having these characteristics has been awaited.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述の問題点を解決し、高温高圧水あ
るいは高温高圧水蒸気中で長期間使用しても高い耐食性
および低い水素吸収特性を有するジルコニウム基合金部
材の製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a zirconium-based alloy member that has high corrosion resistance and low hydrogen absorption characteristics even when used for long periods in high-temperature and high-pressure water or high-temperature and high-pressure steam. be.

〔発明の概要〕[Summary of the invention]

本発明者等は前述の目的を達成するための手段の鋭意研
究した結果本発明者等は、合金元素であるSn、Fe、
CrおよびNiのうち、特にFeおよびNiの耐食性向
上効果が顕著であり、またFeおよびNiのうちでは特
にFeが水素吸収低減効果が顕著であるという知見、並
びに、冷間加工後670℃以上の温度で焼なました場合
ジルコニウム基合金の水素吸収量は著しく低いとい夛1
見して、本発明を完成したものである。
As a result of intensive research into means for achieving the above-mentioned object, the inventors have discovered that the alloying elements Sn, Fe,
Among Cr and Ni, Fe and Ni have a particularly remarkable effect on improving corrosion resistance, and among Fe and Ni, Fe has a particularly remarkable effect on reducing hydrogen absorption. The hydrogen absorption capacity of zirconium-based alloys is extremely low when annealed at high temperatures.
As a result, the present invention has been completed.

すなわち、本発明は、S n 1 、0〜2 、 Ow
 t%。
That is, the present invention provides S n 1 , 0 to 2, Ow
t%.

F e O,25〜0.5 w t%を含み残部実質的
にジルコニウムからなる合金インゴット、それにCrを
0.05〜0.15wt%含有させたインゴットあるい
は、さらに下記の(1)式および(2)式の関係を満た
す範囲でNiを含有させたインゴットを、溶体化処理し
た後、熱間加工および焼なましを施す工程と、その後冷
間加工とα相温度範囲での焼なましとを交互に複数回く
り返し施す工程とを有するジルコニウム基合金部材の製
造方法において、前記冷間加工後の焼なましのうち少な
くとも1回は670℃以上の温度で行うことを特徴とす
るジルコニウム基合金部材の製造方法である。
An alloy ingot containing 25 to 0.5 wt% of F e O, with the remainder substantially consisting of zirconium, an ingot containing 0.05 to 0.15 wt% of Cr, or an ingot containing the following formula (1) and ( 2) A process of solution-treating an ingot containing Ni within a range that satisfies the relationship of the formula, followed by hot working and annealing, followed by cold working and annealing in the α phase temperature range. A method for producing a zirconium-based alloy member comprising the step of alternately repeating the above steps multiple times, wherein at least one of the annealing after cold working is performed at a temperature of 670° C. or higher. This is a method for manufacturing a member.

ここで、本発明によって製造されたジルコニウム基合金
がいかなる理由で高い耐食性と低い水素吸収特性を有す
るか説明する。
Here, the reason why the zirconium-based alloy produced according to the present invention has high corrosion resistance and low hydrogen absorption properties will be explained.

第2図はジルコニウム基合金表面に形成される酸化膜の
成長メカニズムを示す。酸化膜は金属過剰(酸素欠乏型
)のn型半導体であり、その組成は化学量論理組成から
ずれたZr0z−xである。
FIG. 2 shows the growth mechanism of an oxide film formed on the surface of a zirconium-based alloy. The oxide film is a metal-rich (oxygen-deficient) n-type semiconductor, and its composition is Zr0z-x, which deviates from the stoichiometric composition.

