JPS623800A - Determination of ammonia or atp - Google Patents

Determination of ammonia or atp

Info

Publication number
JPS623800A
JPS623800A JP14124185A JP14124185A JPS623800A JP S623800 A JPS623800 A JP S623800A JP 14124185 A JP14124185 A JP 14124185A JP 14124185 A JP14124185 A JP 14124185A JP S623800 A JPS623800 A JP S623800A
Authority
JP
Japan
Prior art keywords
atp
ammonia
kinase
reaction
glutamine synthetase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14124185A
Other languages
Japanese (ja)
Inventor
Tatsurokuro Tochikura
栃倉 辰六郎
Takashi Tachiki
隆 立木
Hidehiko Kumagai
英彦 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Shuzo Co Ltd
Original Assignee
Takara Shuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co Ltd filed Critical Takara Shuzo Co Ltd
Priority to JP14124185A priority Critical patent/JPS623800A/en
Priority to DE19863621448 priority patent/DE3621448A1/en
Publication of JPS623800A publication Critical patent/JPS623800A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/008Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions for determining co-enzymes or co-factors, e.g. NAD, ATP
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To enable the quantitative determination of ammonia or ATP in high sensitivity, by reacting a specimen liquid with a glutamine synthetase in the presence of L-glutamic acid and one of the ammonia and ATP other than the one to be determined and measuring the compound produced by the kinase reaction. CONSTITUTION:A specimen liquid is made to react with a glutamine synthetase in the presence of L-glutamic acid and one of the ammonia and ATP other than the one to be determined (ATP in the case of determining ammonia and ammonia in the case of determining ATP). A kinase is added to the produced ADP and a phosphorus compound for kinase substrate, and the produced kinase reaction product is determined. The reaction completes within about 3min by the use of a glutamine synthetase in contrast with the reaction with glutamic acid dehydrogenase which lasts longer than 6-7min.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酵素法によるアンモニアまたはATPの定量法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for quantifying ammonia or ATP using an enzymatic method.

〔従来の技術〕[Conventional technology]

従来・アンモニアの定量法としては・インドフェノール
法という化学的測定法が主に用いられている。また、酵
素的測定法としては1グルタミン酸脱水素酵素を用いる
方法(例えば特公昭57−21995号参照)が知られ
ている0この方法では、用いられるグルタミン酸脱水素
酵素のアンモニアに対するKm値が大きいため1測定に
多量のグルタミン酸脱水素酵素を必要とする問題を有し
ている。さらに他の酵素的測定法としてはカルバメート
キナーゼを用いる方法(特開昭59−213399号参
照)、またはカルバモイルリン酸合成酵素を用いる方法
(特開昭60−47698号参照)が知られている。
Conventionally, a chemical measurement method called the indophenol method has been mainly used to quantify ammonia. Furthermore, as an enzymatic measurement method, a method using 1-glutamic acid dehydrogenase (for example, see Japanese Patent Publication No. 57-21995) is known. The problem is that a large amount of glutamic acid dehydrogenase is required for one measurement. Furthermore, as other enzymatic measurement methods, a method using carbamate kinase (see JP-A-59-213399) or a method using carbamoyl phosphate synthase (see JP-A-60-47698) is known.

前者の方法では用いられるカルバメートキナーゼが一般
的に不安定で、透析などの処理により失活すると報告さ
れている。それ故、還元型グルタチオン、2−メルカプ
トエタノールなどのSH基保護剤の存在下で酵素を精製
あるいは保存する必要がある。ところが、これらのSH
基保護剤を含むカルバメートキナーゼ標品を用いて・被
検液中のアンモニアを酸化酵素−ヘルオキシダーゼー水
素供与体色源体反応系を含む系で定量する場合、SH基
保護剤の存在はペルオキシダーゼ水素供与体の発色系を
阻害するので、正確な測定値が得られず負の誤差を与え
ることになる。後者の方法では用いられるカルバモイル
リン酸合成酵素が動物臓器由来のものしか入手できない
ため、酵素の大量かつ安価な供給という点で問題を有し
ている。
It has been reported that the carbamate kinase used in the former method is generally unstable and is inactivated by treatments such as dialysis. Therefore, it is necessary to purify or preserve the enzyme in the presence of an SH group protecting agent such as reduced glutathione or 2-mercaptoethanol. However, these SH
When quantifying ammonia in a test solution using a carbamate kinase preparation containing a group-protecting agent and using a system that includes an oxidase-heroxidase-hydrogen donor chromogen reaction system, the presence of an SH group-protecting agent is due to peroxidase. Since the color development system of the hydrogen donor is inhibited, accurate measurement values cannot be obtained and a negative error is given. Since the carbamoyl phosphate synthase used in the latter method can only be obtained from animal organs, there is a problem in supplying the enzyme in large quantities and at low cost.

また、ATPの定量法としては、従来ダルコー素を作用
させ、生成したNADPHを340nmで測定する方法
〔メソッヅ・オプ・エンザイマティツク・アナリシス、
第7巻、筒346頁(1985))、またはルシフェリ
ンおよびMg2+の存在下でATEにルシフェラーゼを
作用させ、発生する562nmの光強度よりATPを定
量する方法が知られている〔同第7巻、第357頁(1
985))。
In addition, as a method for quantifying ATP, there is a conventional method in which darcochloride is applied and the generated NADPH is measured at 340 nm [Methods Op Enzymatic Analysis,
Vol. 7, p. 346 (1985)), or a method is known in which luciferase is allowed to act on ATE in the presence of luciferin and Mg2+, and ATP is quantified from the generated light intensity at 562 nm [Vol. 7, p. 346 (1985)]. Page 357 (1
985)).

