JPS6238531B2 - - Google Patents

Info

Publication number
JPS6238531B2
JPS6238531B2 JP57084934A JP8493482A JPS6238531B2 JP S6238531 B2 JPS6238531 B2 JP S6238531B2 JP 57084934 A JP57084934 A JP 57084934A JP 8493482 A JP8493482 A JP 8493482A JP S6238531 B2 JPS6238531 B2 JP S6238531B2
Authority
JP
Japan
Prior art keywords
valve
wall surface
intake port
negative pressure
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57084934A
Other languages
Japanese (ja)
Other versions
JPS58202328A (en
Inventor
Mutsumi Kanda
Kyoshi Nakanishi
Takeshi Okumura
Takeshi Kotani
Tokuta Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57084934A priority Critical patent/JPS58202328A/en
Priority to US06/493,570 priority patent/US4485774A/en
Publication of JPS58202328A publication Critical patent/JPS58202328A/en
Publication of JPS6238531B2 publication Critical patent/JPS6238531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Description

【発明の詳細な説明】 本発明はヘリカル型吸気ポートに関する。[Detailed description of the invention] The present invention relates to a helical intake port.

ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめようと
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速高負
荷運転時に充填効率が低下するという問題を生ず
る。このような問題を解決するためにヘリカル型
吸気ポート入口通路部から分岐されてヘリカル型
吸気ポート渦巻部の渦巻終端部に連通する分岐路
をシリンダヘツド内に形成し、分岐路内に開閉弁
を設けて機関高速高負荷運転時に開閉弁を開閉す
るようにしたヘリカル型吸気ポートが本出願人に
より既に提案されている。このヘリカル型吸気ポ
ートでは機関高速高負荷運転時にヘリカル型吸気
ポート入口通路部内に送り込まれた吸入空気の一
部が分岐路を介してヘリカル型吸気ポート渦巻部
内に送り込まれるために吸入空気の流路断面積が
増大し、斯くして充填効率を向上することができ
る。しかしながらこのヘリカル型吸気ポートでは
分岐路が入口通路部から完全に独立した筒状の通
路として形成されているので分岐路の流れ抵抗が
比較的大きく、しかも分岐路を入口通路部に隣接
して形成しなければならないために入口通路部の
断面積が制限を受けるので十分に満足のいく高い
充填効率を得るのが困難となつている。更に、ヘ
リカル型吸気ポートはそれ自体の形状が複雑であ
り、しかも入口通路部から完全に独立した分岐路
を併設した場合には吸気ポートの全体構造が極め
て複雑となるのでこのような分岐路を具えたヘリ
カル型吸気ポートをシリンダヘツド内に形成する
のはかなり困難である。
A helical intake port typically consists of a spiral formed around the intake valve and an inlet passageway tangentially connected to the spiral and extending generally straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load engine operation with a small amount of intake air, the shape of the intake port will have a large flow resistance. A problem arises in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an on-off valve is installed in the branch path. The applicant has already proposed a helical intake port in which an on-off valve is opened and closed during engine high-speed and high-load operation. In this helical type intake port, when the engine is operated at high speed and under high load, a part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through a branch path, so the intake air flow path is The cross-sectional area can be increased, thus improving the filling efficiency. However, in this helical intake port, the branch passage is formed as a cylindrical passage completely independent from the inlet passage, so the flow resistance of the branch passage is relatively large, and the branch passage is formed adjacent to the inlet passage. This limits the cross-sectional area of the inlet passage, making it difficult to obtain a sufficiently high filling efficiency. Furthermore, the helical intake port itself has a complicated shape, and if a branch passage that is completely independent from the inlet passage is added, the overall structure of the intake port will become extremely complicated. It is quite difficult to form a helical intake port in the cylinder head.

本発明は機関高速高負荷運転時に高い充填効率
を得ることができると共に製造の容易な新規形状
を有するヘリカル型吸気ポートを提供することに
ある。
SUMMARY OF THE INVENTION The present invention provides a helical intake port that is capable of achieving high filling efficiency during high-speed, high-load engine operation and has a novel shape that is easy to manufacture.