過剰な金属イオンは等価な電子によって電気的中性を保
つように補償されており、酸素欠乏部はアニオン欠陥と
して酸化膜中に内在している。酸素イオンは、このアニ
オン欠陥とその位置を交換することにより内部へ拡散し
酸化膜と金属との界面でジルコニウムと結合し酸化が内
部に向って進行する。このとき、酸素イオンと等価な電
荷の電子が酸化膜内部から表面に移動し、水素イオンは
この電子により還元されて水素ガスを発生する。よって
酸化量と水素ガス発生量は比例関係にあり、水素ガスの
1部はジルコニウム合金内部に吸収されて水素化物を形
成する原因となる。このことから耐食性が高いジルコニ
ウム基合金はど水素ガスの吸収量が低いことが考えられ
る。
Excess metal ions are compensated by equivalent electrons to maintain electrical neutrality, and oxygen-deficient regions are present in the oxide film as anion defects. Oxygen ions diffuse into the interior by exchanging their positions with these anion defects, bond with zirconium at the interface between the oxide film and the metal, and oxidation progresses inward. At this time, electrons with a charge equivalent to that of oxygen ions move from the inside of the oxide film to the surface, and hydrogen ions are reduced by these electrons to generate hydrogen gas. Therefore, the amount of oxidation and the amount of hydrogen gas generated are in a proportional relationship, and a portion of the hydrogen gas is absorbed inside the zirconium alloy, causing the formation of hydrides. This suggests that zirconium-based alloys with high corrosion resistance have a low absorption amount of hydrogen gas.

したがって酸化を抑制し耐食性を高めるには、アニオン
欠陥の分布を均一にし、アニオン欠陥を動きにくくさせ
ることが有効である。Fe、NiおよびCr等耐食性向
上元素は、ZrOx−xイオン格子中に入り上記効果を
もたらすものと考えられるが、イオン格子中に入るため
には、ジルコニウム基合金中でこれら元素は、マトリッ
クス中に固溶している必要がある。
Therefore, in order to suppress oxidation and improve corrosion resistance, it is effective to make the distribution of anion defects uniform and to make it difficult for the anion defects to move. Corrosion resistance improving elements such as Fe, Ni and Cr are thought to enter the ZrOx-x ion lattice and bring about the above effects, but in order to enter the ion lattice, these elements must be present in the matrix in the zirconium-based alloy. Must be in solid solution.

ジルコニウム基合金に発生するノジュラ腐食は、純Zr
表面に形成される酸化物と同様な白色を呈し、この白色
酸化物は化学量論組成に近いZrOxの組成を有してい
る* Z r OZ酸化膜はもちろん割れやすいため、
Zr基合金の保護膜とならず局部に集中した腐食となる
。このことは、ノジュラ腐食発生位置では、耐食性向上
元素であるFe。
Nodular corrosion that occurs in zirconium-based alloys is caused by pure Zr.
It exhibits the same white color as the oxide formed on the surface, and this white oxide has a ZrOx composition close to the stoichiometric composition.
This does not provide a protective film for the Zr-based alloy, resulting in locally concentrated corrosion. This means that at the location where nodular corrosion occurs, Fe, which is an element that improves corrosion resistance.

Cr、Niの固溶量の欠乏が生じていることを示してい
る。よってアニオン欠陥の数および分布を適正に制御す
ることが重要であり、耐食性および水素吸収量は合金組
成およびジルコニウム基合金部材の熱処理プロセスに影
響される。
This indicates that the amount of solid solution of Cr and Ni is insufficient. Therefore, it is important to appropriately control the number and distribution of anion defects, and the corrosion resistance and hydrogen absorption amount are influenced by the alloy composition and the heat treatment process of the zirconium-based alloy member.

本発明者等は、実施例においても述べるとおり、ジルコ
ニウム合金に含有すべきSn、Fe、CrおよびNiの
含有量、および熱処理条件に関して、数多くの実験を重
ねた結果、前記合金元素の添加量に関しては、Snが1
 、0〜2 、 Ow t%、Feが0.25〜0.5
wt%、Crが0.05〜0.15wt%そしてNiが
下記の(1)、(2)式を満足する範囲に納めることが
必要であることを見出した。すなわち、前記合金元素の
範囲未満ではマトリックス中への固溶によりアニオン欠
陥の数を減小させ分布を均一にするとともにアニオン欠
陥を動きにくくする効果が不十分であり、一方前記範囲
を超えると、過飽和あるいは粗大化した金属間化合物を
形成し、逆に耐食性を労化させることになる。また冷間
加工後の焼なまし温度を670℃に達しない温度にする
と前記合金元素のマトリックス中への固溶が不十分でし
たがって前記合金元素によるアニオン欠陥を均一に分布
させる効果およびアニオン欠陥を動きにくくする効果が
十分得られない。
As described in the examples, the present inventors have conducted numerous experiments regarding the contents of Sn, Fe, Cr, and Ni that should be contained in the zirconium alloy, and the heat treatment conditions, and as a result, the amount of the alloying elements added has been determined. is Sn is 1
, 0~2, Ow t%, Fe is 0.25~0.5
It has been found that it is necessary to keep Cr at 0.05 to 0.15 wt% and Ni within a range that satisfies the following formulas (1) and (2). That is, if the alloying element is below the above range, the effect of reducing the number of anion defects by solid solution in the matrix, making the distribution uniform, and making it difficult for the anion defects to move is insufficient; on the other hand, if the alloy element exceeds the above range, This results in the formation of supersaturated or coarsened intermetallic compounds, which impairs corrosion resistance. Furthermore, if the annealing temperature after cold working is set to a temperature below 670°C, the solid solution of the alloying element in the matrix will be insufficient, and therefore the effect of uniformly distributing the anion defects due to the alloying element and the anion defect will be reduced. The effect of making it difficult to move cannot be obtained sufficiently.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明について実施例を挙げて説明する。 Hereinafter, the present invention will be explained by giving examples.

