JPS6239308B2 - - Google Patents

Info

Publication number
JPS6239308B2
JPS6239308B2 JP15274582A JP15274582A JPS6239308B2 JP S6239308 B2 JPS6239308 B2 JP S6239308B2 JP 15274582 A JP15274582 A JP 15274582A JP 15274582 A JP15274582 A JP 15274582A JP S6239308 B2 JPS6239308 B2 JP S6239308B2
Authority
JP
Japan
Prior art keywords
seal
ring
seal ring
peripheral end
dam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15274582A
Other languages
Japanese (ja)
Other versions
JPS5943266A (en
Inventor
Tadashi Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IIGURU KOGYO KK
Original Assignee
IIGURU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IIGURU KOGYO KK filed Critical IIGURU KOGYO KK
Priority to JP15274582A priority Critical patent/JPS5943266A/en
Publication of JPS5943266A publication Critical patent/JPS5943266A/en
Publication of JPS6239308B2 publication Critical patent/JPS6239308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)

Description

【発明の詳細な説明】 本発明は「ハイブリツド・軸シール」に係り、
いわゆる非接触型のメカニカルシールにあつてシ
ール部に生じる流体(シール流体)の静圧効果と
動圧効果の混合作用(ハイブリツド作用)を利用
する軸シールの構造に関するものである。
[Detailed Description of the Invention] The present invention relates to a "hybrid shaft seal",
This invention relates to the structure of a shaft seal, which is a so-called non-contact type mechanical seal, and utilizes the mixed effect (hybrid effect) of the static pressure effect and dynamic pressure effect of a fluid (seal fluid) generated in a seal portion.

以下、本発明の一実施例を図面にしたがつて説
明すると、第1図は本発明ハイブリツド・軸シー
ルの装着状態を示し、各種回転シール機器(たと
えばポンプ機器)のハウジング1の軸孔2内周面
に形成した環状凹部3内であり、かつ前記軸孔2
に内挿した回転軸4外周に当該ハイブリツド・軸
シールが装着されてなる。5は前記回転軸4外周
に嵌着された回転側保持環であり、該保持環5後
端面(図中左側)に形成した環状溝6内に断面矩
形状になる回転側シールリング7が嵌着されてい
る。前記環状溝6は図中右側に位置する溝底面に
段部を設けて外周寄りに空隙8を有し、該空隙8
内にOリング9が嵌着されている。該Oリング9
は前記回転側シールリング7の受圧面積を調整す
るものである。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. Fig. 1 shows the installed state of the hybrid shaft seal of the present invention, which is shown inside the shaft hole 2 of the housing 1 of various rotary seal devices (for example, pump devices). It is within the annular recess 3 formed on the circumferential surface and within the shaft hole 2.
The hybrid shaft seal is attached to the outer periphery of the rotating shaft 4 inserted into the shaft. Reference numeral 5 denotes a rotation side holding ring fitted around the outer periphery of the rotating shaft 4, and a rotation side seal ring 7 having a rectangular cross section is fitted into an annular groove 6 formed on the rear end surface of the holding ring 5 (on the left side in the figure). It is worn. The annular groove 6 has a stepped portion on the bottom surface of the groove located on the right side in the figure, and has a gap 8 near the outer periphery.
An O-ring 9 is fitted inside. The O-ring 9
is for adjusting the pressure receiving area of the rotary side seal ring 7.

また10は、前記ハウジング1から内径方向に
突出する隔壁11の筒部12外周に対し、前端外
周寄りに形成した環状の突出部13を外挿状態に
嵌合した固定側保持環であり、該固定側保持環1
0前端面に形成した環状溝14内に後記形状にな
る固定側シールリング15が嵌着されている。前
記環状溝14は図中左側に位置する溝底面に段部
を設けて外周寄りに空隙16を有し、該空隙16
内にOリング17が嵌着されている。該Oリング
17は前記固定側シールリング15の受圧面積を
調整するものである。また前記固定側保持環10
は図中矢示Aするごとく羽根車18側から機器内
に侵入するシール流体の圧力によつて軸方向に移
動するようになり、該突出部13とハウジング1
の筒部12間には該部シール用のOリング19が
介挿されている。
Reference numeral 10 denotes a fixed side holding ring in which an annular protrusion 13 formed near the outer periphery of the front end is fitted onto the outer periphery of the cylindrical portion 12 of the partition wall 11 radially inwardly protruding from the housing 1; Fixed side retaining ring 1
A fixed side seal ring 15 having a shape described later is fitted into an annular groove 14 formed on the front end surface. The annular groove 14 has a stepped portion on the bottom surface of the groove located on the left side in the figure, and has a gap 16 near the outer periphery.
An O-ring 17 is fitted inside. The O-ring 17 is used to adjust the pressure receiving area of the stationary seal ring 15. Further, the fixed side retaining ring 10
is moved in the axial direction by the pressure of the sealing fluid that enters the device from the impeller 18 side, as shown by arrow A in the figure, and the protrusion 13 and the housing 1
An O-ring 19 for sealing the cylindrical portion 12 is inserted between the cylindrical portions 12 .

