JPS6239092Y2 - - Google Patents

Info

Publication number
JPS6239092Y2
JPS6239092Y2 JP1983062492U JP6249283U JPS6239092Y2 JP S6239092 Y2 JPS6239092 Y2 JP S6239092Y2 JP 1983062492 U JP1983062492 U JP 1983062492U JP 6249283 U JP6249283 U JP 6249283U JP S6239092 Y2 JPS6239092 Y2 JP S6239092Y2
Authority
JP
Japan
Prior art keywords
anode
cathode
chamber
cation exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983062492U
Other languages
Japanese (ja)
Other versions
JPS59169360U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983062492U priority Critical patent/JPS59169360U/en
Publication of JPS59169360U publication Critical patent/JPS59169360U/en
Application granted granted Critical
Publication of JPS6239092Y2 publication Critical patent/JPS6239092Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【考案の詳細な説明】 本考案は主としてアルカリ金属ハロゲン化物水
溶液、特に塩化アルカリ塩水溶液の電解槽に関す
る。更に詳しくは水銀電解槽から転換された水平
型陽イオン交換膜電解槽の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to an electrolytic cell for an aqueous alkali metal halide solution, particularly an aqueous alkali chloride solution. More specifically, the present invention relates to improvements in horizontal cation exchange membrane electrolyzers converted from mercury electrolyzers.

水銀法電解槽は比較的高濃度の水酸化ナトリウ
ム溶液が得られるので、これまで広く利用されて
きた、しかし乍ら陰極に用いる水銀が環境汚染物
質であるため、近い将来休止されるべき運命にあ
る。ところで従来広く活用されてきた水銀法電解
槽及び附帯装置を悉くスクラツプ化することは経
済的、産業政策的見地から得策とはいえず、一方
当業界側にとつても極めて深刻な問題である。か
かる状況下において、水銀法電解槽及び附帯設備
をスクラツプ化することなく、他の安全な電解方
法に転換することは極めて望ましいことである。
The mercury method electrolyzer has been widely used since it can produce a relatively highly concentrated sodium hydroxide solution, but since the mercury used in the cathode is an environmental pollutant, it is destined to be discontinued in the near future. be. However, scrapping all of the mercury electrolyzers and ancillary equipment that have been widely used in the past is not a good idea from an economic or industrial policy standpoint, and is also an extremely serious problem for the industry. Under such circumstances, it is extremely desirable to convert to other safe electrolysis methods without scrapping the mercury electrolyzer and its ancillary equipment.

かかる見地から、本出願人は鋭意研究を進め、
水銀法電解槽を有利に陽イオン交換膜法電解槽に
転換し得る技術を開発し、先に特許出願を行つた
(特願昭57−131377号)。
From this perspective, the applicant is conducting earnest research,
We developed a technology that could advantageously convert a mercury method electrolyzer into a cation exchange membrane method electrolyzer, and filed a patent application (Japanese Patent Application No. 131377-1982).

しかし、引き続いて研究する過程で水銀法電解
槽底板を陰極とし、陽イオン交換膜を隔膜として
用い電解するに当り、従来水銀法に用いられてい
る陽極は開口部が大きすぎ、ミクロな電流密度分
布にバラツキがあり、理論的電圧よりも高くなる
事が明らかとなつた。また、陰極室で発生した水
素ガスが陰極板若しくは陽イオン交換膜下面にい
つまでも付着してIRドロツプを大きくするのを
防止する為には陰極室内での陰極液の流速を或る
程度以上好ましくは8cm/sec以上にし、陰極で
発生した水素ガスを陰極液中に巻き込み、混相流
として陰極室中を流し、電解槽外へ排出させるこ
とが有効であるが、この場合には、膜の陰極室側
より圧力がかかり、膜を陽極開口部に食い込ま
せ、該食い込み部にガスが滞溜する等の問題があ
ることが確認された。
However, in the course of subsequent research, when electrolysis was carried out using the mercury method electrolyzer bottom plate as the cathode and the cation exchange membrane as the diaphragm, the anode conventionally used in the mercury method had a too large aperture, resulting in a microcurrent density. It became clear that there were variations in the distribution and that the voltage was higher than the theoretical voltage. In addition, in order to prevent hydrogen gas generated in the cathode chamber from permanently adhering to the lower surface of the cathode plate or cation exchange membrane and increasing the IR drop, it is preferable to increase the flow rate of the catholyte in the cathode chamber to a certain level or higher. It is effective to set the flow rate to 8 cm/sec or more, to entrain the hydrogen gas generated at the cathode into the catholyte, to flow it through the cathode chamber as a multiphase flow, and to discharge it to the outside of the electrolytic cell. It was confirmed that there was a problem in that pressure was applied from the side, causing the membrane to dig into the anode opening, causing gas to accumulate in the digging part.