〈実施例1〉 第4図は、ジルコニウム基合金の溶解、熱処理および加
工方法を示す、溶解原料には原子炉用ジルコニウムスポ
ンジを用いた。真空アーク溶解により表1に示す組成の
ジルコニウム基合金を溶製した。各インゴットは、α鍛
造(1000℃)後、焼なましく700℃、2時間)、
α鍛造(750℃)後、1000℃で1時間溶体処理し
水冷によりクエンチした。その後、熱間圧延(700℃
)、焼なましく700℃)を施した。3回の冷間圧延と
600℃、2時間の中間焼なましとにより板厚2IIf
flとした。最終焼なまし温度は530℃、577℃。
<Example 1> FIG. 4 shows a method of melting, heat treatment, and processing a zirconium-based alloy. A zirconium sponge for a nuclear reactor was used as the melting raw material. A zirconium-based alloy having the composition shown in Table 1 was produced by vacuum arc melting. Each ingot was α-forged (1000°C), annealed at 700°C for 2 hours),
After α forging (750°C), it was solution treated at 1000°C for 1 hour and quenched by water cooling. After that, hot rolling (700℃
), annealed at 700°C). By cold rolling three times and intermediate annealing at 600℃ for 2 hours, the plate thickness was 2IIf.
It was set as fl. Final annealing temperature is 530℃, 577℃.

620℃、670℃および730℃とした。The temperatures were 620°C, 670°C and 730°C.

表1において、41〜&5は、Zr−8n−Fa金合金
ありFe量を0.1wt%〜0 、3 w t%の範囲
で変化させたものである。勲6〜Na9はZr−8n−
Ni合金でありNi量を0.05 w t%〜0.20
  wt%の範囲で変化させたものである。Flhl0
〜424はSn : 1.5wt%、Cr:0.1wt
%としFeおよびNi添加聴を変化させたZ r−S 
n −F e −N i −Cr合金であり、いずれも
ジルカロイ−2の仕様を満足する。
In Table 1, 41 to &5 are Zr-8n-Fa gold alloys with Fe content varied in the range of 0.1 wt% to 0.3 wt%. Isao 6~Na9 is Zr-8n-
It is a Ni alloy with a Ni content of 0.05 wt% to 0.20
It was changed within a range of wt%. Flhl0
~424 is Sn: 1.5wt%, Cr: 0.1wt
Zr-S with different Fe and Ni additives as %
n -F e -N i -Cr alloy, all of which satisfy the specifications of Zircaloy-2.

表 1 合金の化学組成 第3図は、各合金の板材より50+nm(長さ)×30
1(幅)の試験片を切り出し、500℃。
Table 1 Chemical composition of alloys Figure 3 shows 50+nm (length) x 30 from the plate material of each alloy.
1 (width) test piece was cut out and heated to 500°C.

105kgf/am”の水蒸気中にて24時間保持する
腐食試験に供した結果を示す。図中0印は最終焼なまし
温度を577℃〜730℃の範囲で変化させてもノジュ
ラ腐食が発生しなかったことを示し。
The results are shown in the results of a corrosion test held in water vapor of 105 kgf/am for 24 hours. In the figure, the mark 0 indicates that nodular corrosion occurs even when the final annealing temperature is varied in the range of 577°C to 730°C. Show that there was no.