しかし前者の方法では、ATE 1分子よりNADPH
1分子しか生成しないため感度が低く1また・後者の方
法ではルシフェリンおよヒルシフェラーゼが高価である
という問題を有している。
However, in the former method, more NADPH than one ATE molecule
Since only one molecule is produced, the sensitivity is low, and the latter method has problems in that luciferin and luciferase are expensive.

〔発明が解決しょ、うとする問題点〕[Problems that the invention attempts to solve]

本発明の目的は1上記現状に鑑み1アンモニアまたはA
TPの高感度で簡便かつ安価な定量法を提供することに
ある。
The purpose of the present invention is to: 1. In view of the above-mentioned current situation, 1. ammonia or A.
The object of the present invention is to provide a highly sensitive, simple, and inexpensive method for quantifying TP.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明はアンモニアまたはATP
の定量法に関するものであり、被検液中のアンモニアま
たはATPを定量するに当り、被定量成分ではないもう
一方の物質およびL−グルタミン酸の存在下で被検液に
グルタミン合成酵素を作用させ、生成したADPとキナ
ーゼ基質用リン化合物にキナーゼを作用させて、生成し
たキナーゼ反応生成物を定量することを特徴とする。上
記被定量成分ではないもう一方の物質とは、アンモニア
定量の場合ATPを、またATP定量の場合アンモニア
を表わすものとする。
To summarize the present invention, the present invention provides ammonia or ATP.
In quantifying ammonia or ATP in a test solution, glutamine synthetase is allowed to act on the test solution in the presence of L-glutamic acid and another substance that is not the component to be quantified, The method is characterized in that a kinase is made to act on the generated ADP and a phosphorus compound for a kinase substrate, and the generated kinase reaction product is quantified. The other substance that is not the component to be quantified is ATP in the case of ammonia quantification, and ammonia in the case of ATP quantification.

本発明はサイクリング反応を利用した定量法であり高感
度であること1比色定量が可能であう。と、グルタミン
合成酵素が微生物より安価かつ大量に調整可能であるこ
と、とくにマイクロコツカス属およびブレビバクテリウ
ニ属のグルタミン合成酵素は菌体内タンパク質の2〜3
%にまで達し、また非常に安定である、などの特徴を有
しており、臨床検査分野に新規なアンモニアまたはAT
Pの定量法を提供するものである。
The present invention is a quantitative method that utilizes a cycling reaction, and is highly sensitive.1 Colorimetric determination is possible. In particular, the glutamine synthetase of Micrococcus spp. and Brevibacterium spp.
% and is extremely stable, making it a new ammonia or AT product in the field of clinical testing.
This provides a method for quantifying P.

本発明に供される被検液としては、アンモニアまたはA
T]’のいずれか一方を含むものであればよく、アンモ
ニアまたはATPを予め含む被検液や、酵素反応により
生成されたアンモニアまたはATPを含む被検液がある
。酵素反応によりアンモニアを生成する反応には、以下
に例示するものがあるが、それらの酵素活性測定、基質
または生成物の定mを行うことが可能である。
The test liquid used in the present invention includes ammonia or A
It is sufficient that the test liquid contains either one of T]', and examples thereof include a test liquid that contains ammonia or ATP in advance, and a test liquid that contains ammonia or ATP produced by an enzyme reaction. Examples of reactions that produce ammonia by enzymatic reactions include those listed below, and it is possible to measure their enzyme activity and determine the amount of substrates or products.

1.7スパラギナーゼ(EC!3.5.1.1)L−ア
スパラギン+HIO−+  J、−アスパラギン僧+N
H32、アスパルターゼ(ICO4,3,1,1)L−
アスパラギン酸→ フマール酸十NH。
1.7 Sparaginase (EC! 3.5.1.1) L-asparagine + HIO-+ J, -asparagine + N
H32, aspartase (ICO4,3,1,1)L-
Aspartic acid → fumaric acid 1NH.