前記固定側シールリング15は、第2図ないし
第4図に示すように、前記回転側シールリング7
と対向するシール面20形状において、該シール
面20の内周端に環状を呈する高床部21が形成
され、該高床部21から外周端にかけて8本のシ
ールダム部22…が等配状に形成されてなる。前
記高床部21の一部と互いに隣り合うシールダム
部22,22によつて三方を囲まれる部分は外周
端に向かつて漸次、下降傾斜するテーパ面23…
に形成されるとともに、その周方向において当該
固定側シールリング15の前記回転側シールリン
グ7に対する相対的な回転方向Bに対して後方に
位置するシールダム部22から同じく前方に位置
するシールダム部22に向かつて漸次下降傾斜す
るテーパ状にも形成されている。また前記シール
ダム22…もきわめてわずかに外周端に向かつて
下降傾斜するように形成されている。第3図イな
いしニはこの半径方向の傾斜角度差を示すもの
で、 θ>θ>θ>θ θ←第1図中a−a線傾斜角 θ←第1図中b−b線傾斜角 θ←第1図中c−c線傾斜角 θ←第1図中d−d線傾斜角 となり、実寸上、シール面20の半径方向の幅W
を約8〜約88mmとする固定側シールリング15に
おいて前記高床面21からの高底差h1…h4は、 h1=約5μm h2=約25μm h3=約10μm h4=約7μm である。
As shown in FIGS. 2 to 4, the stationary side seal ring 15 is connected to the rotating side seal ring 7.
In the shape of the sealing surface 20 facing the sealing surface 20, an annular raised floor portion 21 is formed at the inner peripheral end of the sealing surface 20, and eight seal dam portions 22 are formed equidistantly from the raised floor portion 21 to the outer peripheral end. It becomes. A portion surrounded on three sides by a part of the raised floor portion 21 and the adjacent shield dam portions 22, 22 has a tapered surface 23 that gradually slopes downward toward the outer peripheral end.
, and in the circumferential direction from the seal dam part 22 located at the rear with respect to the rotation direction B of the stationary side seal ring 15 relative to the rotary side seal ring 7 to the seal dam part 22 also located at the front. It is also formed in a tapered shape that gradually slopes downward in the direction. Further, the shield dam 22 is also formed to be very slightly inclined downward toward the outer peripheral end. Figure 3 A to D show the inclination angle difference in the radial direction. θ 2 > θ 3 > θ 4 > θ 1 θ 1 ←Inclination angle on line a-a in Figure 1 θ 2 ←In Figure 1 bb-line inclination angle θ 3 ← c-c line inclination angle in Fig. 1 θ 4 ← d-d line inclination angle in Fig. 1, and in actual size, the radial width W of the sealing surface 20
The height difference h 1 ...h 4 from the raised floor surface 21 in the fixed side seal ring 15 where the distance is approximately 8 to approximately 88 mm is as follows: h 1 = approximately 5 μm h 2 = approximately 25 μm h 3 = approximately 10 μm h 4 = approximately 7 μm It is.