・印はノジュラ腐食が発生したことを示す、第3図より
明らかなように、 0.25Xst+0.15Xpe≧0.0375 ・(
1)(Xst : N i合金化量(wt%)。
・The mark indicates that nodular corrosion has occurred.As is clear from Figure 3, 0.25Xst+0.15Xpe≧0.0375 ・(
1) (Xst: Ni alloying amount (wt%).

Xpe:Fe合金化量(wt%)) (1)式を満足する組成の合金は、ノジュラ腐食が発生
せず高い耐食性を有することがわかる。
Xpe: Fe alloying amount (wt%)) It can be seen that an alloy having a composition that satisfies the formula (1) does not cause nodular corrosion and has high corrosion resistance.

図中斜線を付した領域は、後述するように耐食性および
低水素吸収特性とを兼備した領域であり本発明の合金組
成を示す。
The shaded region in the figure is a region that has both corrosion resistance and low hydrogen absorption characteristics, as will be described later, and represents the alloy composition of the present invention.

Crは0〜0,15wt%含まれるものとする。It is assumed that Cr is contained in an amount of 0 to 0.15 wt%.

第5図は、Zr−8n−Ni合金およびZr−8n −
F e合金の腐食試験後の水素含有量を示す。
Figure 5 shows Zr-8n-Ni alloy and Zr-8n-
The hydrogen content after the corrosion test of Fe alloy is shown.

腐食試験前における各合金の水素含有量は10〜15p
pmであり有蓋はなかった0図中点線は最終焼なまし温
度533℃であることを示し、実線は最終焼なまし温度
730Cであることを示す。
The hydrogen content of each alloy before the corrosion test was 10 to 15 p.
The dotted line in the figure with no lid indicates the final annealing temperature of 533°C, and the solid line indicates the final annealing temperature of 730°C.

・、■印はノジュラ腐食の発生を示し、0.閣印はノジ
ュラ腐食が発生しなかったことを示す。
・、■ marks indicate the occurrence of nodular corrosion, and 0. The seal indicates that nodular corrosion did not occur.

第5図より、Fe添加量が0.25wt%以上でかつ最
終焼なまし温度が730℃のZr−8n−Fe合金の水
素吸収量は、Z r −S n −F e合金より著し
く低く、かつノジュラ腐食が発生しないことがわかる。
From FIG. 5, the hydrogen absorption amount of the Zr-8n-Fe alloy with an Fe addition amount of 0.25 wt% or more and a final annealing temperature of 730°C is significantly lower than that of the Zr-Sn-Fe alloy. It can also be seen that nodular corrosion does not occur.

このことから、水素吸収量を低下させるにはFe添加が
有効であり、Ni添加量はできる限り低下させるのが良
いことがわかる。
From this, it can be seen that addition of Fe is effective in reducing the amount of hydrogen absorption, and it is better to reduce the amount of Ni added as much as possible.

第6図は、Zr−5n−0,3wt% Fe合金および
Zr−8n−0,3wt%Ni合金の腐食試験後の水素
含有量に及ぼす最終焼なまし温度の影響を示す、第6図
より最終焼なまし温度670℃以上のZr−8n−Fe
合金では水素吸収量の低下が顕著であることがわかる。
Figure 6 shows the effect of final annealing temperature on hydrogen content after corrosion test of Zr-5n-0,3 wt% Fe alloy and Zr-8n-0,3 wt% Ni alloy. Zr-8n-Fe with final annealing temperature of 670℃ or higher
It can be seen that the hydrogen absorption amount decreases significantly in the alloy.

第7図は、ジルカロイ−2の仕様を満足するZ r −
1、5w t%S n −0、2w t%Fe−Ni0
 、1 w t%Cr含Crおける腐食試験後の水素量
に及ぼすNi添加量の影響を示す。最終焼なまし温度は
670℃である。いずれの合金においてもノジュラ腐食
は発生しておらず健全な黒色酸化膜が形成されていた0
図より、Ni添加量が0.05wt%以下であれば水素
吸収量は低いことがわかる。
FIG. 7 shows Z r − that satisfies the specifications of Zircaloy-2.
1, 5w t%S n -0, 2w t%Fe-Ni0
, shows the influence of the amount of Ni added on the amount of hydrogen after a corrosion test in a Cr containing 1 wt% Cr. The final annealing temperature is 670°C. Nodular corrosion did not occur in any of the alloys, and a healthy black oxide film was formed.
From the figure, it can be seen that when the amount of Ni added is 0.05 wt% or less, the amount of hydrogen absorption is low.

