JPS6234826B2 - - Google Patents

Info

Publication number
JPS6234826B2
JPS6234826B2 JP59107161A JP10716184A JPS6234826B2 JP S6234826 B2 JPS6234826 B2 JP S6234826B2 JP 59107161 A JP59107161 A JP 59107161A JP 10716184 A JP10716184 A JP 10716184A JP S6234826 B2 JPS6234826 B2 JP S6234826B2
Authority
JP
Japan
Prior art keywords
core material
alloy
brazing
intermediate layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59107161A
Other languages
Japanese (ja)
Other versions
JPS60251243A (en
Inventor
Shoji Umibe
Hideo Fujimoto
Atsushi Takigawa
Yoshiharu Hasegawa
Kazumi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Denso Corp
Original Assignee
Kobe Steel Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, NipponDenso Co Ltd filed Critical Kobe Steel Ltd
Priority to JP10716184A priority Critical patent/JPS60251243A/en
Publication of JPS60251243A publication Critical patent/JPS60251243A/en
Publication of JPS6234826B2 publication Critical patent/JPS6234826B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は真空ろう付用耐水・高強度ブレージン
グシート及びこれを用いた熱交換器に関し、詳細
には、芯材の合金成分組織を特定する他、該芯材
とろう材層との間に、厚さ及び電気化学的特性を
調整したAl合金を中間層として介在させること
により、水腐食環境下における耐水・耐食性を高
めると共に強度を高めたろう付用耐水・高強度ブ
レージングシート、及びこのブレージングシート
を熱媒体の隔壁として用いた熱交換器に関するも
のである。 Al合金製の真空ろう付用ブレージングシート
(以下Al合金製BSと略記する)は、例えば、自動
車用エアコンのコンデンサーやエバポレータ等の
熱交換器用材料として汎用されている。しかし水
系クーラントを使用する熱交換器用部材として
Al合金製BSを用いた例は少ない。その理由は、
従来のAl合金製BSの場合耐水腐食性が不十分で
あるので、クーラントの水質が悪いときには短期
間の使用でも貫通腐食を起こし易く、熱交換器と
して致命的な欠陥となるからである。従つてこの
種の用途に摘用されるAl合金製BSにあつては、
耐水腐食性の改善が強く要望されている。また熱
交換器等の軽量化に対する要請も強く、かかる要
請にこたえる為には薄肉化の可能な高強度特性を
有するものである必要もある。 本発明者等は上記の様な状況に鑑み、耐水・耐
食性及び機械的強度の優れたろう付用Al合金製
BSを開発すべく研究を進めてきた。その結果、
Al合金芯材の化学成分を特定すると共に、その
片面又は両面に、適度の厚さと電気化学的特性を
有するAl合金を中間層として介在させたうえで
ろう材を配設すれば上記の目的にかなうAl合金
製BSが得られることを知り、ここに本発明の完
成をみた。即ち本発明に係る真空ろう付用Al合
金製BSとは、 Si:0.2〜1.2%
(以下特記しない限り重量%意味する) Mg:0.1〜0.5% Cu:0.2〜1.0% をSi/Mg(重量比)=1〜2.5%の条件下で含有
し、更に、 Mn:0.05〜0.5% Cr:0.05〜0.5% Zr:0.05〜0.5% の3種からなる群より選択される1種以上の元素
を含有し、残部がAl及び不可避不純物よりなる
Al合金を芯材として用い、該芯材の片面若しく
は両面にクラツド率で3〜15%の厚みを有し且つ
前記芯材より20〜100mV卑な電位差を有するAl
合金からなる中間層を介してろう材層を形成して
なるところに要旨が存在するものである。また本
発明に係る熱交換器とは、熱媒体と接触する側の
隔壁を上記ブレージングシートで構成してなると
ころに要旨を有するものである。 以下本発明において各構成材料の化学成分等を
定めた理由を詳細に説明する。 まず芯材を構成するAl合金の含有成分限定理
由であるが、CuはAl合金の機械的強度及び電位
を高める上で不可欠の元素であり、0.2%未満で
はこれらの効果が有効に発揮されない。尚Cuは
Al合金の耐食性を著しく低下させる元素でもあ
るが、ろう付の為の加熱を行つた後ではCuの耐
食性阻害作用は著しく減少するので、強度及び電
位向上元素として有効に活用することができる。
但しCu含有率が1.0%を越えると、他の合金元素
(殊にMgやSi)の共存下において耐食性阻害作用
が顕著に現われてくる。こうした理由から芯材中
のCu含有率は0.2〜1.0%と定めた。次にSiとMg
であるが、これらは上記の如くSi/Mg比が1〜
2.5となる条件の下でSiが0.2〜1.0%、Mgが0.1〜
0.5%となる様に含有率を設定する必要がある。
