JPS6236995B2 - - Google Patents

Info

Publication number
JPS6236995B2
JPS6236995B2 JP57044022A JP4402282A JPS6236995B2 JP S6236995 B2 JPS6236995 B2 JP S6236995B2 JP 57044022 A JP57044022 A JP 57044022A JP 4402282 A JP4402282 A JP 4402282A JP S6236995 B2 JPS6236995 B2 JP S6236995B2
Authority
JP
Japan
Prior art keywords
ceramic
base
surface layer
circuit breaker
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57044022A
Other languages
Japanese (ja)
Other versions
JPS58161980A (en
Inventor
Naofumi Kageyama
Masuo Asakawa
Yoshikazu Uchiumi
Ken Sato
Hiroshi Kakeyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4402282A priority Critical patent/JPS58161980A/en
Publication of JPS58161980A publication Critical patent/JPS58161980A/en
Publication of JPS6236995B2 publication Critical patent/JPS6236995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Circuit Breakers (AREA)

Description

【発明の詳細な説明】 本発明は基材セラミツク表面を表面処理または
改質して表面付着性(漏れ性)を減少させた複合
セラミツク材料、特に遮断器用複合セラミツク材
料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite ceramic material whose surface adhesion (leakage) is reduced by surface treatment or modification of the surface of the base ceramic, and particularly to a composite ceramic material for circuit breakers.

従来のセラミツク材料を用いた遮断器用ノズル
の一例を第1図により説明すると、単一のセラミ
ツクまたはテフロン基材1中にSF6ガス等2が充
填しており、この部分でアークが発生し電極金属
の蒸発により金属粉、金属弗化物、金属酸化物等
を生成する。図中、基材1がセラミツクの場合、
アークにより生成した上記生成物が基材1の表面
に付着し、沿面耐電圧等の表面特性を低下させ
る。また、基材1がテフロンの場合、アークによ
る生成物の付着は少ないものの耐熱性が低いため
内部から発泡したり、クラツク発生現象を生じ消
耗が大きく、また機械的強度や硬さが不足してお
り、大電流アーク遮断器の場合設計が難しいとい
う欠点があつた。
An example of a conventional circuit breaker nozzle using ceramic material is explained with reference to Fig. 1. A single ceramic or Teflon base material 1 is filled with SF 6 gas, etc. 2, and an arc is generated in this part and the electrode Metal powder, metal fluoride, metal oxide, etc. are produced by evaporation of metal. In the figure, when the base material 1 is ceramic,
The products generated by the arc adhere to the surface of the base material 1, reducing surface properties such as creeping withstand voltage. In addition, when the base material 1 is Teflon, although there is little adhesion of products due to arcing, the heat resistance is low, so foaming occurs from inside, cracks occur, and wear and tear is large, and mechanical strength and hardness are insufficient. However, the drawback was that it was difficult to design a large current arc breaker.

上述したように、従来のセラミツク材料、例え
ば遮断器用セラミツク材料は、テフロン等の有機
遮断器用材料と比較して、アーク遮断時における
電極金属の蒸発により生成する金属粉などの付着
物を表面付着性(濡れ性)が大きく、例えばSF6
ガス遮断器用ノズルとして使用した場合、金属弗
化物をセラミツク内面に付着して沿面耐電圧等の
表面特性を低下させ易いという欠点があつた。こ
のため従来、表面付着性の小さいテフロン
(PTFE)が使用されてきた。しかし、テフロン
材料は大電流のアークに曝露された場合、テフロ
ン内部より発泡したり、クラツク発生現象を生じ
消耗が大きくなることや耐熱性が不十分なこと等
の欠点があり、一層の性能向上が望まれていた。
As mentioned above, conventional ceramic materials, such as ceramic materials for circuit breakers, have a higher ability to absorb deposits such as metal powder generated by evaporation of electrode metal during arc interruption than organic circuit breaker materials such as Teflon. (wettability) is large, for example SF 6
When used as a nozzle for a gas circuit breaker, there is a drawback that metal fluorides tend to adhere to the inner surface of the ceramic and deteriorate surface properties such as creeping withstand voltage. For this reason, Teflon (PTFE), which has low surface adhesion, has traditionally been used. However, Teflon materials have drawbacks such as foaming from inside the Teflon and cracking when exposed to a large current arc, increasing wear and tear, and insufficient heat resistance. was desired.