以上の結果より、Zr−5n−Fa−Cr −Ni合金
において、FeおよびNiの組成が(1)式を満足し、
Ni添加量が0.05wt%以下でかつ最終焼なまし温
度が670℃以上であれば高耐食性および低水素吸収の
ジルコニウム基合金が得られることがわかる。
From the above results, in the Zr-5n-Fa-Cr-Ni alloy, the composition of Fe and Ni satisfies formula (1),
It can be seen that if the Ni addition amount is 0.05 wt% or less and the final annealing temperature is 670° C. or higher, a zirconium-based alloy with high corrosion resistance and low hydrogen absorption can be obtained.

〈実施例2〉 第8図はSn1.4〜1.6wt%、Fe0.18〜0
 、20 w t%、Ni0.03〜0.05wt%。
<Example 2> Figure 8 shows Sn1.4-1.6wt%, Fe0.18-0
, 20 wt%, Ni 0.03-0.05 wt%.

Cr0.08〜0.10wt%のジルコニウム基合金イ
ンゴットを使用し、燃料被覆管の製造した加工および熱
処理プロセスを示す。
The processing and heat treatment process for producing fuel cladding tubes using a zirconium-based alloy ingot with 0.08-0.10 wt% Cr is shown.

インゴットは1000℃〜1050℃の温度範囲で鍛造
、1000℃〜1050℃の温度から水冷するβクエン
チ処理、750℃〜800℃の温度範囲での熱間鍛造後
、機械加工により円筒形状とした。さらに700〜80
0℃での熱間押出し加工により外径63.5+a+a。
The ingot was forged in a temperature range of 1000°C to 1050°C, β-quenched by water cooling from 1000°C to 1050°C, hot forged in a temperature range of 750°C to 800°C, and then machined into a cylindrical shape. Another 700-80
Outer diameter 63.5+a+a due to hot extrusion processing at 0°C.

肉厚10m+++の管とし、この管を930℃から急冷
するα+βクエンチを施した。βクエンチ後、断面積減
少率70%前後の冷間圧延と焼なましとを交互に3回繰
返し外径12.5m+m肉厚0.86mmの管とした。
A tube with a wall thickness of 10 m+++ was used, and α+β quenching was performed to rapidly cool the tube from 930°C. After β-quenching, cold rolling with a cross-sectional area reduction rate of about 70% and annealing were alternately repeated three times to obtain a tube with an outer diameter of 12.5 m+m and a wall thickness of 0.86 mm.

各3回の焼なまし温度は、それぞれ600℃、700’
C,577℃とした。最終焼なましく温度:577℃)
の前の第2回目と第3回目の冷間圧延の間に挿入した中
間焼なまし温度は700℃である。
The annealing temperatures for each of the three times were 600°C and 700°C, respectively.
C, 577°C. Final annealing temperature: 577℃)
The intermediate annealing temperature inserted between the second and third cold rolling before is 700°C.

表面を弗酸、硝酸および水からなる液で酸洗し、中和お
よび水洗した後、長さ50+wn+の試験片を切り出し
、410℃で8時間510℃で16時間105 kg/
cm”の圧力の循環水蒸気中に保持する腐食試験を行っ
た。腐食試験後の試験片表面にはノジュラ腐食の発生は
なく、試験片の水素量は40ppm前後であり高い耐食
性と低水素吸収の燃料被覆管であることがわかった。
After pickling the surface with a solution consisting of hydrofluoric acid, nitric acid and water, neutralizing it and washing it with water, a test piece with a length of 50+wn+ was cut out and heated at 410°C for 8 hours at 510°C for 16 hours at 105 kg/
A corrosion test was conducted in which the specimen was kept in circulating steam at a pressure of It turned out to be a fuel cladding tube.

〈実施例3〉 第9図は、Sn1.4〜1.6wt%、FeO,25〜
0.3wt%* Cr O−07〜0 、1 w t%
のインゴットを使用しスペーサを製造した加工および熱
処理プロセスを示す、スペーサは第10図に示すように
スペーサバンド10、格子状スペーサバー11.スペー
サデバイダ12およびスペーサスプリング13からなり
各格子点はTIG溶接されている。
<Example 3> Figure 9 shows Sn1.4~1.6wt%, FeO, 25~
0.3 wt%* Cr O-07~0, 1 wt%
The spacer has a spacer band 10, a lattice spacer bar 11. as shown in FIG. It consists of a spacer divider 12 and a spacer spring 13, and each grid point is TIG welded.