以下、添付図面を参照して本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固締
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポート、9は燃焼室4内に配
置された点火栓、10は吸気弁5のステム5aを
案内するステムガイドを夫々示す。第1図並びに
第2図に示されるように吸気ポート6の上壁面1
1上には下方に突出する隔壁12が一体成形さ
れ、この隔壁12によつて渦巻部Bと、この渦巻
部Bに接線状に接続された入口通路部Aからなる
ヘリカル型吸気ポート6が形成される。この隔壁
12は入口通路部A内から吸気弁5のステムガイ
ド10の周囲まで吸入空気流の流れ方向に延びて
おり、第2図からわかるようにこの壁壁12の根
元部の巾Lは入口通路部Aからステムガイド10
に近づくにつれて徐々に広くなる。隔壁12は吸
気ポート6の入口開口6aに最も近い側に位置す
る先端部13を有し、更に隔壁12は第2図にお
いてこの先端部13から反時計回りにステムガイ
ド10まで延びる第1側壁面14aと、先端部1
3から時計回りにステムガイド10まで延びる第
2側壁面14bとを有する。第1側壁面14aは
先端部13からステムガイド10の側方を通つて
渦巻部Bの側壁面15の近傍まで延びて渦巻部側
壁面15との間に狭窄部16を形成する。次いで
第1側壁面14aは渦巻部側壁面15から徐々に
間隔を隔てるように彎曲しつつステムガイド10
まで延びる。一方、第2側壁面14bは先端部1
3からステムガイド10までほぼまつすぐに延び
る。
Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is a piston 2 and a cylinder head 3. A combustion chamber is formed in between, 5 is an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Reference numeral 9 indicates an ignition plug disposed within the combustion chamber 4, and reference numeral 10 indicates a stem guide for guiding the stem 5a of the intake valve 5. As shown in FIGS. 1 and 2, the upper wall surface 1 of the intake port 6
A partition wall 12 projecting downward is integrally molded on the top of the helical intake port 6, which consists of a spiral portion B and an inlet passage portion A tangentially connected to the spiral portion B. be done. This partition wall 12 extends in the flow direction of the intake air flow from inside the inlet passage section A to around the stem guide 10 of the intake valve 5, and as can be seen from FIG. 2, the width L at the base of this wall wall 12 is Stem guide 10 from passage section A
It gradually becomes wider as it approaches. The bulkhead 12 has a tip 13 located on the side closest to the inlet opening 6a of the intake port 6, and the bulkhead 12 further has a first side wall surface extending counterclockwise from the tip 13 to the stem guide 10 in FIG. 14a and the tip 1
3 and a second side wall surface 14b extending clockwise from 3 to the stem guide 10. The first side wall surface 14a extends from the distal end portion 13 through the side of the stem guide 10 to the vicinity of the side wall surface 15 of the spiral portion B, and forms a narrow portion 16 between the first side wall surface 14a and the spiral portion side wall surface 15. Next, the first side wall surface 14a is curved so as to be gradually spaced apart from the spiral portion side wall surface 15, and the first side wall surface 14a is connected to the stem guide 10.
Extends to. On the other hand, the second side wall surface 14b is
3 to the stem guide 10 almost immediately.

第1図から第9図を参照すると、入口通路部A
の側壁面17,18はほぼ垂直配置され、一方入
口通路部Aの上壁面19は渦巻部Bに向けて徐々
に下降する。入口通路部Aの側壁面17は渦巻部
Bの側壁面15に滑らかに接続され、入口通路部
Aの上壁面19は渦巻部Bの上壁面20に滑らか
に接続される。渦巻部Bの上壁面20は渦巻部B
と入口通路部Aの接続部から狭窄部16に向けて
下降しつつ徐々に巾を狭め、次いで狭窄部16を
通過すると徐々に巾を広げる。一方、入口通路部
Aの底壁面21は第5図に示すように入口開口6
aの近傍においてはその全体がほぼ水平をなして
おり、側壁面17に隣接する底壁面部分21aは
第8図に示すように渦巻部Bに近づくに従つて隆
起して傾斜面を形成する。この傾斜底壁面部分2
1aの傾斜角は渦巻部Bに近づくにつれて徐々に
大きくなる。
Referring to FIGS. 1 to 9, the inlet passage section A
The side wall surfaces 17, 18 of are arranged substantially vertically, while the upper wall surface 19 of the inlet passage section A gradually descends towards the spiral section B. The side wall surface 17 of the inlet passage section A is smoothly connected to the side wall surface 15 of the spiral section B, and the upper wall surface 19 of the entrance passage section A is smoothly connected to the upper wall surface 20 of the spiral section B. The upper wall surface 20 of the spiral part B
The width gradually narrows while descending from the connecting part of the inlet passage part A toward the narrowed part 16, and then, after passing through the narrowed part 16, the width gradually widens. On the other hand, the bottom wall surface 21 of the inlet passage section A has an inlet opening 6 as shown in FIG.
The entire surface is substantially horizontal in the vicinity of point a, and the bottom wall surface portion 21a adjacent to the side wall surface 17 rises as it approaches the spiral portion B to form an inclined surface, as shown in FIG. This inclined bottom wall part 2
The inclination angle of 1a gradually increases as it approaches the spiral portion B.