本発明はセラミツク材料の基材セラミツク表面
の表面処理または改質して、上記従来セラミツク
の欠点である表面付着性(濡れ性)を減少させ、
かつセラミツク材の利点であるすぐれた機械強
度、固さ、高温までの耐熱安定性、耐消耗性等を
生かすことにより、大電流アーク遮断に適した新
たな遮断器用複合セラミツク材料(以下、セラミ
ツク材料または複合セラミツク材料という)を提
供するものである。
The present invention reduces surface adhesion (wettability), which is a drawback of conventional ceramics, by surface treating or modifying the surface of the base ceramic of the ceramic material.
By taking advantage of the advantages of ceramic materials such as excellent mechanical strength, hardness, heat resistance stability up to high temperatures, and wear resistance, we have created a new composite ceramic material (hereinafter referred to as ceramic material) for circuit breakers that is suitable for interrupting large current arcs. or composite ceramic material).

本発明は、遮断器用セラミツク材料において、
この材料が基材セラミツクと、この基材セラミツ
クの表面に設けられ、かつアークによる金属電極
の蒸発物の付着を防止する表面層とからなり、こ
の表面層は、有機物のコーテイング層、界面活性
剤のコーテイング層、上記基材セラミツクとは別
種のセラミツクのコーテイング層、上記基材セラ
ミツクとは別種のセラミツクが基材セラミツク中
に混入された表面層、アーク曝露雰囲気下の改質
処理により得られた表面層、基材セラミツクに放
射線が照射されて得られた表面層、および基材セ
ラミツクに電磁波が照射されて得られた表面層か
らなる群から選ばれた1種の表面層である遮断器
用複合セラミツク材料に関するものである。この
表面層の表面処理は、該基材セラミツク表面に弗
素系樹脂、ポリエチレン等を含む有機物をコーテ
イングして行う、または該基材セラミツク表面に
界面活性剤をコーテイングして行う、または該基
材セラミツク表面をあらかじめ適当なアーク曝露
雰囲気下で改質処理して行う、または該基材セラ
ミツク表面に別種のセラミツク(弗化物、酸化
物、窒化物、炭化物、ホウ化物、リン化物)をコ
ーテイングまたは混入して行う、または該基材セ
ラミツク表面を放射線若しくは電磁波照射等の物
理化学的方法により行う。またセラミツク材料が
アルミナを92%以上含んでもよく、またセラミツ
ク材料の用途がガス遮断器のアーク発生部のフロ
ーガイド用ノズルを含む複合セラミツク材料に関
する。
The present invention provides ceramic materials for circuit breakers,
This material consists of a ceramic base material and a surface layer provided on the surface of the ceramic base material to prevent the deposition of evaporated matter from the metal electrode due to the arc. A coating layer of a ceramic different from the above-mentioned base ceramic, a surface layer in which a different type of ceramic than the above-mentioned base ceramic is mixed into the base ceramic, obtained by a modification treatment under an arc exposure atmosphere. A composite for circuit breakers, which is one type of surface layer selected from the group consisting of a surface layer, a surface layer obtained by irradiating a base ceramic with radiation, and a surface layer obtained by irradiating a base ceramic with electromagnetic waves. It concerns ceramic materials. This surface treatment of the surface layer is carried out by coating the surface of the base ceramic with an organic substance containing fluorine-based resin, polyethylene, etc., or by coating the surface of the base ceramic with a surfactant, or by coating the base ceramic surface with a surfactant, or by coating the base ceramic surface with a surfactant. This is done by modifying the surface in advance in an appropriate arc exposure atmosphere, or by coating or mixing another type of ceramic (fluoride, oxide, nitride, carbide, boride, phosphide) on the base ceramic surface. or by a physicochemical method such as irradiation of the surface of the base ceramic with radiation or electromagnetic waves. Further, the ceramic material may contain 92% or more of alumina, and the application of the ceramic material relates to a composite ceramic material including a flow guide nozzle of an arc generating part of a gas circuit breaker.

以下に、本発明による複合セラミツク材料を用
いた遮断器用ノズルを示す第2図に基づいて説明
する。
The following will explain a circuit breaker nozzle using a composite ceramic material according to the present invention based on FIG.