3、アデニンデアミナーゼ(Mg3.5.4.2)アデ
ニン十HzO→ ヒボキサンチン十NH34、アデノシ
ンデアミナーゼ(to3.5.4.4)アデノシン十H
xO→イノシン十NHs5、アデノシンモノリン酸デア
ミナーゼ(EC3・5・4・6)AMP + Hto 
 →工MP + ME s6、アデノシンIJ ン酸テ
アミナーゼ(to3.5.4.17)アデノシンリン酸
+H,O→ イノシンリン酸+mHs7、−yミンデヒ
ドaゲナーゼ(KOl、4.99.3)8、アルギニ>
デアミナーゼ(to3.5.3.6)L−アルギニン→
L−シトルリン十NHs9、アミダーゼ(KO3,5,
1,4)モノカルボン酸アミド+J(,0→モノカルボ
ンm+yns10、ω−アミダーゼ(EC3,5,1,
3)2−ケトグルタラミン酸+H,O→ 2−ケトグル
タル酸十NH311、ウレアーゼ(KO3、5、1、5
)尿素十H!O→2 NHz + OO!12、ウレイ
ドスクシナーゼ(B:03.5.1.7)13、グアニ
ンデアミナーゼ(KO3,5,4,3)グアニン+H,
O→キサンチン+NH。
3. Adenine deaminase (Mg3.5.4.2) Adenine 10HzO → Hyboxanthin 10NH34, Adenosine deaminase (to3.5.4.4) Adenosine 10H
xO→Inosine 1NHs5, adenosine monophosphate deaminase (EC3/5/4/6) AMP + Hto
→ Engineering MP + ME s6, adenosine IJ acid theaminase (to3.5.4.17) adenosine phosphate + H, O → inosine phosphate + mHs7, -yminedehyde a genease (KOl, 4.99.3) 8, arginine>
Deaminase (to3.5.3.6) L-arginine →
L-citrulline NHs9, amidase (KO3,5,
1,4) Monocarboxylic acid amide + J (,0 → monocarboxylic m + yns10, ω-amidase (EC3,5,1,
3) 2-ketoglutamic acid + H, O → 2-ketoglutaric acid + NH311, urease (KO3, 5, 1, 5
) Urea 10H! O → 2 NHz + OO! 12, ureidosuccinase (B:03.5.1.7) 13, guanine deaminase (KO3,5,4,3) guanine + H,
O → xanthine + NH.

14、グアノシンデアミナーゼ(IO3,5,4,15
)グアノシン+H,O→キサントシン+NH3ニコチン
アミド十H,O→ニコチンm+NHsL−ヒスチジン→
 ウロカニン酸十NH。
14, Guanosine deaminase (IO3,5,4,15
) Guanosine + H, O → Xanthosine + NH3 Nicotinamide 1 H, O → Nicotine m + NHsL-Histidine →
Urocanic acid 1NH.

また、酵素反応によりATPを生成する反応としては以
下に例示するものがあるが、それらの。
In addition, there are the following examples of reactions that generate ATP by enzymatic reactions.

酵素活性測定・基質または生成物の定量を行うことが可
能である。
It is possible to measure enzyme activity and quantify substrates or products.

L−チロシン+ATP −)−tRNA2.7セチルー
OoAシンセターゼ(EO6,2,1,1)AMP−1
−PPi+アセチル−0oAコ ATP+酢酸+OoA
SHAMP+ビロリン酸+AMP 2 ATP+デアミ
ド−NAD+NH。
L-Tyrosine+ATP-)-tRNA2.7 Cetyl-OoA Synthetase (EO6,2,1,1)AMP-1
-PPi+acetyl-0oA ATP+acetic acid+OoA
SHAMP + birophosphoric acid + AMP 2 ATP + deamide-NAD + NH.

以上これらは例示であり、何ら本発明の対象を限定する
ものではない。
These are merely examples and do not limit the scope of the present invention in any way.

次に、本発明に用いられるグルタミン合成酵素は各種高
等動物の脳や肝臓、マメの種子、大腸菌その他の微生物
に存在するが、大社かつ安価に供給できるという点でマ
イクロコツカス属およびブレビバクテリウム属より選ば
れたグルタミン合成酵素生産菌より取得される酵素(こ
のグルタミン合成酵素については特開昭57−3359
4号参照)を使用するのが有利である0まず・本発明に
使用されるグルタミン合成酵素の各性質を示す。
Next, although the glutamine synthetase used in the present invention is present in the brains and livers of various higher animals, bean seeds, Escherichia coli, and other microorganisms, Micrococcus spp. and Brevibacterium spp. Enzymes obtained from glutamine synthetase-producing bacteria selected from the genus
First, the properties of the glutamine synthetase used in the present invention will be shown.

グルタミン合成酵素の酵素化学的および理化学的性質 (1)作 用: 本酵素は下式のようにL−グルタミン酸とアンモニアよ
り、ATPの化学エネルギーを利用してグルタミンを合
成する反応を触媒する。
Enzyme-chemical and physicochemical properties of glutamine synthetase (1) Action: This enzyme catalyzes the reaction of synthesizing glutamine from L-glutamic acid and ammonia using the chemical energy of ATP, as shown in the following formula.

L−グルタミン酸+アンモニア+ATP  →L−グル
タミン+ADP+無機リン酸 (2)基質特異性ニ アミノ基受容体としては、本酵素はL−グルタミン酸に
極めて高い特異性を示す。塩化アンモニウムの代りにヒ
ドロキシルアミンを用いた場合にも、約30%の活性が
認められた。
L-glutamic acid + ammonia + ATP → L-glutamine + ADP + inorganic phosphate (2) Substrate specificity As a niamin group receptor, this enzyme shows extremely high specificity for L-glutamic acid. Approximately 30% activity was also observed when hydroxylamine was used instead of ammonium chloride.

(J至適pHおよびpH安定性: 本酵素の至適pHは7.0〜8.0である。また・本酵
素を50’Cにおいて、それぞれのpklで10分間処
理したとき、pH6,0〜9.0の範囲で安定であるC
[4)至適温度および熱安定性: 本酵素の至適温度は50°C付近にあり、pa7.0に
おいて1それぞれの温度で10分間処理したとき50°
Cまで安定である。
(J optimal pH and pH stability: The optimal pH of this enzyme is 7.0 to 8.0. Also, when this enzyme was treated with each pkl at 50'C for 10 minutes, the pH was 6.0 to 8.0. C that is stable in the range of ~9.0
[4) Optimal temperature and thermostability: The optimal temperature of this enzyme is around 50°C, and when treated at each temperature for 10 minutes at pa 7.0, the temperature of 50°C
It is stable up to C.