上記インゴットは熱間鍛造、βクエンチおよび熱間圧延
により板厚2+amの板とした。熱間圧延と中間焼なま
しは2回繰返し焼なまし温度は700℃とした。その後
、冷間圧延と焼なましとを交互に2回繰返し板厚0.7
8m+oとした。各焼なまし温度は600℃および57
7℃である。スペーサバンドはプレス加工により、第1
回に示すようなディンプルを有する形状にした。その後
、スペーサバンドおよびスペーサバーとを格子状に組合
せTIG溶接した。このスペーサの一部を切り出し〈実
施例2〉で述べたと同様な腐食試験を行ったところ、ノ
ジュラ腐食は発生せず、かつ水素吸収量は40Ppm以
下であることが確認された。
The above ingot was made into a plate having a thickness of 2+am by hot forging, β quenching, and hot rolling. Hot rolling and intermediate annealing were repeated twice at an annealing temperature of 700°C. After that, cold rolling and annealing were repeated twice alternately to obtain a plate thickness of 0.7
It was set to 8m+o. Each annealing temperature is 600℃ and 57℃
It is 7℃. The spacer band is pressed into the first
The shape was made to have dimples as shown in Figure 3. Thereafter, the spacer band and spacer bar were combined in a grid pattern and TIG welded. When a part of this spacer was cut out and subjected to a corrosion test similar to that described in Example 2, it was confirmed that no nodular corrosion occurred and the amount of hydrogen absorbed was 40 Ppm or less.

〈実施例4〉 第11図は、チャンネルボックスの製造プロセスを示す
、アーク溶解インゴットの組成は、Sn1 、6〜1 
、7 w t%、Fso、3〜0.32wt%、Cr0
.09〜0.11wt%である。インゴットは1050
℃での鍛造を2回繰返し、厚さ25鳳閣のスラブとした
。 1030℃でβクエンチし熱間圧延と焼なましとを
交互に2回繰返し板厚6mmとした。
<Example 4> FIG. 11 shows the manufacturing process of a channel box. The composition of the arc melting ingot is Sn1, 6 to 1.
, 7 wt%, Fso, 3-0.32 wt%, Cr0
.. 09 to 0.11 wt%. Ingot is 1050
The forging at ℃ was repeated twice to obtain a slab with a thickness of 25 mm. β-quenching was performed at 1030° C., and hot rolling and annealing were alternately repeated twice to obtain a plate thickness of 6 mm.

焼なまし温度は700℃である。その後冷間圧延と焼な
ましとを交互に3回繰返し板厚2 、1 m+aとした
。焼なまし温度は600℃とした。板はコの字形に曲げ
加工し、2個のコの字状の部材をプラズマ溶接して角筒
状とした。このチャンネルボックスより切り出した試験
片を切り出し〈実施例2〉と同様な腐食試験を行ったと
ころ、〈実施例2および3〉と同様、低水素吸収、高耐
食であることを確認した。
The annealing temperature is 700°C. Thereafter, cold rolling and annealing were repeated three times alternately until the plate thickness was 2.1 m+a. The annealing temperature was 600°C. The plate was bent into a U-shape, and two U-shaped members were plasma welded to form a rectangular cylinder. A test piece cut out from this channel box was cut out and subjected to the same corrosion test as in Example 2. As in Examples 2 and 3, it was confirmed that it had low hydrogen absorption and high corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、耐食性の優れかつ水素吸収量の少ない
ジルコニウム合金部材の製造が可能とな可能となる。
According to the present invention, it is possible to manufacture a zirconium alloy member that has excellent corrosion resistance and a small amount of hydrogen absorption.