本考案はかかる事情に鑑み、これら問題を解決
した電解槽を提供するものである。
In view of these circumstances, the present invention provides an electrolytic cell that solves these problems.

すなわち、本考案は実質的に水平に張設された
陽イオン交換膜により上部の陽極室と下部の陰極
室とに区画され、前記陽極室は開口部の最大径が
約5mm以下若しくは最小径が2mm以下のいずれか
である陽極を有してなり、前記陰極室は水銀法電
解槽の底板からなる陰極板を有してなり、且つ該
陰極室に陰極液導入口及び陰極液と陰極ガスとの
混相流の排出口を具備してなる事を特徴とする電
解槽を内容とするものである。
That is, the present invention is divided into an upper anode chamber and a lower cathode chamber by a cation exchange membrane stretched substantially horizontally, and the anode chamber has an opening with a maximum diameter of about 5 mm or less or a minimum diameter of about 5 mm. 2 mm or less, the cathode chamber has a cathode plate consisting of the bottom plate of a mercury electrolyzer, and the cathode chamber has a catholyte inlet and a catholyte and cathode gas. The electrolytic cell is characterized by being equipped with a multiphase flow outlet.

本考案においては陰極は開口部の無い水銀法底
板を用いる為、陽極板自体の開口部を小さくし電
流密度分布のバラツキを小さくする事により一層
効果的に電槽電圧を下げる事が出来る。
In the present invention, since the cathode uses a mercury bottom plate without an opening, the cell voltage can be lowered more effectively by making the opening in the anode plate smaller and reducing the variation in current density distribution.

したがつて陰極として非多孔性陰極を用いる事
は本考案をより一層効率的に実施しうるものであ
る。
Therefore, using a non-porous cathode as the cathode allows the present invention to be carried out even more efficiently.

又、陽極の開口部を小さくし陽イオン交換膜の
食い込みを小さくする事によつて膜の破損を防ぐ
事が出来る。したがつて、本考案は長寿命で、高
性能な且つ、経済的に水銀法電解槽より転換出来
る陽イオン交換膜電解槽を提供する所のものであ
る。以後、このように小さな開口部を有する陽極
を小開口陽極板と呼ぶ。
Further, by making the opening of the anode smaller and cutting into the cation exchange membrane, damage to the membrane can be prevented. Accordingly, the present invention provides a cation exchange membrane electrolyzer that has a long life, high performance, and can be economically replaced with a mercury method electrolyzer. Hereinafter, an anode having such a small opening will be referred to as a small opening anode plate.

以下、本考案の実施態様を示す図面に基づいて
本考案を説明する。以下の説明において、アルカ
リ金属ハロゲン化物の代表例として最も一般的な
塩化ナトリウムを、またその電解生成物として苛
性ソーダを便宜上用いるが、これらに本考案を限
定する意図ではなく。他の無機塩水溶液や水電解
等にも適用できることは勿論である。
Hereinafter, the present invention will be described based on drawings showing embodiments of the present invention. In the following explanation, the most common sodium chloride is used as a representative example of the alkali metal halide, and caustic soda is used as its electrolytic product for convenience, but the present invention is not intended to be limited to these. Of course, it can also be applied to other inorganic salt aqueous solutions, water electrolysis, etc.