(ω分子社: 本酵素の分子量は沈降平衡法により、偏比容を0475
と仮定したときに約50万である。
(ω Molecule Company: The molecular weight of this enzyme was determined by the sedimentation equilibrium method, and the partial specific volume was determined to be 0475.
Assuming that, it is approximately 500,000.

また、5DS−ポリアクリルアミドゲル電気泳動法では
約6万〜6,5万であることから、本酵素は同一のサブ
ユニット8個からなる8量体である。
Moreover, since the 5DS-polyacrylamide gel electrophoresis method shows that the amount is approximately 60,000 to 65,000, this enzyme is an octamer consisting of eight identical subunits.

(6)阻 害: 各種代謝産物による百害を検討したところ・アミノ酸類
ではグリシン、L−トリプトファン、D−スレオニン等
で若干の医書が見られる程度であるが、ヌクレオチド、
ヌクレオシド類による阻害は大きく、アデノシン、 A
MP。
(6) Inhibition: After examining the damage caused by various metabolites, there are only a few medical records for amino acids such as glycine, L-tryptophan, and D-threonine, but for nucleotides,
Inhibition by nucleosides is large; adenosine, A
M.P.

ADPなどによって活性は強く■害される。Its activity is strongly impaired by ADP and the like.

(′r)金属イオンの影響: 酵素反応には金属イオンとしてMg 1+を要求しSM
n”十でも34%の活性がある〇(8) Km値: 各、基質に対するKm値を求めたところ、L−グルタミ
ン酸に対して7.9 x 10−”M%塩化アンモニウ
ムに対して5.0 x 10−”M、 ATPに対して
1.2 X 10−’Mであった。
('r) Effect of metal ions: Enzyme reactions require Mg 1+ as metal ions, and SM
34% activity even with n"0 (8) Km value: When the Km value for each substrate was determined, it was 7.9 x 10-" for L-glutamic acid and 5.9 for M% ammonium chloride. 0 x 10-'M and 1.2 x 10-'M for ATP.

(9)酵素活性測定法: 酵素活性の測定は次のようにして求めた。(9) Enzyme activity measurement method: Enzyme activity was measured as follows.

soomMグルタミン酸ナトリツナトリウム溶液0mi
x250mM塩化アンモニウム溶液0.1ffiA!、
75mM ATP溶液0.1 ml s 300 mM
 Mg01g溶液0.1尼、1Mイミダゾール−塩酸緩
裡液(pH7,0)Q、 l ml 、水0.4 rn
lおよび適当に希釈した酵素液Q、 l mi 、反応
液fl 1. Oratで37°C,10分間反応させ
、生成する無機リン酸をフイスヶーサバロウの方法で測
定する方法、および生成するグルタミンをペーパークロ
マトダラフィーで分離し、ニンヒドリン発色法で測定す
る方法により求めた◇グルタミン合成活性の1単位は上
記反応系で1分間に1μMの無機リン酸あるいはグルタ
ミンを生成する酵素量として表示した。
soomM sodium glutamate solution 0mi
x250mM ammonium chloride solution 0.1ffiA! ,
75mM ATP solution 0.1ml s 300mM
Mg01g solution 0.1ml, 1M imidazole-hydrochloric acid solution (pH 7,0) Q, lml, water 0.4rn
l and appropriately diluted enzyme solution Q, l mi , reaction liquid fl 1. The reaction was carried out at 37°C for 10 minutes in Orat, and the produced inorganic phosphoric acid was measured using the method of Fuisuka-Sabarou, and the produced glutamine was separated using paper chromatography and measured using the ninhydrin color method. One unit of the determined ◇glutamine synthesis activity was expressed as the amount of enzyme that produces 1 μM of inorganic phosphoric acid or glutamine per minute in the above reaction system.

なお、グルタミン合成酵素の製造方法については特開昭
57−33594号に記載されている。
The method for producing glutamine synthetase is described in JP-A-57-33594.

〔作 用〕[For production]

アンモニアおよびATPの定量法 本発明者らは、被検液中のアンモニアまたはATPの定
量方法について鋭意検討を重ねた結果・グルタミン合成
酵素を用いることにより高感度で簡便かつ安価なアンモ
ニアまたはATPの定量法を見出した。被検液中のアン
モニアはL−グルタミン酸とATPの存在下、グルタミ
ン合成酵素の作用により、L−グルタミン、ADPおよ
び無機リン酸を生成し、また被検液中のATPはL−ダ
ルタミン酸とアンモニアの存在下、本酵素作用により1
L−グルタミン、ADPおよび無機リン%を生成する。
Quantification method of ammonia and ATP The present inventors have conducted extensive studies on a method for quantifying ammonia or ATP in a test solution. ・The quantification of ammonia or ATP is highly sensitive, simple, and inexpensive by using glutamine synthetase. I found the law. In the presence of L-glutamic acid and ATP, ammonia in the test solution produces L-glutamine, ADP, and inorganic phosphate by the action of glutamine synthetase, and ATP in the test solution produces L-daltamic acid and ammonia. 1 by the action of this enzyme in the presence of
Produces L-glutamine, ADP and % inorganic phosphorus.