セラミツク基材3表面のアークによる生成物が
付着し易い部分を表面処理して表面付着性(濡れ
性)を減少させた表面層が4である。この表面処
理は以下のような方法により行われる。
4 is a surface layer 4 in which the surface of the ceramic base material 3 is treated to reduce surface adhesion (wettability) to a portion where arc products are likely to adhere. This surface treatment is performed by the following method.

(1) 弗素系樹脂やポリエチレン等の表面付着性
(濡れ性)の少ない有機物を基材セラミツク上
表面にコーテイングする。
(1) Coat the top surface of the ceramic base material with an organic substance that has low surface adhesion (wettability), such as fluororesin or polyethylene.

例えば、弗素系樹脂であるテフロンの場合、
コーテイング用市販品(例:三井フロロケミカ
ル(株))の水溶性懸濁溶液をセラミツク基材表面
に数回刷毛塗りし、風乾を繰り返した後、約
300℃にて1時間乾燥することにより一様なテ
フロンコーテイングを形成する。
For example, in the case of Teflon, which is a fluorine-based resin,
A water-soluble suspension solution of a commercially available coating product (e.g., Mitsui Fluorochemical Co., Ltd.) is applied with a brush to the surface of the ceramic substrate several times, and after repeated air drying, approximately
A uniform Teflon coating is formed by drying at 300°C for 1 hour.

(2) セラミツク基材表面に界面活性剤をコーテイ
ングする。用いる界面活性剤は陰イオン界面活
性剤(アルキルベンゼンスルホン酸ナトリウム
等)、天然界面活性剤(ゼラチン等)等であ
る。セラミツク基材表面へのコーテイングは、
上記の界面活性剤を含む溶液をスプレー、浸
漬、刷毛塗り後乾燥させて行う。
(2) Coating the surface of the ceramic base material with a surfactant. The surfactants used include anionic surfactants (sodium alkylbenzenesulfonate, etc.), natural surfactants (gelatin, etc.), and the like. The coating on the ceramic base material surface is
This is carried out by spraying, dipping, or brushing a solution containing the above surfactant, followed by drying.

(3) セラミツク基材内面をあらかじめ適当なアー
ク曝露雰囲気下で改質処理して基材の材質を表
面付着性の低い変態に改質する。
(3) The inner surface of the ceramic base material is modified in advance in an appropriate arc exposure atmosphere to modify the material of the base material to a transformed state with low surface adhesion.

例えばセラミツク材料が92%以上のアルミナ
(α−アルミナ)を含むときそのα−アルミナ
をγ−アルミナに改質する。アーク曝露雰囲気
は通常N2ガス、ヘリウムガス、SF6ガス等の非
酸化性のガス雰囲気中で行う。
For example, when a ceramic material contains 92% or more of alumina (α-alumina), the α-alumina is modified to γ-alumina. The arc exposure atmosphere is usually a non-oxidizing gas atmosphere such as N2 gas, helium gas, SF6 gas, etc.

(4) セラミツク基材表面に表面付着性の小さい別
種のセラミツクをコーテイングする。
(4) Coating a different type of ceramic with low surface adhesion on the surface of the ceramic base material.

コーテイングするセラミツクの種類は、弗化
物(CaF2、CuF2、MgF2、AlF3等)、酸化物
(MgO、ZrO2、SnO2、WO3等)、窒化物
(BN、Si3N4、AlN、ZrN、TaN、TiN等)、炭
化物(SiC、B4C、ZrC、WC、NbC、TiC、
TaC、Mo2C、TiC−TiN固溶体等)、ホウ化物
(ZrB2、TiB2、AlB12、SiB6、SiB4等)、リン化
物(B13P2等)からなる各化合物群中から選択
される。
The types of ceramics to be coated include fluorides (CaF 2 , CuF 2 , MgF 2 , AlF 3 , etc.), oxides (MgO, ZrO 2 , SnO 2 , WO 3 , etc.), nitrides (BN, Si 3 N 4 , etc.) AlN, ZrN, TaN, TiN, etc.), carbides (SiC, B 4 C, ZrC, WC, NbC, TiC,
Selected from each compound group consisting of TaC, Mo2C , TiC-TiN solid solution, etc.), borides ( ZrB2 , TiB2 , AlB12 , SiB6 , SiB4 , etc.), and phosphides ( B13P2 , etc.) be done.