第1図は本考案電解槽正面図、第2〜4図は本
考案に使用出来る陽極形状の具体例である。第5
図は本考案電解槽の他の実施例である。
FIG. 1 is a front view of the electrolytic cell of the present invention, and FIGS. 2 to 4 are specific examples of anode shapes that can be used in the present invention. Fifth
The figure shows another embodiment of the electrolytic cell of the present invention.

第1図において、本考案電解槽は幅に対し長さ
の大なる、好ましくは数倍の長さを有する長方形
の陽極室1とその直下に位置する陰極室2とより
構成され、陽極室1と陰極室2とは実質的に水平
に張設された陽イオン交換膜3によつて区画され
ている。ここで「実質的に水平」とは、必要に応
じて若干傾斜させた場合(例えば2/10程度までの
勾配を付与した場合)をも包含する。
In FIG. 1, the electrolytic cell of the present invention is composed of a rectangular anode chamber 1 whose length is larger than its width, preferably several times the length, and a cathode chamber 2 located directly below the anode chamber 1. and the cathode chamber 2 are partitioned by a cation exchange membrane 3 stretched substantially horizontally. Here, "substantially horizontal" also includes a case where it is slightly inclined as necessary (for example, a case where a slope of up to about 2/10 is applied).

本考案に好適な陽イオン交換膜としては、例え
ば、陽イオン交換基を有するパーフルオロカーボ
ン重合体からなる膜を挙げることができる。スル
ホン酸基あるいはカルボン酸基、あるいは両者を
交換基とするパーフルオロカーボン重合体よりな
る膜は、米国のイー・アイ・デユポン・デ・ニモ
アス・アンド・カンパニー(E.I.Du pont de
Nemours & Company)より商品名「ナフイ
オン」として市販されている。
Examples of cation exchange membranes suitable for the present invention include membranes made of perfluorocarbon polymers having cation exchange groups. Membranes made of perfluorocarbon polymers having sulfonic acid groups, carboxylic acid groups, or both as exchange groups are manufactured by E.I. Dupont de Nimois & Company in the United States.
It is commercially available under the trade name "Nafion" from Nemours & Company.

陽極室1は蓋体4と、陽極板12を囲むように
延設された陽極室側壁5と、陽イオン交換膜3の
上表面とにより画成されており、陽極導電棒6は
蓋体4に立設された陽極懸垂装置7で懸垂され、
各陽極導電棒6は陽極ブスバー8で互いに電気的
に連結されている。蓋体4は陽極導電棒カバー9
を挿通する孔10を有し、該孔10はシート11
により気密にシールされている。陽極導電棒6の
下端には陽極板12が取付けられており、かくし
て陽極板12は陽極懸垂装置7に連結されている
ため、陽極懸垂装置7を操作することにより上下
に昇降調節可能で、陽イオン交換膜3に接触する
よう配置することができる。もつとも陽極板12
は蓋体に立設された陽極懸垂装置から懸垂される
場合に限られず。他の方法により懸垂あるいは支
持されていても差し支えない。さらに陽極室は少
なくとも1個の陽極液導入口13を有しており、
これらは該蓋体4または陽極室側壁5に設けるこ
とができる。一方、陽極液排出口14は少なくと
も1個設けられ、これらは該側壁5に設けること
ができる。また、該蓋体4または該側壁5の適宣
箇所に陽極ガス(塩素ガス)排出口15を備えて
いる。もつとも陽極ガスと陽極液とを混相液とし
て排出し、外部で気液分離する場合は陽極ガス排
出口は省略して良い。
The anode chamber 1 is defined by a lid 4, an anode chamber side wall 5 extending to surround the anode plate 12, and the upper surface of the cation exchange membrane 3, and the anode conductive rod 6 is connected to the lid 4. Suspended by an anode suspension device 7 installed vertically,
The anode conductive rods 6 are electrically connected to each other by an anode bus bar 8. The lid body 4 is an anode conductive rod cover 9
The sheet 11 has a hole 10 through which the sheet 11 is inserted.
is hermetically sealed. An anode plate 12 is attached to the lower end of the anode conductive rod 6, and since the anode plate 12 is connected to the anode suspension device 7, it can be adjusted up and down by operating the anode suspension device 7, and the anode can be adjusted up and down by operating the anode suspension device 7. It can be placed in contact with the ion exchange membrane 3. Motomo anode plate 12
is not limited to the case where it is suspended from an anode suspension device installed upright on the lid. It may also be suspended or supported in other ways. Furthermore, the anode chamber has at least one anolyte inlet 13,
These can be provided on the lid 4 or the side wall 5 of the anode chamber. On the other hand, at least one anolyte outlet 14 is provided, and these can be provided on the side wall 5. Further, an anode gas (chlorine gas) outlet 15 is provided at a suitable location on the lid body 4 or the side wall 5. Of course, if the anode gas and anolyte are discharged as a mixed phase liquid and separated into gas and liquid externally, the anode gas discharge port may be omitted.