酵素反応により生成したADPにキナーゼ基質用リン化
合物の存在下、キナーゼを作用させるとキナーゼ反応生
成物とATPが生成され、サイクリング反応が進行しA
TPが増幅される。この反応の一例としてピルビン酸キ
ナーゼによるADPとホスホエノールピルビン酸からA
TPとピルビン酸を生成する反応が挙げられる。生成し
たピルビン酸の定量には公知の方法を用いることができ
る。例えばピルビン酸にNADHと乳酸脱水素酵素を作
用させ、NADHの340nmの吸光度の減少より定量
するが、またはピルビン酸オキシダーゼを作用させ消費
される酸素を酸素電極で測定するか、生成する過酸化水
素をペルオキシダーゼ系による呈色反応、例えば4−ア
ミノアンチピリン−フェノール−ペルオキシダーゼ法を
用いた場合500nmで定量することかできる。
When a kinase is allowed to act on ADP produced by the enzymatic reaction in the presence of a phosphorus compound for the kinase substrate, a kinase reaction product and ATP are produced, and the cycling reaction progresses.
TP is amplified. An example of this reaction is ADP and phosphoenolpyruvate by pyruvate kinase.
An example is a reaction that produces TP and pyruvic acid. A known method can be used to quantify the produced pyruvic acid. For example, by reacting pyruvate with NADH and lactate dehydrogenase, it is determined by the decrease in absorbance of NADH at 340 nm, or by reacting pyruvate oxidase and measuring the consumed oxygen with an oxygen electrode, or by reacting with pyruvate oxidase and measuring the consumed oxygen with an oxygen electrode, or by reacting with pyruvate oxidase and measuring the consumed oxygen with an oxygen electrode, or by reacting with pyruvate oxidase and measuring the consumed oxygen with an oxygen electrode, or by reacting with pyruvate oxidase and measuring the consumed oxygen with an oxygen electrode, or by reacting with pyruvate oxidase and measuring the consumed oxygen with an oxygen electrode. can be quantified at 500 nm using a color reaction using a peroxidase system, for example, the 4-aminoantipyrine-phenol-peroxidase method.

反応に用いられる緩衝液は特に限定されず、リン酸緩衝
液、イミダゾール緩衝液、トリス緩衝液、グリシルグリ
シン緩衝液などが好適であり・pH6〜9S好ましくは
pH7の緩衝液が用pbられるOグルタミン合成酵素は
通常0.2〜2Q単位、好ましくは1〜5単位・キナー
ゼ・例えハヒルビン増キナーゼは、1〜1Q0単位、好
ましくは5単位以上用いられる。また・L−グルタミン
酸濃度は1〜5QmM、好ましくは5〜l QmMs 
ATPやキナーゼ基質用リン化合物1例えばホスホエノ
ールピルビン酸およびNADHは少なくとも被検液中の
アンモニアまたはATPのモル量以上用いればよい。反
応温度は20〜400C1反応時間は1〜20分間で反
応は行なわれる。
The buffer used in the reaction is not particularly limited, and phosphate buffer, imidazole buffer, Tris buffer, glycylglycine buffer, etc. are suitable.Buffers with pH 6 to 9S and preferably pH 7 are used. Glutamine synthetase is usually used in an amount of 0.2 to 2 Q units, preferably 1 to 5 units. Kinases such as hahirubin increase kinase are used in amounts of 1 to 1 Q0 units, preferably 5 or more units. Also, L-glutamic acid concentration is 1 to 5 QmM, preferably 5 to 1 QmMs
Phosphorus compounds 1 for ATP and kinase substrates, such as phosphoenolpyruvate and NADH, may be used in an amount at least equal to or greater than the molar amount of ammonia or ATP in the test solution. The reaction temperature is 20 to 400C and the reaction time is 1 to 20 minutes.

〔実施例〕〔Example〕

以下に本発明を、実施例をもって説明するが、本発明が
以下の実施例の範囲のみに限定されるものではない。
The present invention will be explained below with reference to examples, but the present invention is not limited to the scope of the following examples.

実施例 1 アンモニアの定量 (ピルビン酸キナーゼ−乳酸脱水素
酵素反応系) 1 M  イミダゾール−塩酸緩衝液(pH,7,0)
  0.3m150mML−グルタミン酸ナトリウム 
     Q、l mi3 Q mM  ATE   
                Q、1mt3QmM
  ホスホエノールピルビン酸       011d
7.5 mM  NADHQ、1m1 1.5M   MgO1x             
    0.1工!2.7M   KOI      
            0.1m130単位7mb 
 グルタミン合成酵素(合成活性)     0.11
rLl水                     
1.3 ml上記混合溶液3.0罰に1.2,3.4お
よび5mMの塩化アンモニウム溶液0.1 miをそれ
ぞれ添加し、37℃で5分間反応した。第1図に示すよ
うに添加した塩化アンモニウム量と340nmの吸光度
の減少量には良好な直線関係が得られた。
Example 1 Quantification of ammonia (pyruvate kinase-lactate dehydrogenase reaction system) 1 M imidazole-hydrochloric acid buffer (pH, 7.0)
0.3ml 150mmL-sodium glutamate
Q, l mi3 Q mM ATE
Q, 1mt3QmM
Phosphoenolpyruvate 011d
7.5mM NADHQ, 1ml 1.5M MgO1x
0.1 engineering! 2.7M KOI
0.1m 130 units 7mb
Glutamine synthetase (synthetic activity) 0.11
rLl water
To 1.3 ml of the above mixed solution 0.1 ml of 1.2, 3.4 and 5 mM ammonium chloride solutions were added, respectively, and reacted at 37° C. for 5 minutes. As shown in FIG. 1, a good linear relationship was obtained between the amount of ammonium chloride added and the amount of decrease in absorbance at 340 nm.