例えばBN(窒化ホウ素)をアルミナ基材表
面にコーテイングするには、BNを無機結合剤
と共に酸性水溶液中に混合した溶液を、スプレ
ー、浸漬、または刷毛塗りのいずれかの適当な
方法によつて基材表面に塗布し、室温乾燥後
200〜900℃で15分間焼きつけし、さらに非酸化
雰囲気中で1500℃に加熱してBNコーテイング
層を形成する。
For example, to coat an alumina substrate with BN (boron nitride), a solution of BN mixed with an inorganic binder in an acidic aqueous solution may be applied as a base by any suitable method, such as spraying, dipping, or brushing. Apply to the surface of the material and dry at room temperature.
Bake at 200-900°C for 15 minutes and further heat to 1500°C in a non-oxidizing atmosphere to form a BN coating layer.

他の例で、アルミナセラミツク(通常の92%
アルミナ、融点1500〜1600℃)に弗化カルシウ
ムCaF2(融点1360℃、沸点2500℃)をコーテ
イングするには、重量比で5〜10%のPVA
(ポリビニルアルコール)水溶液に混合した
CaF2をセラミツク基材表面に厚さ1mm程度で
刷毛塗りし、風乾後500〜600℃にて約2時間乾
燥した後、昇温速度100℃/時間程度で徐々に
加熱し所定温度1100℃で1時間保持する。次い
で100℃/時間で室温まで徐冷してコーテイン
グ層を形成する。以上の操作は窒素ガス雰囲気
中で行い、生成コーテイング層は0.3mm程度の
厚さで表面に少々のクラツクが入つても使用上
問題はない。
In another example, alumina ceramic (92% of normal
To coat alumina (melting point 1500-1600°C) with calcium fluoride CaF2 (melting point 1360°C, boiling point 2500°C), use 5-10% PVA by weight.
(Polyvinyl alcohol) mixed in aqueous solution
CaF 2 was applied with a brush to a thickness of approximately 1 mm on the surface of the ceramic substrate, air-dried at 500 to 600℃ for approximately 2 hours, and then gradually heated at a heating rate of approximately 100℃/hour to a predetermined temperature of 1100℃. Hold for 1 hour. Then, it is slowly cooled to room temperature at 100° C./hour to form a coating layer. The above operations were carried out in a nitrogen gas atmosphere, and the resulting coating layer had a thickness of about 0.3 mm, so there was no problem in use even if there were some cracks on the surface.

(5) 前記したコーテイングに用いるセラミツクを
基材セラミツク表面へ混入し新たな表面層を形
成する。
(5) The ceramic used for the coating described above is mixed into the surface of the base ceramic to form a new surface layer.

例えばアルミナセラミツク基材にCaF2を混
入するには、成形前の粉末アルミナにCaF2
末をよく混合しN2雰囲気中で昇温速度100℃/
時間程度で徐々に加熱し、所定温度1100℃で1
時間加熱保持し焼成する。次いで100℃/時間
で室温まで徐冷してCaF2が混入した基材を得
る。この混入はセラミツク基材表面だけでなく
基材表面全体に行つてもよい。
For example, to mix CaF 2 into an alumina ceramic base material, mix the CaF 2 powder well with powdered alumina before molding, and heat it at a heating rate of 100°C/100°C in an N 2 atmosphere.
Heat it gradually over a period of about 1 hour, and then heat it to the specified temperature of 1100℃.
Heat and hold for an hour to bake. Then, it is slowly cooled to room temperature at 100° C./hour to obtain a substrate mixed with CaF 2 . This mixing may be carried out not only on the surface of the ceramic substrate but also on the entire surface of the substrate.

(6) セラミツク基材表面を放射線または電磁波照
射等の物理化学的方法により表面処理する。
(6) The surface of the ceramic base material is treated by a physicochemical method such as radiation or electromagnetic wave irradiation.

例えばアルミナ製部品を真空中に保持し、こ
れに100万eV(エレクトロンボルト)の電子線
を1分間以上照射する。
For example, an alumina component is held in a vacuum and is irradiated with an electron beam of 1 million eV (electron volts) for over 1 minute.