上記の陽極室1を構成する蓋体4および陽極室
側壁5としては、水銀法電解槽を構成する蓋体及
び陽極室側壁を転用すれば良いが、このほか塩素
に耐える材質であれば特に制限はなく好適に使用
することができる。例えばチタン及びチタン合金
等の耐塩素金属あるいは、弗素系ポリマー、硬質
ゴム等を使用することができる。さらに上記金
属、弗素系ポリマーまたは硬質ゴム等をライニン
グした鉄を用いることもできる。
As the lid body 4 and the anode chamber side wall 5 that constitute the above-mentioned anode chamber 1, the lid body and the anode chamber side wall that constitute the mercury method electrolyzer may be used, but there are no particular restrictions as long as they are made of materials that can withstand chlorine. It can be used suitably. For example, chlorine-resistant metals such as titanium and titanium alloys, fluorine-based polymers, hard rubber, etc. can be used. Furthermore, iron lined with the above-mentioned metals, fluorine-based polymers, hard rubber, etc. can also be used.

陽極反応を行なう陽極板12は、例えば第2〜
4図に示す形状を有するチタン、タンタルあるい
はニオブのような金属に、例えば白金族金属ある
いは酸化白金族金属又はそれらの混合物を有する
被覆を施した不溶性陽極が好ましい。
The anode plate 12 that performs the anodic reaction is, for example, the second to
An insoluble anode made of a metal such as titanium, tantalum or niobium having the shape shown in FIG. 4 and coated with, for example, a platinum group metal or a platinum group metal oxide or a mixture thereof is preferred.

さらに他の態様として、第5図に示すように水
銀法電解槽に用いられている陽極板を同じ寸法、
同じ形状のままで使用し該陽極板12と陽イオン
交換膜との間に前記小開口陽極板12′を介在さ
せる事も出来る。
In yet another embodiment, as shown in FIG.
It is also possible to use the same shape as it is and to interpose the small opening anode plate 12' between the anode plate 12 and the cation exchange membrane.

この場合陰極室と陽極室との圧力差により、水銀
法より転換した陽極板12に前記小開口陽極板1
2′を押しつけ接触させる事が出来るし、スポツ
ト溶接等従来技術を用いて一体化する事も出来
る。
In this case, due to the pressure difference between the cathode chamber and the anode chamber, the small opening anode plate 1
2' can be pressed into contact, or they can be integrated using conventional techniques such as spot welding.