実施例 2 反応糸) 1 M  イミダゾール−塩酸むQ菌液(pH7,0)
  0.3m/150mM  L−グルタミン酸ナトリ
ウム      Q、 l m113 Q mM  A
TP                   0.1m
130 mM  ホスホエノールピルビン酸0.112
4.6mM   4−7ミノアンチビリン      
 Q、 l m1420mM   フェノール    
           0.1 rILtl、5 M 
  MgO1z                Q、
1mA2.7M   KOI            
     O,1mA6mM   チアミンピロホスフ
ェート       0.1 mAlmM   XFA
D                  0.1rrl
A30単wmt  グルタミン合成酵素(合成活性)、
    Q、1mj水               
      1.4成上記混合溶液3. Onle;に
1,2,3.4および5mMの塩化アンモニウム溶液Q
、 l mlをそれぞれ添加し、37°Cで5分間反応
した。@2図に示すように添加した塩化アンモニウム量
と500nmの吸光度の増加量には良好な直線関係が得
られた〇 実施例 3 ATPの定量 1 M  イミダゾール−塩酸緩衝液(pH7,0) 
 0.3m115QmML−グルタミン酸ナトリウム 
     0.1 ml 50 mM  塩化アンモニ
ウム          Q、 l mi13 Q m
M  ホスホエノールピルビン酸      Q、 l
 mi7.5mM  NADH041m1j 1.5 M   Mg011            
   0.1m12.7M   KOI       
           o、xmt30単V′mt  
グルタミン合成酵素(合成活性)     o、 1 
mi水                     1
.3ml上記混合溶液3. Q mlに0.25 、0
.50.0.75およびl、QmMのATP溶液0.1
蛯をそれぞれ添加。
Example 2 Reaction thread) 1 M imidazole-hydrochloric acid Q bacterial solution (pH 7.0)
0.3m/150mM Sodium L-glutamate Q, l m113 Q mM A
TP 0.1m
130 mM Phosphoenolpyruvate 0.112
4.6mM 4-7 Minoantivirine
Q, lm1420mM phenol
0.1 rILtl, 5 M
MgO1z Q,
1mA2.7M KOI
O,1mA6mM Thiamine pyrophosphate 0.1 mAlmM XFA
D 0.1rrl
A30 monowmt glutamine synthetase (synthetic activity),
Q, 1mj water
1.4 Mixed solution 3. Onle; 1, 2, 3.4 and 5mM ammonium chloride solution Q
, 1 ml were added, and reacted at 37°C for 5 minutes. @2 As shown in the figure, a good linear relationship was obtained between the amount of ammonium chloride added and the increase in absorbance at 500 nm. Example 3 Quantification of ATP 1 M imidazole-hydrochloric acid buffer (pH 7,0)
0.3ml115QmML-Sodium Glutamate
0.1 ml 50 mM ammonium chloride Q, l mi13 Q m
M Phosphoenolpyruvate Q, l
mi7.5mM NADH041m1j 1.5M Mg011
0.1m12.7M KOI
o, xmt30 single V'mt
Glutamine synthetase (synthetic activity) o, 1
mi water 1
.. 3ml of the above mixed solution 3. Q 0.25 in ml, 0
.. 50.0.75 and l, QmM ATP solution 0.1
Add each elm.

し、37°Cで反応させ、3分後と5分後のNADlK
の減少の差を測定した。第3図に示すようにATPの添
加量とNADHの減少量には良好な直線関係が得られた
and reacted at 37°C, and NADlK after 3 and 5 minutes.
The difference in decrease was measured. As shown in FIG. 3, a good linear relationship was obtained between the amount of ATP added and the amount of decrease in NADH.