一方、隔壁12の第1側壁面14aはわずかば
かり傾斜した下向きの傾斜面からなり、第2側壁
面14bはほぼ垂直をなす。隔壁12の底壁面2
2は先端部13からステムガイド10に向うに従
つて入口通路部6の上壁面11との間隔が次第に
大きくなるように入口通路部Aから渦巻部Bに向
けてわずかばかり彎曲しつつ下降する。隔壁12
の底壁面22上には第4図のハツチングで示す領
域に底壁面22から下方に突出するリブ23が形
成され、このリブ23の底面および底壁面22は
わずかばかり彎曲した傾斜面を形成する。
On the other hand, the first side wall surface 14a of the partition wall 12 is a slightly downwardly inclined surface, and the second side wall surface 14b is substantially vertical. Bottom wall surface 2 of partition wall 12
2 descends from the inlet passage A toward the spiral part B while slightly curving so that the distance from the upper wall surface 11 of the inlet passage 6 gradually increases from the tip 13 toward the stem guide 10. Partition wall 12
A rib 23 is formed on the bottom wall surface 22 in a region shown by hatching in FIG. 4 and projects downward from the bottom wall surface 22, and the bottom surface of the rib 23 and the bottom wall surface 22 form a slightly curved inclined surface.

一方、シリンダヘツド3内には渦巻部Bの渦巻
終端部Cと入口通路部Aとを連通する分岐路24
が形成され、この分岐路24の入口部に開閉弁の
役目を果すロータリ弁25が配置される。この分
岐路24は隔壁12によつて入口通路部Aから分
離されており、分岐路24の下側空間全体が入口
通路部Aに連通している。分岐路24の上壁面2
6はほぼ一様な巾を有し、渦巻終端部Cに向けて
徐々に下降して渦巻部Bの上壁面20に滑らかに
接続される。隔壁12の第2側壁面14bに対面
する分岐路24の側壁面27はほぼ垂直をなし、
更にこの側壁面27はほぼ入口通路部Aの側壁面
18の延長上に位置する。なお、第1図からわか
るように隔壁12上に形成されたリブ23はロー
タリ弁25の近傍から吸気弁5に向けて延びてい
る。
On the other hand, a branch passage 24 is provided in the cylinder head 3 that communicates the spiral end C of the spiral portion B with the inlet passage A.
is formed, and a rotary valve 25 serving as an on-off valve is disposed at the inlet of this branch path 24. This branch passage 24 is separated from the inlet passage part A by the partition wall 12, and the entire lower space of the branch passage 24 communicates with the inlet passage part A. Upper wall surface 2 of branch road 24
6 has a substantially uniform width and gradually descends toward the end C of the spiral and is smoothly connected to the upper wall surface 20 of the spiral B. A side wall surface 27 of the branch path 24 facing the second side wall surface 14b of the partition wall 12 is substantially vertical;
Furthermore, this side wall surface 27 is located approximately on an extension of the side wall surface 18 of the inlet passage section A. As can be seen from FIG. 1, the rib 23 formed on the partition wall 12 extends from the vicinity of the rotary valve 25 toward the intake valve 5.

第10図に示されるようにロータリ弁25はロ
ータリ弁ホルダ28と、ロータリ弁ホルダ28内
において回転可能に支持された弁軸29とによに
構成され、このロータリ弁ホルダ28はシリンダ
ヘツド3に穿設されたねじ孔30内に螺着され
る。弁軸29の下端部には薄板状の弁体31が一
体形成され、第1図に示されるようにこの弁体3
1は分岐路24の上壁面26から底壁面21まで
延びる。一方、弁軸29は吸気弁ステム5aの軸
線とほぼ平行に配置され、この弁軸29の上端部
にはアーム32が固定される。また、弁軸29の
外周面上にはリング溝33が形成され、このリン
グ溝33内にはE字型位置決めリング34が嵌ま
れる。更にロータリ弁ボルダ28の上端部にはシ
ール部材35が嵌着され、このシール部材35に
よつて弁軸29のシール作用が行なわれる。
As shown in FIG. 10, the rotary valve 25 is composed of a rotary valve holder 28 and a valve shaft 29 rotatably supported within the rotary valve holder 28. The rotary valve holder 28 is attached to the cylinder head 3. It is screwed into the drilled screw hole 30. A thin plate-shaped valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG.
1 extends from the top wall surface 26 of the branch path 24 to the bottom wall surface 21. On the other hand, the valve shaft 29 is arranged substantially parallel to the axis of the intake valve stem 5a, and an arm 32 is fixed to the upper end of the valve shaft 29. Further, a ring groove 33 is formed on the outer peripheral surface of the valve shaft 29, and an E-shaped positioning ring 34 is fitted into the ring groove 33. Furthermore, a seal member 35 is fitted to the upper end of the rotary valve boulder 28, and the seal member 35 performs a sealing action on the valve shaft 29.