即ちSiとMgはろう付時の加熱によつてマトリツ
クス中に固溶し、その後の室温時効でMg2Siより
なる微細結晶として析出し強度を高める。Mg2Si
のSi/Mg比は0.58であり、水焼入れの様に冷却
速度が著しく速い場合はSi/Mg比が0.58のとき
に最大の強度向上効果を発揮する。しかしAl合
金製BSのろう付けにおいては十分に速い冷却速
度を設定することは不可である。こうした冷却条
件のもとで高レベルの強度向上効果を発揮させよ
うとすれば、焼入れ感受性を抑えるためにSi/
Mg比が1以上となる様にSiとMgの含有率を設定
しなければならない。但しSi/Mg比が2.5を越え
た時点で上記の効果は飽和し、むしろ過剰量のSi
によるろう付阻害作用が現われてくる。又Mg及
びSiの絶対量も重要であり、Mgが0.1%未満或は
Siが0.2%未満ではMg2Siの生成量が不足する為十
分な強度向上効果を得ることができず、一方Mg
が0.5%を越え或はSiが1.0%を越えるとろう付性
が低下する。 Mn,Cr,Zrは何れもサブクレインを強化し再
結晶を抑制してろう付性を高める元素であり、目
的達成の為にはこれらのうち少なくとも1種を、
いずれの元素についても0.5%以上含有させなけ
ればならない。しかしMnが多すぎると粒界腐食
感受性が増大し、又Cr及びZrが多すぎると巨大
金属間化合物が生成して加工性が低下するので、
いずれの元素も0.5%以下に抑えなければならな
い。 次に上記芯材とろう材(ろう材としてはAl―Si
合金やAl―Si―Mg合金が一般的である)の間に
介在させる中間層であるが、これは芯材からろう
材層方向へのCuの表面拡散を防止すると共に、
ろう材層中のSiが芯材方向へ拡散するのを防止
し、芯材の機械強度及びろう材のろう付性の双方
を高レベルに維持する為の言わば遮断層としての
機能を果し、更には芯材とのCuの濃度勾配によ
り犠牲陽極として作用し芯材の腐食を防止する。
こうした効果を有効に発揮させる為には、中間層
の厚さをクラツド率で3%以上とする必要があ
り、これ未満では上記遮断層としての効果及び犠
牲陽極作用が有効に発揮されない。しかしそれら
の効果は15%程度の厚さで飽和し、15%を越える
とAl合金製BS全体としての強度が不十分にな
る。また本発明においては、上記犠牲陽極作用を
有効に発揮させるという目的との関係で、芯材と
中間層の電位差も極めて重要であり、芯材に対し
て中間層の電位が単に卑となるというだけでな
く、20mV以上の電位差がなければ有効な犠牲陽
極作用は得られない。しかし電位差が100mVを
越えると中間層のみが選択的に溶解し、Al合金
製BS全体としての防食性はかえつて低下してく
る。従つて上記中間層として用いるAl合金は、
芯材の化学成分との関係を考慮してそれ自体の耐
食性を損なうことなく電位差をコントロールする
必要がある。ここでCu含有量が0.5%程度のAl合
金芯材と組合せる場合の中間層としては市販純度
の純Alでも十分な防食性能を発揮するが、使用
する芯材の電気化学的特性によつては、中間層を
構成するAl合金中に適量(0.05〜0.5%程度)の
Mn,Cr又はZrを添加して電位差をコントロール
することが推奨される。即ちこれらの元素は、
Alの電位を僅かながら貴に移行させる性質があ
るので電位差調整元素として極めて便利であり、
加えて芯材との接合力を高める作用も発揮するか
らである。但しこれら合金元素の含有率が芯材の
それよりも高いと、ろう付時における芯材から中
間層方向へのCuの拡散によつて前記電位差が過
小となり、中間層の犠牲陽極作用が低下してくる
恐れがあるので、中間層を構成するAl合金中の
Mn,Cr及びZrの配合量は芯材の同含有量より少
なく抑えておくべきである。中間層Al合金へ添
加することのできる他の元素としてCu,Mg及び
Znが挙げられ、これらは夫々次の様な作用を有
している。即ちCuは中間層の電位をコントロー
ルする為に有効であり0.05%以上の添加でその効
果が有効に発揮される。しかし0.5%を越えて含
有させると中間層の電位が貴に移行し防食効果の
低下をまねく。またMgは、ろう付時における芯
材から中間層へのCuの拡散を助長し、中間層の
選択腐食を抑制する作用があり、その効果は0.05
%以上含有させることによつて有効に発揮され
る。しかし0.5%を越えて含有させるとCuの前記
拡散が過大になつて十分な防食効果が得られない
ので好ましくない。またZnは中間層の電位を卑
にする作用があり、芯材中のCu含有率が低い場
合に必要となる。しかしZn量が0.1%未満ではそ
の電位低下効果を期待することができず、一方
Zn量が1.0%を越えるとろう付時の蒸発飛散が著
しくなつて炉の汚染を招く恐れがある。しかも前
記化学成分からなる芯材との組合せにおいては、
芯材は元々一定レベル以上の電位を有しているの
で、1.0%を越えてZnを添加しなければならない
程電位を低下させる必要性も殆どない。 以上詳述した様に、本発明に係るAl合金製BS
は、化学成分の特定された芯材の片面又は両面
に、厚さ及び電気化学的特性の調整された中間層
を介してろう材層を形成することにより、該中間
層の有する芯材とろう材層の遮断効果及び芯材に
対する犠牲陽極作用が効果的に生かされるので、
卓越した耐水・耐食性を発揮する。しかも特に芯
材の合金成分を特定することによつて機械的強度
も高めているので、最近の薄肉軽量化の要請にも
応じることができる。従つてこのAl合金製BS
は、熱交換器用の真空ろう付材料としてその優れ
た性能を遺憾なく発揮する。特にAl合金製BSは
冒頭で説明した様に熱交換器用真空ろう付材料と
して汎用されているが、その熱媒体との隔壁とし
て上記本発明のAl合金製BSを使用すれば、熱媒
体(特に水)による腐食が激減してその寿命を大