参考例 グルタミン合成酵素とグルタミン酸脱水素酵素を用いて
アンモニアを定量する場合の反応速度の比較 本発明で使用されるグルタミン合成酵素と酵母由来の従
来のグルタミン酸脱水素酵素を用いて、低濃度のアンモ
ニアを定量する場合、どちらか速やかに終点に達するか
比較試験を行なった。グルタミン合成酵素を用いる場合
の混合溶液組成は45単位/rnl(合成活性)のグル
タ・ミン介成酵素溶液Q、 l miを用いる以外は実
施例1と同様で、またグルタミン酸脱水素酵素を用いる
場合の混合溶液組成は300mMト’Jスー塩酸緩衝液
(pH8,0)  1.0m1s 225mM  2−
’r )グルタA/藤溶液0.1 mε、5 mM  
NADPH溶液01づ、300mM塩化アンモニウム溶
液Q、 l mt・45単位/ meグルタミン酸脱水
素酵素溶液Q、l mAおよび水1.5 miである0
上記両混合溶液3. Q rnbに0.5゜10および
2. Q mMの塩化アンモニウム溶液50μlをそれ
ぞれ添加し、37°Cで反応させNADHの減少に基づ
<340nmの吸光度を経時的に測定した。第4図に示
すようにグルタミン合成酵素を用いた場合(A)・いず
れのアンモニア濃度でも釣3分間で反応が終了するのに
対し、グルタミン酸脱水素酵素を用いた場合(B)には
、6〜7分経過時でいずれのアンモニア濃度においても
反応は終了していなかった。
Reference Example: Comparison of reaction rates when quantifying ammonia using glutamine synthetase and glutamate dehydrogenase. When quantifying, we conducted a comparative test to determine which method reaches the end point more quickly. When using glutamine synthetase, the mixed solution composition is the same as in Example 1 except for using 45 units/rnl (synthetic activity) of glutamine-mediated enzyme solution Q, lmi, and when using glutamate dehydrogenase. The mixed solution composition is 300mM To'J-HCl buffer (pH 8,0) 1.0mls 225mM 2-
'r) Gluta A/Wisteria solution 0.1 mε, 5 mM
NADPH solution 01, 300 mM ammonium chloride solution Q, l mt·45 units/me glutamic acid dehydrogenase solution Q, l mA and water 1.5 mi 0
Both of the above mixed solutions 3. 0.5°10 and 2. to Qrnb. 50 μl of Q mM ammonium chloride solution was added to each, reacted at 37° C., and the absorbance at <340 nm was measured over time based on the decrease in NADH. As shown in Figure 4, when glutamine synthetase is used (A), the reaction is completed in 3 minutes at any ammonia concentration, whereas when glutamate dehydrogenase is used (B), the reaction is completed within 3 minutes. After ~7 minutes had elapsed, the reaction had not been completed at any ammonia concentration.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の定量法によればア
ンモニアまたはATPを高感度かつ持具的に定量するこ
とができる。また本発明に用いるグルタミン合成酵素は
微生物より安価に調製することが可能であり臨床検査試
桑として優れた効果を有する。
As explained in detail above, according to the quantitative method of the present invention, ammonia or ATP can be quantitatively determined with high sensitivity and in a convenient manner. Furthermore, the glutamine synthetase used in the present invention can be prepared at a lower cost than microorganisms, and has excellent effects as a clinical test sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の定1号方法の実施例1における検1線
をアンモニア量と340nmの吸光度差との関係で示し
たグラフである。第2図は本発明の定量方法の実施例2
における検量線をアンモニア量と500nmの吸光度差
との関係で示したグラフである。第3図は本発明の定量
方法の実施例3における検量線をATP渣と340nm
の吸光度差との関係で示したグラフである。そして、第
4図は本発明に使用されるグルタミン合成酵素(A)と
従来のグルタミン酸脱水素酵素(B)をそれぞれ用いて
、アンモニアを定量する場合の反応速度を反応時間(分
)と340nmの吸光度差との関係で示したグーラフで
ある。
FIG. 1 is a graph showing the relationship between the amount of ammonia and the absorbance difference at 340 nm for the first test line in Example 1 of Method No. 1 of the present invention. Figure 2 shows Example 2 of the quantitative method of the present invention.
2 is a graph showing the calibration curve in terms of the relationship between the amount of ammonia and the difference in absorbance at 500 nm. Figure 3 shows the calibration curve in Example 3 of the quantitative method of the present invention with ATP residue and 340 nm.
It is a graph shown in relation to the absorbance difference. Figure 4 shows the reaction time (minutes) and the reaction rate at 340 nm for quantifying ammonia using the glutamine synthetase (A) used in the present invention and the conventional glutamate dehydrogenase (B). This is a graph shown in relation to the absorbance difference.

Claims (1)

【特許請求の範囲】 1、被検液中のアンモニアまたはATPを定量するに当
り、被定量成分ではないもう一方の物質およびL−グル
タミン酸の存在下で被検液にグルタミン、合成酵素を作
用させ、生成したADPとキナーゼ基質用リン化合物に
キナーゼを作用させて、生成したキナーゼ反応生成物を
定量することを特徴とするアンモニアまたはATPの定
量法。 2、被検液中に、グルタミン合成酵素、キナーゼおよび
基質用リン化合物を同時に存在させる特許請求の範囲第
1項記載のアンモニアまたはATPの定量法。
[Claims] 1. In quantifying ammonia or ATP in a test solution, glutamine and a synthetic enzyme are allowed to act on the test solution in the presence of another substance other than the component to be quantified and L-glutamic acid. A method for quantifying ammonia or ATP, which comprises causing a kinase to act on the generated ADP and a phosphorus compound for a kinase substrate, and quantifying the generated kinase reaction product. 2. The method for quantifying ammonia or ATP according to claim 1, wherein a glutamine synthetase, a kinase, and a phosphorus compound for substrate are present simultaneously in the test solution.
JP14124185A 1985-06-27 1985-06-27 Determination of ammonia or atp Pending JPS623800A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14124185A JPS623800A (en) 1985-06-27 1985-06-27 Determination of ammonia or atp
DE19863621448 DE3621448A1 (en) 1985-06-27 1986-06-26 Method for the determination of ammonia (or ATP)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14124185A JPS623800A (en) 1985-06-27 1985-06-27 Determination of ammonia or atp

Publications (1)