第11図を参照すると、ロータリ弁25の上端
部に固着されたアーム32の先端部は負圧ダイア
フラム装置40のダイアフラム41に固着された
制御ロツド42に連結ロツド43を介して連結さ
れる。負圧ダイアフラム装置40はダイアフラム
41によつて大気から隔離された負圧室44を有
し、この負圧室44内にダイアフラム押圧用圧縮
ばね45が挿入される。シリンダヘツド3には1
次側気化器46aと2次側気化器46bからなる
コンパウンド型気化器46を具えた吸気マニホル
ド47が取付けられ、負圧室44は負圧導管48
を介して吸気マニホルド47内に連結される。こ
の負圧導管48内には負圧室44から吸気マニホ
ルド47内に向けてのみ流通可能な逆止弁49が
挿入される。更に、負圧室44は大気導管50並
びに大気開放制御弁51を介して大気に連通す
る。この大気開放制御弁51はダイアフラム52
によつて隔成された負圧室53と大気圧室54と
を有し、更に大気圧室54に隣接して弁室55を
有する。この弁室55は一方では大気導管50を
介して負圧室44内に連通し、他方では弁ポート
56並びにエアフイルタ57を介して大気に連通
する。弁室55内には弁ポート56の開閉制御を
する弁体58が設けられ、この弁体58は弁ロツ
ド59を介してダイアフラム52に連結される。
負圧室53内にはダイアフラム押圧用圧縮ばね6
0が挿入され、更に負圧室53は負圧導管61を
介して1次側気化器46aのベンチユリ部62に
連結される。
Referring to FIG. 11, the tip of the arm 32 fixed to the upper end of the rotary valve 25 is connected via a connecting rod 43 to a control rod 42 fixed to a diaphragm 41 of a negative pressure diaphragm device 40. As shown in FIG. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. 1 for cylinder head 3
An intake manifold 47 equipped with a compound type carburetor 46 consisting of a next side carburetor 46a and a secondary side carburetor 46b is attached, and the negative pressure chamber 44 is connected to a negative pressure conduit 48.
The intake manifold 47 is connected through the intake manifold 47 . A check valve 49 that allows flow only from the negative pressure chamber 44 into the intake manifold 47 is inserted into the negative pressure conduit 48 . Further, the negative pressure chamber 44 communicates with the atmosphere via an atmosphere conduit 50 and an atmosphere release control valve 51. This atmospheric release control valve 51 has a diaphragm 52
It has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a spacer, and further has a valve chamber 55 adjacent to the atmospheric pressure chamber 54. This valve chamber 55 communicates on the one hand with the negative pressure chamber 44 via an atmospheric conduit 50 and on the other hand with the atmosphere via a valve port 56 and an air filter 57. A valve body 58 for controlling the opening and closing of the valve port 56 is provided within the valve chamber 55, and the valve body 58 is connected to the diaphragm 52 via a valve rod 59.
A compression spring 6 for pressing the diaphragm is provided in the negative pressure chamber 53.
Further, the negative pressure chamber 53 is connected to the bench lily portion 62 of the primary side carburetor 46a via a negative pressure conduit 61.