以上のような表面処理によりセラミツク材料の
表面付着性(濡れ性)を減少させ安定した表面特
性を得ることを可能とする。
The surface treatment as described above reduces the surface adhesion (wettability) of the ceramic material and makes it possible to obtain stable surface characteristics.

本発明による複合セラミツク材料はガス遮断器
のアーク発生部におけるフロー・ガイド用ノズル
として優れ、さらに絶縁碍子、真空スイツチの外
装、ナトリウムランプの発光管、マグネトロンの
窓、ICパツケージ、半導体の外装などにも使用
できる。
The composite ceramic material of the present invention is excellent as a flow guide nozzle in the arc generating part of a gas circuit breaker, and is also suitable for insulators, vacuum switch exteriors, sodium lamp arc tubes, magnetron windows, IC packages, semiconductor exteriors, etc. can also be used.

次に実施例により本発明をさらに具体的に説明
する。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 アルミナ製試料について、表面の改質を行つて
いない試料A(92%アルミナ)及びBN(窒化ホ
ウ素)前記CaF2と同様な混入方法によりアルミ
ナ試料に混入させた試料Bそれぞれの試料表面に
約2KA(キロアンペア)のアークを曝露し、ア
ーク消滅直後の両試料の2点間(距離3mm)の耐
電圧値を測定した。第3図及び第4図はそれぞれ
試料A及び試料Bの極間電圧の経時変化を示して
いる。第3図中、試料Aのグラフではアーク曝露
後(グラフ中a点)、耐電圧値を測定するための
両電極間に電極金属等が多く付着しているため、
ほとんど導通状態となり電極間の耐電圧値は零と
なつている。
Example Regarding alumina samples, the sample surfaces of sample A (92% alumina) whose surface has not been modified and sample B where BN (boron nitride) is mixed into the alumina sample using the same mixing method as CaF 2 described above. An arc of approximately 2 KA (kiloampere) was exposed to the sample, and the withstand voltage value between two points (distance 3 mm) of both samples was measured immediately after the arc extinguished. FIG. 3 and FIG. 4 show the change over time in the interelectrode voltage of Sample A and Sample B, respectively. In the graph of sample A in Figure 3, after arc exposure (point a in the graph), there is a lot of electrode metal etc. attached between the two electrodes used to measure the withstand voltage value.
It is almost in a conductive state and the withstand voltage value between the electrodes is zero.

これに対し第4図の試料Bのグラフではアーク
曝露直後のb点が示すようにアルミナ試料表面を
改質して表面付着性を減少させたため、両電極間
に付着物が少く約400ボルトの大きさの電極間耐
電圧値が得られたことを示している。
On the other hand, in the graph of sample B in Figure 4, as shown by point b immediately after arc exposure, the surface of the alumina sample was modified to reduce surface adhesion, so there was less deposit between the two electrodes, and the voltage of about 400 volts was reduced. This shows that the interelectrode withstand voltage value of the same magnitude was obtained.

このように本発明は基材セラミツク表面を表面
処理して表面付着性(濡れ性)を減少させること
によつて、アークによる生成物等の付着を防ぐと
共に所定の表面特性を維持し、耐消耗性、機械強
度、固さ等を生かした設計が可能となる新しいセ
ラミツク材料を提供するものである。
In this way, the present invention reduces the surface adhesion (wettability) of the ceramic base material by surface treating it, thereby preventing the adhesion of products caused by arcing, maintaining predetermined surface characteristics, and improving wear resistance. The aim is to provide a new ceramic material that can be designed to take advantage of properties such as strength, mechanical strength, and hardness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbはそれぞれ従来のセラミツク材
料を用いた遮断器用ノズルを示す部分縦断面図及
び側面図、第2図a及びbはそれぞれ本発明によ
る複合セラミツク材料を用いた遮断器用ノズルを
示す部分縦断面図及び側面図、第3図はアルミナ
セラミツク試料の電圧の経時変化を示す図、第4
図はBNを混入したアルミナセラミツク試料の電
圧の経時変化を示す図である。図中、 1……単一のセラミツクまたはテフロン基材、
2……SF6ガス等を充填した空間、3……セラミ
ツク基材、4……表面処理した表面層。
1A and 1B are partial vertical cross-sectional views and side views, respectively, of a conventional circuit breaker nozzle using a ceramic material, and FIGS. 2A and 2B, respectively, are a circuit breaker nozzle using a composite ceramic material according to the present invention. Partial longitudinal cross-sectional view and side view; Figure 3 is a diagram showing the change in voltage over time of an alumina ceramic sample; Figure 4
The figure shows the change in voltage over time of an alumina ceramic sample mixed with BN. In the figure, 1...Single ceramic or Teflon base material,
2... Space filled with SF 6 gas etc., 3... Ceramic base material, 4... Surface treated surface layer.