幅に延長することができる。 次に実験例を挙げて本発明の構成及び作用効果
を一層明確にする。 実験例 第1表に示す芯材用AL合金と第2表に示す中
間層用Al合金、及びAl―10%Si―1.5%Mgよりな
るろう材を使用し、これらを第3,4表に示す如
く組合せて板厚1mmのBSを作製した。得られた
各BSの芯材―中間層間の電位差(3.5%Nacl水溶
液中における自然電位の差)を第3,4表に併記
した。また得られた各BSを用いて下記の腐食試
験及び強度試験を行なつた。結果を第3,4表に
一括して示す。 [腐食試験] 各BSを用い、第1図(要部拡大断面図:図中
1は芯材、2は中間層、3はろう材層、Aは平担
部、Bはフイレツト部を夫々示す)に示す腐食試
験用供試片を真空ろう付法によつて作製する。得
られた各供試片のろう付面側を供試面として、
Clイオン3000ppmとCuイオン10ppmを含む腐食
液に浸漬し、80℃×8時間←→室温×16時間の繰り
返し温度サイクルで3ケ月間処理し、その後断面
顕微鏡写真で浸食深さを測定する。第3,4表に
示す耐食性の値は、この試験で得た最大浸食深さ
を表わしている。 [強度] 各BSからJIS Z 2201の5号に規定する試験
片を切出し、真空中で且つろう材の融点直下の温
度(550℃)で5分間加熱する。次いで室温にて
20日間保持して時効硬化させた後引張試験を行な
う。第3,4表における強度の値は、5回試験の
平均値を示す。
The present invention relates to a water-resistant, high-strength brazing sheet for vacuum brazing and a heat exchanger using the same, and in detail, in addition to specifying the alloy composition structure of the core material, between the core material and the brazing material layer, A water-resistant, high-strength brazing sheet for brazing that has improved water resistance and corrosion resistance in a water-corrosive environment and increased strength by interposing an Al alloy with adjusted thickness and electrochemical properties as an intermediate layer, and this brazing sheet. This invention relates to a heat exchanger used as a partition wall for a heat medium. Brazing sheets for vacuum brazing made of Al alloy (hereinafter abbreviated as Al alloy BS) are widely used, for example, as materials for heat exchangers such as condensers and evaporators of automobile air conditioners. However, as a component for heat exchangers that use water-based coolant,
There are few examples of using Al alloy BS. The reason is,
This is because conventional Al alloy BSs have insufficient water corrosion resistance, so if the quality of the coolant water is poor, penetrating corrosion is likely to occur even after short-term use, which is a fatal defect as a heat exchanger. Therefore, for Al alloy BS used for this type of application,
There is a strong demand for improved water corrosion resistance. There is also a strong demand for lighter weight heat exchangers and the like, and in order to meet these demands, it is necessary to have high strength properties that allow for thinner walls. In view of the above-mentioned circumstances, the inventors of the present invention have developed a product made of Al alloy for brazing, which has excellent water resistance, corrosion resistance, and mechanical strength.
We have been conducting research to develop BS. the result,