気化器46は通常用いられる気化器であつて1
次側スロツトル弁63が所定開度以上開弁したと
きに2次側スロツトル弁64が開弁し、1次側ス
ロツトル弁63が全開すれば2次側スロツトル弁
64も全開する。1次側気化器46aのベンチユ
リ部62に発生する負圧は機関シリンダ内に供給
される吸入空気量が増大するほど大きくなり、従
つてベンチユリ部62に発生する負圧が所定負圧
よりも大きくなつたときに、即ち機関高速高負荷
運転時に大気開放制御弁51のダイアフラム52
が圧縮ばね60に抗して右方に移動し、その結果
弁体58が弁ポート56を開弁して負圧ダイアフ
ラム装置40の負圧室44を大気に開放する。こ
のときダイアフラム41は圧縮ばね45のばね力
により下方に移動し、その結果ロータリ弁25が
回転せしめられて分岐路24を全開する。一方1
次側スロツトル弁63の開度が小さいときにはベ
ンチユリ部62に発生する負圧が小さなために大
気開放制御弁51のダイアフラム52は圧縮ばね
60のばね力により左方に移動し、弁体58が弁
ポート56を閉鎖する。更にこのように1次側ス
ロツトル弁63の開度が小さいときには吸気マニ
ホルド47内には大きな負圧が発生している。逆
止弁49は吸気マニホルド47内の負圧が負圧ダ
イアフラム装置40の負圧室44内の負圧よりも
大きくなると開弁し、吸気マニホルド47内の負
圧が負圧室44内の負圧よりも小さくなると閉弁
するので大気開放制御弁51が開弁している限り
負圧室44内の負圧は吸気マニホルド47内に発
生した最大負圧に維持される。負圧室44内に負
圧が加わるとダイアフラム41は圧縮ばね45に
抗して上昇し、その結果ロータリ弁25が回動せ
しめられて分岐路24が閉鎖される。従つて機関
低速低負荷運転時にはロータリ弁25によつて分
岐路24が閉鎖されることになる。なお、高負荷
運転時であつても機関回転数が低い場合、並びに
機関回転数が高くても低負荷運転が行なわれてい
る場合にはベンチユリ部62に発生する負圧が小
さなために大気開放制御弁51は閉鎖され続けて
いる。従つてこのような低速高負荷運転時並びに
高速低負荷運転時には負圧室44内の負圧が前述
の最大負圧に維持されているのでロータリ弁25
によつて分岐路24が閉鎖されている。
The vaporizer 46 is a commonly used vaporizer.
When the downstream throttle valve 63 opens to a predetermined opening degree or more, the secondary throttle valve 64 opens, and when the primary throttle valve 63 fully opens, the secondary throttle valve 64 also fully opens. The negative pressure generated in the bench lily portion 62 of the primary side carburetor 46a increases as the amount of intake air supplied into the engine cylinder increases, and therefore the negative pressure generated in the bench lily portion 62 becomes larger than a predetermined negative pressure. diaphragm 52 of the atmospheric release control valve 51 when the engine is operating at high speed and high load.
moves to the right against the compression spring 60, and as a result, the valve body 58 opens the valve port 56 and opens the negative pressure chamber 44 of the negative pressure diaphragm device 40 to the atmosphere. At this time, the diaphragm 41 is moved downward by the spring force of the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is fully opened. On the other hand 1
When the opening degree of the next throttle valve 63 is small, the negative pressure generated in the bench lily part 62 is small, so the diaphragm 52 of the atmospheric release control valve 51 moves to the left by the spring force of the compression spring 60, and the valve body 58 Close port 56. Furthermore, when the opening degree of the primary throttle valve 63 is small as described above, a large negative pressure is generated within the intake manifold 47. The check valve 49 opens when the negative pressure in the intake manifold 47 becomes greater than the negative pressure in the negative pressure chamber 44 of the negative pressure diaphragm device 40, and the negative pressure in the intake manifold 47 becomes larger than the negative pressure in the negative pressure chamber 44. Since the valve closes when the pressure becomes smaller than the pressure, the negative pressure in the negative pressure chamber 44 is maintained at the maximum negative pressure generated in the intake manifold 47 as long as the atmospheric release control valve 51 is open. When negative pressure is applied within the negative pressure chamber 44, the diaphragm 41 rises against the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is closed. Therefore, when the engine is operating at low speed and low load, the branch passage 24 is closed by the rotary valve 25. Note that when the engine speed is low even during high-load operation, or when low-load operation is performed even when the engine speed is high, the negative pressure generated in the bench lily portion 62 is small, so that it is not opened to the atmosphere. Control valve 51 remains closed. Therefore, during such low-speed, high-load operation and high-speed, low-load operation, the negative pressure in the negative pressure chamber 44 is maintained at the aforementioned maximum negative pressure, so that the rotary valve 25
Branch road 24 is closed by.

上述したように吸入空気量が少ない機関低速低
負荷運転時にはロータリ弁25が分岐路24を閉
鎖している。このとき、入口通路部A内に送り込
まれた混合気の一部は第3図および第4図におい
て矢印Lで示すように上壁面19,20に沿つて
進み、残りの混合気のうちの一部の混合気は第3
図および第4図において矢印Mで示すようにロー
タリ弁25の手前で入口通路部Aの側壁面17の
方へ向きを変えた後に渦巻部Bの側壁面15に沿
つて進む。前述したように上壁面19,20の巾
は狭窄部16に近づくに従つて次第に狭くなるた
めに上壁面19,20に沿つて流れる混合気の流
路は次第に狭ばまり、斯くして上壁面19,20
に沿う混合気流は次第に増進される。更に、前述
したように隔壁12の第1側壁面14aは渦巻部
Bの側壁面15の近傍まで延びているので上壁面
19,20に沿つて進む混合気流は渦巻部Bの側
壁面15上に押しやられ、次いで側壁面15に沿
つて進むために渦巻部B内には第3図および第4
図において矢印Kで示すような強力な旋回流が発
生せしめられる。次いで混合気は旋回しつつ吸気
弁5とその弁座間に形成される間隙を通つて燃焼
室4内に流入して燃焼室4内に強力な旋回流を発
生せしめる。
As described above, the rotary valve 25 closes the branch passage 24 when the engine is operated at low speed and under low load with a small amount of intake air. At this time, part of the air-fuel mixture sent into the inlet passage A travels along the upper wall surfaces 19 and 20 as shown by arrow L in FIGS. 3 and 4, and part of the remaining air-fuel mixture The mixture of parts is the third
As shown by arrow M in the drawings and FIG. 4, it changes direction toward the side wall surface 17 of the inlet passage section A before the rotary valve 25, and then proceeds along the side wall surface 15 of the spiral section B. As mentioned above, the widths of the upper wall surfaces 19 and 20 gradually become narrower as they approach the narrowed portion 16, so the flow path for the air-fuel mixture flowing along the upper wall surfaces 19 and 20 gradually narrows, and thus the width of the upper wall surfaces 19,20
The air mixture flow along is gradually enhanced. Furthermore, as described above, since the first side wall surface 14a of the partition wall 12 extends to the vicinity of the side wall surface 15 of the spiral portion B, the air mixture flowing along the upper wall surfaces 19 and 20 flows onto the side wall surface 15 of the spiral portion B. 3 and 4 within the spiral portion B to be pushed away and then proceed along the side wall surface 15.
A strong swirling flow as shown by arrow K in the figure is generated. Next, the air-fuel mixture swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat, generating a strong swirling flow within the combustion chamber 4.