Claims (1)

【特許請求の範囲】 1 遮断器用セラミツク材料において、この材料
が基材セラミツクと、この基材セラミツクの表面
に設けられ、かつアークによる金属電極の蒸発物
の付着を防止する表面層とからなり、この表面層
は、有機物のコーテイング層、界面活性剤のコー
テイング層、上記基材セラミツクとは別種のセラ
ミツクのコーテイング層、上記基材セラミツクと
は別種のセラミツクが基材セラミツク中に混入さ
れた表面層、アーク曝露雰囲気下の改質処理によ
り得られた表面層、基材セラミツクに放射線が照
射されて得られた表面層、および基材セラミツク
に電磁波が照射されて得られた表面層からなる群
から選ばれた1種の表面層であることを特徴とす
る遮断器用複合セラミツク材料。 2 基材セラミツクは、アルミナを92%以上含ん
でいることを特徴とする特許請求の範囲第1項記
載の遮断器用複合セラミツク材料。 3 有機物は弗素系樹脂またはポリエチレンであ
ることを特徴とする特許請求の範囲第1項記載の
遮断器用複合セラミツク材料。 4 別種のセラミツクは、弗化物であるCaF2
CuF2、MgF2、AlF3、酸化物であるMgO、
ZrO2、SnO2、WO3、窒化物であるBN、Si3N4
AlN、ZrN、TaN、TiN、炭化物であるSiC、
B4C、ZrC、WC、NbC、TiC、TaC、Mo2C、
TiC−TiN固溶体、ホウ化物であるZrB2、TiB2
AlB12、SiB6、SiB4、およびリン化物であるB13P2
からなる群から選ばれたものであることを特徴と
する特許請求の範囲第1項記載の遮断器用複合セ
ラミツク材料。
[Scope of Claims] 1. A ceramic material for a circuit breaker, which comprises a ceramic base material and a surface layer provided on the surface of the ceramic base material to prevent deposition of evaporated matter from a metal electrode due to an arc, This surface layer includes an organic coating layer, a surfactant coating layer, a coating layer of a ceramic different from the base ceramic, and a surface layer in which a ceramic of a different type than the base ceramic is mixed into the base ceramic. , a surface layer obtained by a modification treatment under an arc exposure atmosphere, a surface layer obtained by irradiating a base ceramic with radiation, and a surface layer obtained by irradiating a base ceramic with electromagnetic waves. A composite ceramic material for circuit breakers characterized by having one kind of selected surface layer. 2. The composite ceramic material for a circuit breaker according to claim 1, wherein the base ceramic contains 92% or more of alumina. 3. The composite ceramic material for a circuit breaker according to claim 1, wherein the organic substance is a fluorine-based resin or polyethylene. 4 Another type of ceramic is fluoride CaF 2 ,
CuF 2 , MgF 2 , AlF 3 , MgO which is an oxide,
ZrO 2 , SnO 2 , WO 3 , nitride BN, Si 3 N 4 ,
AlN, ZrN, TaN, TiN, carbide SiC,
B4C , ZrC, WC, NbC, TiC, TaC, Mo2C ,
TiC-TiN solid solution, boride ZrB 2 , TiB 2 ,
AlB 12 , SiB 6 , SiB 4 , and the phosphide B 13 P 2
The composite ceramic material for a circuit breaker according to claim 1, characterized in that it is selected from the group consisting of:
JP4402282A 1982-03-18 1982-03-18 Composite ceramic material Granted JPS58161980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4402282A JPS58161980A (en) 1982-03-18 1982-03-18 Composite ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4402282A JPS58161980A (en) 1982-03-18 1982-03-18 Composite ceramic material

Publications (2)

Publication Number Publication Date
JPS58161980A JPS58161980A (en) 1983-09-26
JPS6236995B2 true JPS6236995B2 (en) 1987-08-10