上記構成のハイブリツド・軸シールにおいて回
転側シールリング7が回転軸4に従動して回転す
る一方(矢示c方向)、シール流体(矢示A)が
当該軸のシールのシール部まで侵入すると、該シ
ール流体は、固定側シールリング15と回転側シ
ールリング7との対向端面間に形成されるシール
部が前記固定側シールリング15に形成されたテ
ーパ面23…によつて半径方向に「先細通路」に
なるため、該ギヤツプ部に侵入したシール流体の
静圧の圧力分布を構成する。このシール部の負荷
能力が、前記固定側シールリング15背面に作用
するシール流体による押圧力(閉鎖力、P)より
大なる場合は固定側シールリング15は軸方向後
方(図中左側)に押し離され、前記シール部にお
けるシール流体の半径方向流速は、より大きくな
り、これによつて前記ギヤツプ部間圧力は減圧さ
れ、負荷能力が減小して相対的に前記閉鎖力は大
きくなる。この結果、固定側シールリング15は
軸方向前方(図中右側)に押し戻され、ギヤツプ
部間の圧力分布は高圧化し、上記両作動による平
衡点における静圧がシール効果を奏するようにな
る。
In the hybrid shaft seal having the above configuration, while the rotating side seal ring 7 rotates following the rotating shaft 4 (in the direction of arrow c), when the sealing fluid (arrow A) enters the sealing part of the seal of the shaft, The sealing fluid is radially tapered by the tapered surfaces 23 formed on the stationary seal ring 15 so that the seal portion formed between the opposing end faces of the stationary seal ring 15 and the rotating seal ring 7 is radially tapered. This creates a static pressure distribution for the sealing fluid that has entered the gap. If the load capacity of this seal portion is larger than the pressing force (closing force, P) by the sealing fluid acting on the back surface of the stationary side seal ring 15, the stationary side seal ring 15 will be pushed axially rearward (to the left in the figure). As they are separated, the radial flow velocity of the sealing fluid in the sealing portion becomes larger, thereby reducing the pressure between the gap portions, reducing the load capacity and relatively increasing the closing force. As a result, the stationary seal ring 15 is pushed back axially forward (to the right in the figure), the pressure distribution between the gap portions becomes high, and the static pressure at the equilibrium point due to both of the above operations produces a sealing effect.

また、上記のように固定側シールリング15の
テーパ面23は周方向にも傾斜してなり、これに
より生ずる動圧が前記静圧上に重畳されるように
なる。すなわち、第5図はこの動圧と静圧の関係
を示し、前記テーパ面23に形成される周方向の
傾斜に対するシール流体の粘性ポンプ作用によつ
て動圧がもたらされる。該動圧は、第6図に示す
ように、回転軸4の偏心等により回転側シールリ
ング7が当該固定側シールリング15に対して傾
いた場合、ギヤツプの自乗に反比例するものであ
るため、両リング7,15がとくに近接した部分
で鋭く立ち上がり、該部とおよそ180度対称位置
のギヤツプの大きな部分ではあまり生じない。し
たがつて両リング7,15を平行に保つべく補正
モーメントが働き、アンギユラ剛性によつて追従
動作を行ない、前記静圧と相俟つてシール効果に
貢献するようになる。この際、当該固定側シール
リング15には上記シールダム部22がシール部
を半径方向に横切るように形成されているため、
前記両リング7,15の近接する部分に生じた動
圧が対称部位たる低圧部に流れることがなく、前
記アンギユラ剛性を高くとることができ、優れた
追従動作を得、シール効果を高めることができ
る。またこの追従動作は、回転軸4の回転数にお
いて高周波域にあつても失われることがない。
Further, as described above, the tapered surface 23 of the stationary seal ring 15 is also inclined in the circumferential direction, and the dynamic pressure generated thereby is superimposed on the static pressure. That is, FIG. 5 shows the relationship between this dynamic pressure and static pressure, and the dynamic pressure is brought about by the viscous pumping action of the sealing fluid on the circumferential inclination formed on the tapered surface 23. The dynamic pressure is inversely proportional to the square of the gap when the rotating seal ring 7 is tilted with respect to the stationary seal ring 15 due to eccentricity of the rotating shaft 4, etc., as shown in FIG. The two rings 7, 15 stand up sharply especially in the close part, and rarely in the large part of the gap which is approximately 180 degrees symmetrical to the said part. Therefore, a correction moment acts to keep both rings 7, 15 parallel, and the angular rigidity causes a follow-up action, which, together with the static pressure, contributes to the sealing effect. At this time, since the seal dam part 22 is formed in the fixed side seal ring 15 so as to cross the seal part in the radial direction,
The dynamic pressure generated in the adjacent parts of both rings 7 and 15 does not flow to the symmetrical low pressure part, and the angular rigidity can be increased, excellent follow-up action can be obtained, and the sealing effect can be enhanced. can. Moreover, this following operation is not lost even when the rotational speed of the rotating shaft 4 is in a high frequency range.