一方、吸入空気量が多い機関高速高負荷運転時
にはロータリ弁25が開弁するので入口通路部A
内に送り込まれた混合気は大別すると3つの流れ
に分流される。即ち、第1の流れは第1図および
第2図において矢印Xで示すように隔壁12の第
1側壁面14aと入口通路部Aの側壁面17間に
流入し、次いで渦巻部Aの上壁面20に沿つて旋
回しつつ流れる混合気流であり、第2の流れは第
1図および第2図において矢印Yで示すように分
岐路24を介して渦巻部B内に流入する混合気流
であり、第3の流れは第1図において矢印Zで示
すように入口通路部Aの底壁面21に沿つて渦巻
部B内に流入する混合気流である。分岐路24の
流れ抵抗は第1側壁面14aと側壁面17間の流
れ抵抗に比べて小さく、従つて第2の混合気流Y
の方が第1の混合気流Xよりも多くなる。更に、
渦巻部B内を旋回しつつ流れる第1混合気流Xの
流れ方向は第1図に示されるように第2混合気流
Yによつて下向きに偏向され、斯くして第1混合
気流の旋回力が弱められることになる。このよう
に流れ抵抗の小さな分岐路24からの混合気流が
増大し、更に第1混合気流の流れ方向が下向きに
偏向されるので高い充填効率が得られることにな
る。また、前述したように隔壁12の底壁面22
は下向きの傾斜面から形成されているので第3の
混合気流はこの傾斜面に案内されて流れ方向が下
向きに偏向され、斯くして更に高い充填効率が得
られることになる。
On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 25 opens, so the inlet passage A
The air-fuel mixture sent into the tank is divided into three main streams. That is, the first flow flows between the first side wall surface 14a of the partition wall 12 and the side wall surface 17 of the inlet passage section A as shown by the arrow X in FIGS. 1 and 2, and then flows into the upper wall surface of the spiral section A. 20, the second flow is a mixture flow that flows into the swirl portion B via the branch path 24 as shown by the arrow Y in FIGS. 1 and 2, The third flow is a mixed air flow that flows into the spiral portion B along the bottom wall surface 21 of the inlet passage portion A as indicated by arrow Z in FIG. The flow resistance of the branch passage 24 is smaller than the flow resistance between the first side wall surface 14a and the side wall surface 17, and therefore the second air mixture flow Y
is larger than the first air mixture flow X. Furthermore,
As shown in FIG. 1, the flow direction of the first air mixture X flowing while swirling inside the swirl portion B is deflected downward by the second air mixture Y, and thus the swirling force of the first air mixture is increased. It will be weakened. In this way, the mixed air flow from the branch passage 24 with low flow resistance is increased, and the flow direction of the first mixed air flow is further deflected downward, so that high filling efficiency can be obtained. Further, as described above, the bottom wall surface 22 of the partition wall 12
Since it is formed from a downwardly inclined surface, the third air mixture flow is guided by this inclined surface and its flow direction is deflected downward, thus achieving even higher filling efficiency.