The above purpose can be achieved by specifying the chemical composition of the Al alloy core material, interposing an Al alloy with appropriate thickness and electrochemical properties as an intermediate layer on one or both sides, and then placing the brazing material. Having learned that it is possible to obtain a BS made of Al alloy that meets the requirements, the present invention has now been completed. That is, the Al alloy BS for vacuum brazing according to the present invention has Si: 0.2 to 1.2%.
(Hereinafter, it means weight% unless otherwise specified) Contains Mg: 0.1 to 0.5% Cu: 0.2 to 1.0% under the condition of Si/Mg (weight ratio) = 1 to 2.5%, and further, Mn: 0.05 to 0.5%. Contains one or more elements selected from the group consisting of three types: Cr: 0.05 to 0.5% Zr: 0.05 to 0.5%, and the remainder consists of Al and inevitable impurities.
An Al alloy is used as a core material, and the core material has a thickness of 3 to 15% in terms of cladding ratio on one or both sides, and has a potential difference of 20 to 100 mV baser than that of the core material.
The gist of this is that a brazing material layer is formed through an intermediate layer made of an alloy. Moreover, the heat exchanger according to the present invention is characterized in that the partition wall on the side that comes into contact with the heat medium is constituted by the brazing sheet described above. The reasons for determining the chemical components, etc. of each constituent material in the present invention will be explained in detail below. First, the reason for limiting the content of the Al alloy that constitutes the core material is that Cu is an essential element for increasing the mechanical strength and potential of the Al alloy, and if it is less than 0.2%, these effects will not be effectively exhibited. Furthermore, Cu is
Although Cu is an element that significantly reduces the corrosion resistance of Al alloys, the corrosion resistance inhibiting effect of Cu is significantly reduced after heating for brazing, so it can be effectively used as an element to improve strength and potential.
However, when the Cu content exceeds 1.0%, corrosion resistance inhibition effects become noticeable in the coexistence of other alloying elements (especially Mg and Si). For these reasons, the Cu content in the core material was set at 0.2 to 1.0%. Next, Si and Mg
However, as mentioned above, these have a Si/Mg ratio of 1 to 1.
2.5, Si is 0.2~1.0%, Mg is 0.1~
It is necessary to set the content rate so that it is 0.5%.