本発明は、以上説明したように、上記固定側シ
ールリングのシール面形状において、該シール面
の内周端もしくは外周端にいずれか一方に環状を
呈する高床部を形成し、該高床部から前記他方の
周端に至る複数のシールダム部を形成し、前記高
床部および互いに隣り合うシールダム部によつて
三方を囲まれる部分を前記他方の周端に向かつて
下降傾斜するテーパ面に形成するとともに、該テ
ーパ面を一方のシールダム部から他方のシールダ
ム部に向かつて下降傾斜するテーパ状にも形成し
てなり、該固定側シールリングと回転側シールリ
ング間の半径方向の先細通路に生じる静圧効果
と、前記シールダム部にて仕切られる分割シール
面における周方向のテーパ面に生じる動圧効果の
両者を利用し、そのハイブリツド作用によつて流
体シールをなすものであり、両者重畳による圧力
増はもとより回転軸の傾きに対して優れた追従動
作を示し得るものであつてシール洩れ量の減少に
頗る貢献できる。
As explained above, in the sealing surface shape of the stationary side seal ring, the present invention forms an annular raised part at either the inner peripheral end or the outer peripheral end of the sealing face, and from the raised part to the forming a plurality of shield dam portions reaching the other peripheral end, and forming a portion surrounded on three sides by the raised floor portion and the mutually adjacent shield dam portions into a tapered surface that slopes downward toward the other peripheral end; The tapered surface is also formed in a tapered shape that slopes downward from one seal dam part to the other seal dam part, and the static pressure effect generated in the radial tapered passage between the stationary side seal ring and the rotating side seal ring. This system utilizes both the dynamic pressure effect generated on the circumferentially tapered surface of the divided seal surface partitioned by the seal dam part, and creates a fluid seal by the hybrid action of the two. It can exhibit excellent follow-up action to the inclination of the rotating shaft, and can significantly contribute to reducing the amount of seal leakage.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明ハイブリツド・軸シールの一実施
例を示し、第1図は当該軸シールを装着した状態
を示す半裁正断面図、第2図は固定側シールリン
グのシール面の正面図、第3図イは第2図におけ
るa−a線断面図、第3図ロは第2図におけるb
−b線断面図、第3図ハは第2図におけるc−c
線断面図、第3図ニは第2図におけるd−d線断
面図、第4図は固定側シールリングの部分斜視
図、第5図は第2図におけるe−e線断面図を描
き、その圧力分布を示した説明図、第6図は固定
側シールリングと回転側シールリングの傾き状態
を示す説明図である。 1…ハウジング、2…軸孔、3…環状凹部、4
…回転軸、5…回転側保持環、6,14…環状
溝、7…回転側シールリング、8,16…空隙、
9,17,19…Oリング、10…固定側保持
環、11…隔壁、12…筒部、13…突出部、1
5…固定側シールリング、18…羽根車、20…
シール面、21…高床部、22…シールダム部、
23…テーパ面。
The drawings show an embodiment of the hybrid shaft seal of the present invention; FIG. 1 is a half-cut sectional view showing the shaft seal installed, FIG. 2 is a front view of the sealing surface of the fixed seal ring, and FIG. Figure A is a sectional view taken along line a-a in Figure 2, Figure 3 B is b in Figure 2.
-b cross-sectional view, Figure 3 C is c-c in Figure 2
3D is a sectional view taken along line dd in FIG. 2, FIG. 4 is a partial perspective view of the stationary side seal ring, and FIG. 5 is a sectional view taken along line ee in FIG. FIG. 6 is an explanatory diagram showing the pressure distribution, and FIG. 6 is an explanatory diagram showing the tilted state of the stationary side seal ring and the rotating side seal ring. 1... Housing, 2... Shaft hole, 3... Annular recess, 4
... Rotating shaft, 5... Rotating side holding ring, 6, 14... Annular groove, 7... Rotating side seal ring, 8, 16... Gap,
9, 17, 19... O ring, 10... Fixed side holding ring, 11... Partition wall, 12... Cylinder part, 13... Projection part, 1
5... Fixed side seal ring, 18... Impeller, 20...
Seal surface, 21... raised floor part, 22... seal dam part,
23...Tapered surface.