上述したように機関低速低負荷運転時には第3
図および第4図において矢印Kで示すような強力
な旋回流が渦巻部B内に発生する。ところがロー
タリ弁25を第3図の破線25′で示すように第
3図に示す位置から更に傾斜させると矢印Kで示
すように旋回している混合気の一部が矢印Pで示
すように分岐路24内に巻込まれ、その結果旋回
流Kが弱められることが判明している。即ち、ロ
ータリ弁25の弁体31が吸気弁ステム5aの軸
線とほぼ平行に配置されているときは弁体31が
旋回流のガイド壁を形成しているのに対し、破線
25′のように弁体31を傾斜させると弁体31
上を流れる旋回流に上向きの速度成分が生じ、そ
れによつて矢印Pで示すような巻込み現象が生ず
る。このように旋回している混合気が巻込れると
この混合気は旋回しなくなり、斯くして旋回流が
弱められることになる。第12図はロータリ弁2
5の傾斜の程度と旋回流の強さとの関係を示して
いる。第12図において縦軸Sは単位時間当りの
旋回流の旋回回数を示し、横軸Nは機関回転数
(r.p.m)を示す。なお、第12図において実線
は第3図の実線で示すようにロータリ弁25の軸
線を吸気弁ステム5aの軸線とほぼ平行にした場
合を示しており、第12図において破線は第3図
の破線25′のようにロータリ弁25の軸線を傾
斜させた場合を示している。第12図からロータ
リ弁25の軸線を吸気弁ステム5aの軸線とほぼ
平行にした場合には機関回転数Nが上昇しても旋
回流の強さSが低下しないことがわかる。
As mentioned above, when the engine is operating at low speed and low load, the third
A strong swirling flow is generated in the swirl portion B as shown by the arrow K in the figure and FIG. However, when the rotary valve 25 is tilted further from the position shown in FIG. 3 as indicated by the broken line 25' in FIG. It has been found that the swirling flow K is thereby weakened. That is, when the valve body 31 of the rotary valve 25 is arranged substantially parallel to the axis of the intake valve stem 5a, the valve body 31 forms a guide wall for the swirling flow, but as shown by the broken line 25', the valve body 31 forms a guide wall for the swirling flow. When the valve body 31 is tilted, the valve body 31
An upward velocity component occurs in the swirling flow flowing above, thereby causing an entrainment phenomenon as shown by arrow P. When the swirling air-fuel mixture is drawn in, the air-fuel mixture no longer swirls, thus weakening the swirling flow. Figure 12 shows rotary valve 2
5 shows the relationship between the degree of inclination and the strength of the swirling flow. In FIG. 12, the vertical axis S shows the number of turns of the swirling flow per unit time, and the horizontal axis N shows the engine speed (rpm). In addition, the solid line in FIG. 12 shows the case where the axis of the rotary valve 25 is made almost parallel to the axis of the intake valve stem 5a as shown by the solid line in FIG. 3, and the broken line in FIG. A case is shown in which the axis of the rotary valve 25 is inclined as indicated by a broken line 25'. It can be seen from FIG. 12 that when the axis of the rotary valve 25 is made substantially parallel to the axis of the intake valve stem 5a, the strength S of the swirling flow does not decrease even if the engine speed N increases.

また、本発明によるヘリカル型吸気ポートは吸
気ポート6の上壁面上に隔壁12を一体成形すれ
ばよいのでヘリカル型吸気ポートを容易に製造す
ることができる。
Further, in the helical type intake port according to the present invention, the partition wall 12 may be integrally formed on the upper wall surface of the intake port 6, so that the helical type intake port can be easily manufactured.