第2図のパンチドメタルは孔径が約5mm以下が
好ましい、又、第3図のエクスパンデツドメタル
は長径が約5mm以下である事が好ましい。さらに
丸棒をスダレ状に並べた陽極の場合は棒間のすき
間が2mm以下である事が好ましい。上記条件を満
せば形状は特に制限はない。さらに上記条件であ
れば開口部に膜が食い込む等の問題もなく、電流
密度分布のバラツキも少なく高性能が得られる。
The punched metal shown in FIG. 2 preferably has a hole diameter of about 5 mm or less, and the expanded metal shown in FIG. 3 preferably has a major diameter of about 5 mm or less. Furthermore, in the case of an anode made of round rods arranged in a sagging pattern, it is preferable that the gap between the rods is 2 mm or less. There is no particular restriction on the shape as long as the above conditions are met. Furthermore, under the above conditions, there is no problem such as the film digging into the opening, and high performance can be obtained with little variation in current density distribution.

さらに本考案の電解槽は実質的に水平である
為、陽極板上からの陽極ガスの泡ぬけが従来のフ
イルタープレス型等のタテ型電解槽より良好であ
る。すなわち水平である為、陽極の背後へガス自
身の浮力で脱ける為である。したがつて、従来の
タテ型フイルタープレスより開口部を小さくする
事が出来る。
Furthermore, since the electrolytic cell of the present invention is substantially horizontal, bubbles of anode gas can escape from above the anode plate better than conventional vertical electrolytic cells such as filter press type electrolytic cells. In other words, since it is horizontal, the gas can escape behind the anode due to its own buoyancy. Therefore, the opening can be made smaller than the conventional vertical filter press.

次いで陰極室2は陽イオン交換膜3の下表面と
水銀法電解槽の底板からなり、該陰極板の縁に沿
つて該極板を囲むように立設された陰極室側壁1
7とにより画成される。陰極室側壁17は剛性を
有する枠縁のごときもので構成することができる
し、弾性を有するゴム、プラスチツク等のパツキ
ング状弾性体の如きもので構成することも可能で
ある。
Next, the cathode chamber 2 consists of the lower surface of the cation exchange membrane 3 and the bottom plate of the mercury method electrolyzer, and the cathode chamber side wall 1 is erected along the edge of the cathode plate so as to surround the electrode plate.
7. The cathode chamber side wall 17 can be made of something like a rigid frame edge, or it can be made of something like a packing-like elastic material such as elastic rubber or plastic.

陰極室側壁17の構成材料としては、上記した
材料の他に苛性ソーダ等の苛性アルカリに耐える
材料であれば特に制限はなく。鉄、ステンレスス
チール、ニツケル、ニツケル合金等を使用でき
る。また、鉄基材上に耐アルカリ性材料をライニ
ングした材料も好適に使用できる。さらにまたゴ
ム、プラスチツク等の材料も使用することができ
る。かかる材料としては、たとえば天然ゴム、ブ
チルゴム、エチレンプロピレンゴム(EPR)な
どのゴム系材料、四フツ化エチレン重合体、四フ
ツ化エチレン−六フツ化プロピレン共重合体、エ
チレン−四フツ化エチレン共重合体などのフツ素
系ポリマー材料、ポリ塩化ビニル、強化プラスチ
ツク(FRP)などが例示される。
In addition to the above-mentioned materials, the material for forming the cathode chamber side wall 17 is not particularly limited as long as it is resistant to caustic alkali such as caustic soda. Iron, stainless steel, nickel, nickel alloy, etc. can be used. Furthermore, a material obtained by lining an alkali-resistant material on an iron base material can also be suitably used. Furthermore, materials such as rubber, plastic, etc. can also be used. Examples of such materials include rubber-based materials such as natural rubber, butyl rubber, and ethylene propylene rubber (EPR), tetrafluoroethylene polymers, tetrafluoroethylene-hexafluoropropylene copolymers, and ethylene-tetrafluoroethylene copolymers. Examples include fluorine-based polymer materials such as polymers, polyvinyl chloride, and reinforced plastics (FRP).