Claims (1)

【特許請求の範囲】[Claims] 1 各種回転シール機器のハウジング側に流体圧
によつて軸方向に移動可能に装着される固定側シ
ールリングと、前記ハウジングの軸孔に内挿した
回転軸に固定され、かつこれに従動する回転側シ
ールリングとの対向端面が非接触状態にて流体シ
ールをなす軸シールにおいて、前記固定側シール
リングのシール面形状に関し、該シール面の内周
端もしくは外周端のいずれか一方に環状を呈する
高床部を形成し、該高床部から前記他方の周端に
至る複数のシールダム部を形成し、前記高床部お
よび互いに隣り合うシールダム部によつて三方を
囲まれる部分を前記他方の周端に向かつて下降傾
斜するテーパ面に形成するとともに、該テーパ面
を一方のシールダム部から他方のシールダム部に
向かつて下降傾斜するテーパ状にも形成してなる
ことを特徴とするハイブリツド・軸シール。
1. A fixed side seal ring that is mounted on the housing side of various rotary seal devices so as to be movable in the axial direction by fluid pressure, and a rotating ring that is fixed to and driven by a rotating shaft inserted into the shaft hole of the housing. In a shaft seal whose end face facing a side seal ring forms a fluid seal in a non-contact state, the shape of the seal surface of the stationary side seal ring is annular at either the inner peripheral end or the outer peripheral end of the seal face. forming a raised bed part, forming a plurality of seal dam parts extending from the raised bed part to the other peripheral end, and directing a portion surrounded on three sides by the raised bed part and the mutually adjacent shield dam parts toward the other peripheral end; A hybrid shaft seal characterized in that it is formed in a tapered surface that slopes downward, and that the tapered surface is also formed in a tapered shape that slopes downward from one seal dam part to the other seal dam part.
JP15274582A 1982-09-03 1982-09-03 Hybrid shaft seal Granted JPS5943266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15274582A JPS5943266A (en) 1982-09-03 1982-09-03 Hybrid shaft seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15274582A JPS5943266A (en) 1982-09-03 1982-09-03 Hybrid shaft seal

Publications (2)

Publication Number Publication Date
JPS5943266A JPS5943266A (en) 1984-03-10
JPS6239308B2 true JPS6239308B2 (en) 1987-08-21

Family

ID=15547230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15274582A Granted JPS5943266A (en) 1982-09-03 1982-09-03 Hybrid shaft seal

Country Status (1)

Country Link
JP (1) JPS5943266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221227A1 (en) * 2018-05-17 2019-11-21 イーグル工業株式会社 Seal ring

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2179409A (en) * 1985-08-20 1987-03-04 Angus George Co Ltd Face seal with pumping action
EP4191098A1 (en) * 2016-12-07 2023-06-07 Eagle Industry Co., Ltd. Sliding component
WO2022173892A1 (en) * 2021-02-12 2022-08-18 Parker-Hannifin Corporation Hybrid shaft seal assembly for movable shafts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221227A1 (en) * 2018-05-17 2019-11-21 イーグル工業株式会社 Seal ring

Also Published As

Publication number Publication date
JPS5943266A (en) 1984-03-10

Similar Documents

Publication Publication Date Title
EP0469379B1 (en) Non-contacting, gap-type seal having a ring with a patterned microdam seal face
JP2916318B2 (en) Mechanical face seal
US4906009A (en) Sealing apparatus
JP2612062B2 (en) Rotary shaft bearing insulation seal
US3606351A (en) Seal for circular slots
KR950006286A (en) Mechanical cotton seal
KR950001151A (en) Mechanical cotton seal
CN101239492B (en) Method for processing forming mould
JPH0681964A (en) Mechanical face seal
JPH0626365A (en) Seal ring for gas turbine-engine
JPH0660691B2 (en) Double rotation type semi-contact mechanical seal and groove machining method for ring sliding surface
JPS6239308B2 (en)
US3512854A (en) Low friction thrust bearing
EP0089698A3 (en) Hydrodynamic non-contacting seal for rotary machines
US3738667A (en) Self-energizing face seals
JPS6199717A (en) Bearing device
JPH06117432A (en) Two-way dynamic pressure fluid bearing
JPH04272581A (en) Non-contact type sealing device
JPH0714697Y2 (en) Non-contact sealing device
WO2022044956A1 (en) Sealing device
JP3134088B2 (en) Seal of rotating body and sealing method
JPH073099Y2 (en) Gas seal
JPH0426661Y2 (en)
JPH0515652Y2 (en)
JPH0446147Y2 (en)