以上述べたように本発明によれば機関低速低負
荷運転時には分岐路を遮断して多量の混合気を渦
巻部の上壁面に沿つて流すことにより渦巻部内に
強力な旋回流を発生でき、この旋回流は弱められ
ることなく燃焼室内に供給されるので燃焼室内に
強力な旋回流を発生せしめることができる。一
方、機関高速高負荷運転時には分岐路を開口する
ことにより多量の混合気が流れ抵抗の小さな分岐
路を介して渦巻部内に送り込まれるために高い充
填効率を得ることができる。
As described above, according to the present invention, when the engine is operating at low speed and low load, a strong swirling flow can be generated in the volute by blocking the branch passage and allowing a large amount of air-fuel mixture to flow along the upper wall surface of the volute. Since the swirling flow is supplied into the combustion chamber without being weakened, a strong swirling flow can be generated within the combustion chamber. On the other hand, when the engine is operated at high speed and under high load, opening the branch passage allows a large amount of air-fuel mixture to flow into the volute through the branch passage with low resistance, thereby achieving high filling efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図の−線に沿つてみた本発明
に係る内燃機関の側面断面図、第2図は第1図の
−線に沿つてみた平面断面図、第3図は本発
明によるヘリカル型吸気ポートの形状を図解的に
示す側面図、第4図はヘリカル型吸気ポートの形
状を図解的に示す平面図、第5図は第3図および
第4図の−線に沿つてみた断面図、第6図は
第3図および第4図の−線に沿つてみた断面
図、第7図は第3図および第4図の−線に沿
つてみた断面図、第8図は第3図および第4図の
−線に沿つてみた断面図、第9図は第3図お
よび第4図の−線に沿つてみた断面図、第1
0図はロータリ弁の側面断面図、第11図はロー
タリ弁の駆動制御装置を示す図、第12図は旋回
流の強さを示すグラフである。 4……燃焼室、6……ヘリカル型吸気ポート、
12……隔壁、24……分岐路、25……ロータ
リ弁。
FIG. 1 is a side sectional view of an internal combustion engine according to the present invention taken along the line - in FIG. 2, FIG. 2 is a plan sectional view taken along the line - in FIG. 1, and FIG. FIG. 4 is a side view schematically showing the shape of the helical intake port, FIG. 4 is a plan view schematically showing the shape of the helical intake port, and FIG. 5 is a view taken along the - line in FIGS. 3 and 4. 6 is a sectional view taken along the - line in FIGS. 3 and 4, FIG. 7 is a sectional view taken along the - line in FIGS. 3 and 4, and FIG. 8 is a sectional view taken along the - line in FIGS. 3 and 4, FIG. 9 is a sectional view taken along the line - in FIGS. 3 and 4, and FIG.
0 is a side sectional view of the rotary valve, FIG. 11 is a diagram showing a drive control device for the rotary valve, and FIG. 12 is a graph showing the strength of swirling flow. 4... Combustion chamber, 6... Helical intake port,
12... Bulkhead, 24... Diversion path, 25... Rotary valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気弁周りに形成された渦巻部と、該渦巻部
に接線状に接続されかつほぼまつすぐに延びる入
口通路部とにより構成されたヘリカル型吸気ポー
トにおいて、吸気ポート上壁面から下方に突出し
かつ吸入空気流の流れ方向に延びる隔壁を吸気ポ
ート内に形成して該隔壁の両側に入口通路部と該
入口通路部から分岐した分岐路とを形成し、該隔
壁の下方に入口通路部と分岐路とを連通する下側
空間を形成すると共に分岐路を渦巻部の渦巻終端
部に連通し、該分岐路内に開閉弁を設けて該開閉
弁により分岐路内を流れる吸入空気流を制御し、
更に該開閉弁の弁軸をその軸線が上記吸気弁ステ
ムの軸線に対してほぼ平行となるように配置した
ヘリカル型吸気ポート。
1. In a helical intake port configured by a spiral portion formed around the intake valve and an inlet passage connected tangentially to the spiral portion and extending almost straight, the helical intake port projects downward from the upper wall surface of the intake port. A partition wall extending in the flow direction of the intake air flow is formed in the intake port, an inlet passage portion and a branch passage branching from the inlet passage portion are formed on both sides of the partition wall, and an inlet passage portion and a branch passage are formed below the partition wall. A lower space communicating with the branch passage is formed, and a branch passage is communicated with the spiral terminal end of the spiral part, and an on-off valve is provided in the branch passage, and the intake air flow flowing through the branch passage is controlled by the on-off valve. ,
Furthermore, a helical intake port in which the valve shaft of the opening/closing valve is arranged so that its axis is substantially parallel to the axis of the intake valve stem.
JP57084934A 1982-05-21 1982-05-21 Helical type suction port Granted JPS58202328A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57084934A JPS58202328A (en) 1982-05-21 1982-05-21 Helical type suction port
US06/493,570 US4485774A (en) 1982-05-21 1983-05-11 Helically-shaped intake port of an internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57084934A JPS58202328A (en) 1982-05-21 1982-05-21 Helical type suction port

Publications (2)

Publication Number Publication Date
JPS58202328A JPS58202328A (en) 1983-11-25
JPS6238531B2 true JPS6238531B2 (en) 1987-08-18

Family

ID=13844501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57084934A Granted JPS58202328A (en) 1982-05-21 1982-05-21 Helical type suction port

Country Status (1)

Country Link
JP (1) JPS58202328A (en)

Also Published As

Publication number Publication date
JPS58202328A (en) 1983-11-25

Similar Documents

Publication Publication Date Title
JPS6238533B2 (en)
JPS6238537B2 (en)
JPS6236139B2 (en)
JPS6238531B2 (en)
JPS6236138B2 (en)
JPS6239672B2 (en)
JPS6238529B2 (en)
JPS6236136B2 (en)
US4485774A (en) Helically-shaped intake port of an internal-combustion engine
JPS6238530B2 (en)
JPS6229624Y2 (en)
JPS6231619Y2 (en)
JPS6238535B2 (en)
JPH0133791Y2 (en)
JPS6239669B2 (en)
US4481916A (en) Helically-shaped intake port of an internal combustion engine
JPS6238532B2 (en)
JPS6238534B2 (en)
JPS6229623Y2 (en)
JPS6236137B2 (en)
JPS6335166Y2 (en)
JPS6238541B2 (en)
JPS6238528B2 (en)
JPS6238536B2 (en)
JPS6238539B2 (en)