陰極液導入口19及び陰極ガスと陰極液との混
相液の排出口20は陰極室2内に陰極液と陰極ガ
スとの混相液の流れを生じせしめることが出来れ
ば良い。従つて、該混相液の流れを長さ方向、幅
方向のいずれに形成せしめても良いが、後者の方
が陰極液流の導入口・排出口間の圧力損失を減少
させ、G/L(単位陰極液中に含有される陰極ガ
スの比率)を小さくすることができ、その結果陰
極板や蓋体の捕強も不要で、陰極液導入口と混相
液排出口の△CV(槽電圧)を小さくすることが
できる点で望ましい。また均一な混相液の流れを
確保することが好ましく、この目的のためにスリ
ツト状の導入口は好ましい一態様である。
The catholyte inlet 19 and the discharge port 20 for the mixed phase liquid of catholyte gas and catholyte may be used as long as they can generate a flow of the mixed phase liquid of catholyte and catholyte gas in the cathode chamber 2 . Therefore, although the flow of the multiphase liquid may be formed in either the length direction or the width direction, the latter reduces the pressure loss between the inlet and outlet of the catholyte flow, and the G/L ( The ratio of cathode gas contained in a unit catholyte can be reduced, and as a result, there is no need to strengthen the cathode plate or lid, and the △CV (cell voltage) of the catholyte inlet and multiphase liquid outlet can be reduced. This is desirable in that it allows for a smaller size. Further, it is preferable to ensure a uniform flow of the mixed phase liquid, and for this purpose, a slit-shaped inlet is a preferable embodiment.

叙上の通り、本考案によれば水銀法電解槽を容
易に且つ高性能で膜に破損を起さない陽イオン交
換膜法電解槽に転換でき、電解槽のみならずブス
バー。整流器、淡塩水処理設備、塩水系設備等殆
ど全ての現存設置をスクラツプ化することなく、
そのまま転用できるので水銀法電解槽の転換を頗
る経済的に行なうことができる。
As mentioned above, according to the present invention, a mercury method electrolyzer can be easily converted into a cation exchange membrane method electrolyzer that has high performance and does not cause damage to the membrane, and can be used not only as an electrolytic cell but also as a bus bar. Almost all existing installations such as rectifiers, fresh salt water treatment equipment, salt water system equipment, etc., can be replaced without having to be scrapped.
Since it can be used as is, it can be used more economically than a mercury electrolyzer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第5図はそれぞれ本考案電解槽の実
施態様を示す正面図、第2〜4図は本考案に用い
る小開口陽極板の実施態様を示す慨要図である。 1……陽極室、2……陰極室、……陽イオン交
換膜、4……蓋体、5……陽極室側壁、6……陽
極導電棒、7……陽極懸垂装置、8……陽極ブス
バー、9……陽極導電棒カバー、10……孔、1
1……シート、12……陽極板、12′……小開
口陽極板、13……陽極液導入口、14……陽極
液排出口、15……陽極ガス排出口、16……陰
極板、17……陰極室側壁、18……陰極ブスバ
ー、19……陰極液導入口、20……陰極混相液
排出口、21……分離器、22……ポンプ、23
……パツキング。
FIGS. 1 and 5 are front views showing embodiments of the electrolytic cell of the present invention, and FIGS. 2 to 4 are schematic diagrams showing embodiments of the small opening anode plate used in the present invention. 1...Anode chamber, 2...Cathode chamber,...Cation exchange membrane, 4...Lid, 5...Anode chamber side wall, 6...Anode conductive rod, 7...Anode suspension device, 8...Anode Bus bar, 9... Anode conductive bar cover, 10... Hole, 1
1... sheet, 12... anode plate, 12'... small opening anode plate, 13... anolyte inlet, 14... anolyte outlet, 15... anode gas outlet, 16... cathode plate, 17... Cathode chamber side wall, 18... Cathode bus bar, 19... Cathode liquid inlet, 20... Cathode mixed phase liquid outlet, 21... Separator, 22... Pump, 23
...Patsuking.