Publication Number Publication Date
JPS623800A true JPS623800A (en) 1987-01-09

Family

ID=15287374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14124185A Pending JPS623800A (en) 1985-06-27 1985-06-27 Determination of ammonia or atp

Country Status (2)

Country Link
JP (1) JPS623800A (en)
DE (1) DE3621448A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293467A (en) * 1990-04-10 1991-12-25 Toto Ltd Formation of surface pattern of ceramic product
KR100433683B1 (en) * 2001-06-18 2004-05-31 한국과학기술연구원 A microassay method of glutamine synthetase
EP3315611A1 (en) 2016-10-25 2018-05-02 ARKRAY, Inc. Quantification method for ammonia, quantification reagent kit, test piece, and ammonia quantification device
JP2018068278A (en) * 2016-10-25 2018-05-10 アークレイ株式会社 Quantification method, quantification reagent kit, test piece, and quantification apparatus for ammonia
EP3441478A1 (en) 2017-08-10 2019-02-13 ARKRAY, Inc. Improved glutamine synthetase reaction and method for quantifying ammonia utilizing the same
CN113075139A (en) * 2021-03-29 2021-07-06 迪瑞医疗科技股份有限公司 Stable double-reagent blood ammonia determination kit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2834704A1 (en) * 1978-08-08 1980-02-21 Boehringer Mannheim Gmbh METHOD FOR THE QUANTITATIVE ENZYMATIC DETERMINATION OF ADP

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293467A (en) * 1990-04-10 1991-12-25 Toto Ltd Formation of surface pattern of ceramic product
KR100433683B1 (en) * 2001-06-18 2004-05-31 한국과학기술연구원 A microassay method of glutamine synthetase
EP3315611A1 (en) 2016-10-25 2018-05-02 ARKRAY, Inc. Quantification method for ammonia, quantification reagent kit, test piece, and ammonia quantification device
JP2018068278A (en) * 2016-10-25 2018-05-10 アークレイ株式会社 Quantification method, quantification reagent kit, test piece, and quantification apparatus for ammonia
US10731200B2 (en) 2016-10-25 2020-08-04 Arkray, Inc. Quantification method for ammonia, quantification reagent kit, test piece, and ammonia quantification device
EP3441478A1 (en) 2017-08-10 2019-02-13 ARKRAY, Inc. Improved glutamine synthetase reaction and method for quantifying ammonia utilizing the same
US11162123B2 (en) 2017-08-10 2021-11-02 Arkray, Inc. Glutamine synthetase reaction and method for quantifying ammonia utilizing the same
CN113075139A (en) * 2021-03-29 2021-07-06 迪瑞医疗科技股份有限公司 Stable double-reagent blood ammonia determination kit
CN113075139B (en) * 2021-03-29 2022-10-11 迪瑞医疗科技股份有限公司 Stable double-reagent blood ammonia determination kit

Also Published As

Publication number Publication date
DE3621448A1 (en) 1987-01-08

Similar Documents

Publication Publication Date Title
Shapiro et al. [130] Glutamine synthetase (Escherichia coli)
EP0034213B1 (en) A stabilized aqueous coenzyme solution for use in a clinical assay, a method of stabilizing a labile coenzyme in an aqueous clinical assay solution and a kit for use in said clinical assay
CA1187388A (en) Stabilization of working reagent solutions containing nadh, nadph, and/or enzymes, and the use of such stabilized reagents in enzymes or substrate assays
US4923796A (en) Method for the quantitative enzymatic determination of ADP
Meyer et al. A simple and accurate spectrophotometric assay for phosphoenolpyruvate carboxylase activity
US5780256A (en) Method and composition for quantitative determination of ammonia, α-amino acid, or α-keto acid
JPS623800A (en) Determination of ammonia or atp
JPS62142272A (en) Quantitative determination of ammonia or atp
EP3441478B1 (en) Method for quantifying ammonia using an improved glutamine synthetase reaction
EP3315611B1 (en) Quantification test piece for ammonia, and ammonia quantification device
EP0207493B1 (en) Method of terminating isocitrate dehydrogenase reaction
USRE27524E (en) Enzymatic determination of nitrogen- containing compounds and enzymes reactive therewith
JPH0675515B2 (en) Method for quantifying biological substances using ammonia as reaction product
Deuel et al. Bacillus subtilis Glutamine Synthetase: DEPENDENCE OF γ-GLUTAMYLTRANSFERASE ACTIVITY ON IONIC STRENGTH AND SPECIFIC MONOVALENT CATIONS
Bootsma et al. Determination of serum 5-nucleotidase by meand of a NADH-linked reaction
US3485723A (en) Enzymatic determination of nitrogen-containing compounds and enzymes reactive therewith
JPS5931700A (en) Determination of organism substance producing ammonia as reaction product
JPH0773517B2 (en) Method for quantifying creatine kinase
JP4127767B2 (en) Measuring reagent using enzyme cycling that can be stored in liquid form
JPH0889292A (en) Mehtod for stabilizing xanthine dehydrogenase
Makarewicz et al. AMP-aminohydrolase of human skeletal muscle. The effect of temperature on catalytic functions
CN117805044A (en) Blood ammonia measuring method
US6696266B1 (en) Method for assaying ammonia using an NAD-based cycling reaction system
JPH0773514B2 (en) Ammonia determination method
US20070048813A1 (en) Agent for assaying analyte of patient by enzyme