またジルコニウム合金部材の製造プロセスにおいても、
熱処理温辰を比it的自由に選定できるので、その製造
が容易になる効果を有する。さらに本発明により製造さ
れた合金は中性子吸収断面積も従来のジルカロイ−2材
およびジルカロイ−4材と同等であり発電効率も低下し
ないという特性を有している。
Also, in the manufacturing process of zirconium alloy parts,
Since the heat treatment temperature can be selected freely, the manufacturing process is facilitated. Furthermore, the alloy produced according to the present invention has the characteristics that the neutron absorption cross section is equivalent to that of conventional Zircaloy-2 and Zircaloy-4 materials, and the power generation efficiency does not decrease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料バンドルを示す図、第2図は酸化膜中の酸
素拡散のメカニズムを示す図、第3図は耐食性に及ぼす
合金組成の、影響を示す線図、第4図はジルコニウム合
金の製造プロセス図、第5図〜第7図は水素吸収に及ぼ
す合金元素および熱処理の影響、第8図は燃料被覆管の
製造プロセス図、第9図はスペーサの製造プロセス図、
第10図はスペーサを示す図、第11図はチャンネルボ
ックスの製造プロセス図を示す。 1・・・燃料被覆管、2・・・チャンネルボックス、3
・・・スペーサ、4・・・ウォーターロッド、5・・・
燃料バンドル、10・・・スペーサバンド、11・・・
スペーサバー、12・・・スペーサデバイダ−113・
・・スペーサスプリング。
Figure 1 is a diagram showing the fuel bundle, Figure 2 is a diagram showing the mechanism of oxygen diffusion in the oxide film, Figure 3 is a diagram showing the influence of alloy composition on corrosion resistance, and Figure 4 is a diagram showing the effect of zirconium alloy on corrosion resistance. Manufacturing process diagrams, Figures 5 to 7 are effects of alloying elements and heat treatment on hydrogen absorption, Figure 8 is a manufacturing process diagram of fuel cladding tubes, Figure 9 is a manufacturing process diagram of spacers,
FIG. 10 shows a spacer, and FIG. 11 shows a manufacturing process diagram of a channel box. 1...Fuel cladding tube, 2...Channel box, 3
...Spacer, 4...Water rod, 5...
Fuel bundle, 10... Spacer band, 11...
Spacer bar, 12...Spacer divider-113.
・Spacer spring.

Claims (1)

【特許請求の範囲】 1、Sn1.0〜2.0wt%、Fe0.25〜0.5
wt%を含み残部実質的にジルコニウムからなる合金イ
ンゴットを溶体化処理した後、熱間加工および焼なまし
を施す工程と、その後冷間加工とα相温度範囲での焼な
ましとを交互に複数回くり返し施す工程とを有するジル
コニウム基合金部材の製造方法において、前記冷間加工
後の焼なましのうち少なくとも1回は670℃以上の温
度で行うことを特徴とするジルコニウム基合金部材の製
造方法。 2、Sn1.0〜2.0wt%、Fe0.25〜0.5
wt%、Cr0.05〜0.15wt%を含み、残部実
質的にジルコニウムからなる合金インゴットを溶体化処
理した後、熱間加工および焼なましを施す工程と、その
後冷間加工とα相温度範囲での焼なましとを交互に複数
回くり返す工程とを有するジルコニウム基合金の製造方
法において、前記冷間加工後の焼なましのうち少なくと
も1回は670℃以上の温度で行うことを特徴とするジ
ルコニウム基合金部材の製造方法。 3、Sn1.0〜2.0wt%、Cr0.05〜0.1
5wt%、(1)式および(2)式を満足するFeおよ
びNiを含み、残部実質的にジルコニウムからなる合金
インゴットを溶体化処理した後、熱間加工および焼なま
しを施す工程と、その後冷間加工とα相温度範囲での焼
なましとを交互に複数回くり返し施す工程とを有するジ
ルコニウム基合金部材の製造方法において、前記冷間加
工後の焼なましのうち少なくとも1回は670℃以上の
温度で行うことを特徴とするジルコニウム基合金部材の
製造方法。 0.15・xFe+0.25・xNi≧0.0375・
・・(1) xNi≦0.05・・・(2) ただし、xFe:鉄含有量(wt%) xNi:ニッケル含有量(wt%)
[Claims] 1. Sn1.0-2.0wt%, Fe0.25-0.5
wt% and the remainder substantially consisting of zirconium, the alloy ingot is solution-treated and then subjected to hot working and annealing, followed by alternating cold working and annealing in the alpha phase temperature range. A method for manufacturing a zirconium-based alloy member comprising a step of repeating the cold working a plurality of times, wherein at least one of the annealing after cold working is performed at a temperature of 670° C. or higher. Method. 2, Sn1.0-2.0wt%, Fe0.25-0.5
wt%, Cr0.05 to 0.15wt%, and the remainder substantially consists of zirconium, after solution treatment, hot working and annealing, followed by cold working and α phase temperature. In the method for manufacturing a zirconium-based alloy, the method includes a step of alternately repeating annealing in a range of 1 to 300°C multiple times, wherein at least one of the annealing after cold working is performed at a temperature of 670 ° C. or higher. A method for manufacturing a zirconium-based alloy member. 3, Sn1.0-2.0wt%, Cr0.05-0.1
5 wt%, containing Fe and Ni satisfying formulas (1) and (2), and the remainder substantially consisting of zirconium, after solution treatment, hot working and annealing; In a method for producing a zirconium-based alloy member, the method includes the steps of alternately repeating cold working and annealing in an α-phase temperature range multiple times, wherein at least one of the annealing after cold working is performed at 670° C. A method for manufacturing a zirconium-based alloy member, characterized in that the manufacturing method is carried out at a temperature of ℃ or higher. 0.15・xFe+0.25・xNi≧0.0375・
...(1) xNi≦0.05...(2) However, xFe: iron content (wt%) xNi: nickel content (wt%)
JP17901485A 1985-08-14 1985-08-14 Manufacture of zirconium base alloy member Pending JPS6240349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17901485A JPS6240349A (en) 1985-08-14 1985-08-14 Manufacture of zirconium base alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17901485A JPS6240349A (en) 1985-08-14 1985-08-14 Manufacture of zirconium base alloy member