Claims (1)

【実用新案登録請求の範囲】 1 実質的に水平に張設された陽イオン交換膜に
より上部の陽極室と下部の陰極室とに区画さ
れ、前記陽極室は開口部の最大径が5mm以下若
しくは最小径が2mm以下のいずれかである陽極
を有してなり、前記陰極室は水銀法電解槽の底
板からなる陰極板を有してなり、且つ該陰極室
に陰極液導入口及び陰極液と陰極ガスとの混相
流の排出口を具備してなる事を特徴とする電解
槽。 2 開口部の最大径が5mm以下若しくは最小径が
2mm以下のいずれかである陽極を、水銀法電解
槽の陽極と陽イオン交換膜との間に介在させて
なる実用新案登録請求の範囲第1項記載の電解
槽。
[Claims for Utility Model Registration] 1. A cation exchange membrane stretched substantially horizontally that is divided into an upper anode chamber and a lower cathode chamber, and the anode chamber has an opening with a maximum diameter of 5 mm or less, or The cathode chamber has an anode having a minimum diameter of 2 mm or less, and the cathode chamber has a cathode plate consisting of the bottom plate of a mercury electrolyzer, and the cathode chamber has a catholyte inlet and a catholyte. An electrolytic cell characterized by being equipped with an outlet for a multiphase flow with cathode gas. 2 Utility model registration claim 1 in which an anode with an opening having either a maximum diameter of 5 mm or less or a minimum diameter of 2 mm or less is interposed between the anode of a mercury method electrolyzer and a cation exchange membrane. Electrolytic cell described in section.
JP1983062492U 1983-04-25 1983-04-25 electrolytic cell Granted JPS59169360U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983062492U JPS59169360U (en) 1983-04-25 1983-04-25 electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983062492U JPS59169360U (en) 1983-04-25 1983-04-25 electrolytic cell

Publications (2)

Publication Number Publication Date
JPS59169360U JPS59169360U (en) 1984-11-13
JPS6239092Y2 true JPS6239092Y2 (en) 1987-10-05

Family

ID=30192686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983062492U Granted JPS59169360U (en) 1983-04-25 1983-04-25 electrolytic cell

Country Status (1)

Country Link
JP (1) JPS59169360U (en)

Also Published As

Publication number Publication date
JPS59169360U (en) 1984-11-13

Similar Documents

Publication Publication Date Title
CA1189827A (en) Electrolytic cell with porous screen electrodes in contact with diaphragm
US3976549A (en) Electrolysis method
JPS607710B2 (en) Electrolysis method of alkali metal chloride using diaphragm electrolyzer
JPH0561356B2 (en)
US5194132A (en) Electrolysis apparatus
US4568433A (en) Electrolytic process of an aqueous alkali metal halide solution
US4596639A (en) Electrolysis process and electrolytic cell
US4256562A (en) Unitary filter press cell circuit
US4236989A (en) Electrolytic cell
JPS6239092Y2 (en)
US4556470A (en) Electrolytic cell with membrane and solid, horizontal cathode plate
US5593553A (en) Electrolytic cell and electrode therefor
JP3229266B2 (en) Bipolar filter press type electrolytic cell
US4488947A (en) Process of operation of catholyteless membrane electrolytic cell
US4586994A (en) Electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor
JPS6239090Y2 (en)
JPS6046191B2 (en) vertical electrolyzer
JPS6239091Y2 (en)
US4285795A (en) Electrolysis apparatus
JPS6239089Y2 (en)
JPS6239094Y2 (en)
JPS6145160Y2 (en)
JPS6239093Y2 (en)
JPS624469B2 (en)
JPS59153888A (en) Process and cell for electrolysis