Family

ID=12680033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4402282A Granted JPS58161980A (en) 1982-03-18 1982-03-18 Composite ceramic material

Country Status (1)

Country Link
JP (1) JPS58161980A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559486Y2 (en) * 1991-07-23 1998-01-19 日新電機株式会社 Insulation nozzle for gas circuit breaker
JP2006001787A (en) * 2004-06-17 2006-01-05 Hitachi Chem Co Ltd Crucible for growing calcium fluoride crystal, method for producing calcium fluoride crystal, and calcium fluoride crystal
JP4742302B2 (en) * 2005-10-07 2011-08-10 富士電機株式会社 Circuit breaker
CN100439286C (en) * 2006-08-29 2008-12-03 中材高新材料股份有限公司 Method for preparing super high temperature complex phase ceramic ZrB2-ZrC-SiC near to zero ablation
JP5286569B2 (en) * 2009-03-27 2013-09-11 株式会社日立製作所 Puffer type gas circuit breaker
JP2015081202A (en) * 2013-10-21 2015-04-27 富士電機株式会社 Method for forming resin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49310A (en) * 1972-04-14 1974-01-05
JPS525329A (en) * 1975-06-25 1977-01-17 Schlafhorst Co Maschf Magazine for bobbin tube
JPS5243729A (en) * 1975-10-03 1977-04-06 Hitachi Ltd Cooling method and apparatus for casts in continuous casting apparatus
JPS56145178A (en) * 1980-04-04 1981-11-11 Hiyoumen Kakou Kenkyusho Kk Tile treatment for reducing water absorbability
JPS56145179A (en) * 1980-04-04 1981-11-11 Hiyoumen Kakou Kenkyusho Kk Tile back side sealing treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49310A (en) * 1972-04-14 1974-01-05
JPS525329A (en) * 1975-06-25 1977-01-17 Schlafhorst Co Maschf Magazine for bobbin tube
JPS5243729A (en) * 1975-10-03 1977-04-06 Hitachi Ltd Cooling method and apparatus for casts in continuous casting apparatus
JPS56145178A (en) * 1980-04-04 1981-11-11 Hiyoumen Kakou Kenkyusho Kk Tile treatment for reducing water absorbability
JPS56145179A (en) * 1980-04-04 1981-11-11 Hiyoumen Kakou Kenkyusho Kk Tile back side sealing treatment

Also Published As

Publication number Publication date
JPS58161980A (en) 1983-09-26

Similar Documents

Publication Publication Date Title
US4526840A (en) Bar evaporation source having improved wettability
JP5324029B2 (en) Ceramic coating for semiconductor processing equipment
JP2007247043A (en) Method for producing ceramic-coated member for semiconductor working apparatus
JPS6236995B2 (en)
JPH0688215A (en) Method and device for direct application of ceramic coating material
CA2037675A1 (en) Electron tube cathode
US3120453A (en) Porous carbonaceous body with sealed surface for use as arc-furnace electrode or structural component of nuclear reactors
Miller Improving the voltage holdoff performance of alumina insulators in vacuum through quasimetallizing
KR100859672B1 (en) Splay coating method
EP0172491A2 (en) Emissive coating on alloy X-ray tube target
Bell et al. The emission characteristics of an aluminum liquid metal ion source
US3814620A (en) Method of applying fused silica coating to a substrate
US4048348A (en) Method of applying a fused silica coating to a substrate
US5150397A (en) Thermal emissive coating for x-ray targets
GB1430723A (en) Mass for a high-temperature-resistant emission electrode and process for the production of said mass
RU2415966C1 (en) Procedure for coating items out of hard alloys
US3189476A (en) Metallizing process for ceramics
US3708325A (en) Process for metal coating boron nitride objects
Schultrich et al. High rate deposition by vacuum arc methods
US4840850A (en) Emissive coating for X-ray target
SU1622348A1 (en) Protective coating of plasmatron electrode
JPS5828705B2 (en) Piro Electric Busicon
Beukema Electrical breakdown properties of stainless steel and titanium electrodes in ultra-high vacuum
RU2676719C1 (en) Method of low-temperature application of nanocrystalline coating from alpha-oxide aluminum
RU2046558C1 (en) X-ray radiation source