Publications (1)

Publication Number Publication Date
JPS6240349A true JPS6240349A (en) 1987-02-21

Family

ID=16058607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17901485A Pending JPS6240349A (en) 1985-08-14 1985-08-14 Manufacture of zirconium base alloy member

Country Status (1)

Country Link
JP (1) JPS6240349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619450B2 (en) 2000-03-29 2003-09-16 Honda Giken Kogyo Kabushiki Kaisha Transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950160A (en) * 1982-09-17 1984-03-23 Toshiba Corp Internal structural material for nuclear reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950160A (en) * 1982-09-17 1984-03-23 Toshiba Corp Internal structural material for nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619450B2 (en) 2000-03-29 2003-09-16 Honda Giken Kogyo Kabushiki Kaisha Transmission

Similar Documents

Publication Publication Date Title
EP0227989B1 (en) Zirconium-based alloy with high corrosion resistance
JP2914457B2 (en) ZIRLO type material
US6261516B1 (en) Niobium-containing zirconium alloy for nuclear fuel claddings
US20100128834A1 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
US6544361B1 (en) Process for manufacturing thin components made of zirconium-based alloy and straps thus produced
KR101378066B1 (en) Zirconium alloys for nuclear fuel cladding, having a superior corrosion resistance by reducing the amount of alloying elements, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
JP4417378B2 (en) Zirconium alloy and structural member for core of light water cooled reactor
JPH08240673A (en) Zirconium-based alloy tube for nuclear fuel aggregate and its manufacture
JP6535752B2 (en) Manufacturing method of zirconium component for nuclear fuel applying multistage hot rolling
JPH01119650A (en) Manufacture of channel box for nuclear reactor fuel assembly
KR101929608B1 (en) Zirconium based alloy article with improved corrosion/creep resistance due to final heat treatments and making method thwewof
US10221475B2 (en) Zirconium alloys with improved corrosion/creep resistance
US9284629B2 (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
JPS6240349A (en) Manufacture of zirconium base alloy member
KR20080065749A (en) Zirconium alloys having excellent resistance property in both water and steam reaction
JPS6126738A (en) Zirconium alloy
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
JP2600057B2 (en) Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same
JP2770777B2 (en) High corrosion resistant and low hydrogen absorbing zirconium-based alloy and method for producing the same
JP2790138B2 (en) Cladding tubes, spacers and channel boxes for highly corrosion resistant nuclear fuels, their fuel assemblies, and their manufacturing methods
KR20130098621A (en) Zirconium alloys for nuclear fuel cladding, having a superior oxidation resistance in a severe reactor operation conditions, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
JPS6196048A (en) Zirconium-base alloy and fuel assembly
JPS60255945A (en) Zirconium base alloy
JPS61174347A (en) Nodular corrosion resisting zirconium-base alloy
JPH01116057A (en) Manufacture of nuclear reactor spacer