That is, Si and Mg are dissolved in the matrix by heating during brazing, and then precipitated as fine crystals of Mg 2 Si during aging at room temperature, increasing the strength. Mg2Si
The Si/Mg ratio is 0.58, and when the cooling rate is extremely fast as in water quenching, the maximum strength improvement effect is achieved when the Si/Mg ratio is 0.58. However, it is impossible to set a sufficiently fast cooling rate when brazing Al alloy BS. In order to achieve a high level of strength improvement under these cooling conditions, Si/
The content of Si and Mg must be set so that the Mg ratio is 1 or more. However, when the Si/Mg ratio exceeds 2.5, the above effect is saturated, and rather the excess amount of Si
brazing inhibition effect appears. The absolute amount of Mg and Si is also important, and if Mg is less than 0.1% or
If Si is less than 0.2%, the amount of Mg 2 Si generated is insufficient, so a sufficient strength improvement effect cannot be obtained;
If Si exceeds 0.5% or Si exceeds 1.0%, brazability decreases. Mn, Cr, and Zr are all elements that strengthen subcranes, suppress recrystallization, and improve brazability.
Each element must be contained in an amount of 0.5% or more. However, too much Mn increases susceptibility to intergranular corrosion, and too much Cr and Zr generates giant intermetallic compounds and reduces workability.
All elements must be kept below 0.5%. Next, the above core material and brazing material (Al-Si is used as the brazing material)
This is an intermediate layer interposed between the alloys (commonly made of alloys or Al-Si-Mg alloys), which prevents the surface diffusion of Cu from the core material toward the brazing material layer, and
It functions as a blocking layer to prevent Si in the brazing material layer from diffusing toward the core material and maintain both the mechanical strength of the core material and the brazing properties of the brazing material at a high level. Furthermore, due to the concentration gradient of Cu with the core material, it acts as a sacrificial anode and prevents corrosion of the core material.
In order to effectively exhibit these effects, it is necessary that the thickness of the intermediate layer be 3% or more in terms of cladding ratio; if the thickness is less than this, the above-mentioned effect as a blocking layer and sacrificial anode function will not be effectively exhibited. However, these effects are saturated at a thickness of about 15%, and if the thickness exceeds 15%, the strength of the Al alloy BS as a whole becomes insufficient. In addition, in the present invention, the potential difference between the core material and the intermediate layer is also extremely important in relation to the purpose of effectively exerting the sacrificial anode effect, and it is difficult to avoid the fact that the potential of the intermediate layer is simply base with respect to the core material. In addition, effective sacrificial anode action cannot be obtained unless there is a potential difference of 20 mV or more. However, when the potential difference exceeds 100 mV, only the intermediate layer is selectively dissolved, and the corrosion resistance of the Al alloy BS as a whole deteriorates. Therefore, the Al alloy used as the intermediate layer is
It is necessary to control the potential difference without impairing the corrosion resistance of the core material by considering its relationship with the chemical components of the core material. Here, when combined with an Al alloy core material with a Cu content of about 0.5%, pure Al of commercial purity can provide sufficient corrosion protection as an intermediate layer, but depending on the electrochemical properties of the core material used, contains an appropriate amount (approximately 0.05 to 0.5%) in the Al alloy constituting the intermediate layer.
It is recommended to control the potential difference by adding Mn, Cr or Zr. That is, these elements are
It is extremely useful as a potential difference adjustment element because it has the property of slightly shifting the potential of Al to a higher level.
In addition, it also exhibits the effect of increasing the bonding force with the core material. However, if the content of these alloying elements is higher than that of the core material, the potential difference becomes too small due to the diffusion of Cu from the core material toward the intermediate layer during brazing, and the sacrificial anode effect of the intermediate layer decreases. Since there is a risk of
The content of Mn, Cr and Zr should be kept lower than the same content in the core material. Other elements that can be added to the intermediate layer Al alloy include Cu, Mg and
Examples include Zn, each of which has the following effects. That is, Cu is effective for controlling the potential of the intermediate layer, and its effect is effectively exhibited when it is added in an amount of 0.05% or more. However, if it is contained in an amount exceeding 0.5%, the potential of the intermediate layer shifts to a higher level, resulting in a decrease in the anticorrosion effect. Mg also promotes the diffusion of Cu from the core material to the intermediate layer during brazing, and has the effect of suppressing selective corrosion of the intermediate layer, with an effect of 0.05
It is effectively exhibited by containing % or more. However, if the Cu content exceeds 0.5%, the diffusion of Cu becomes excessive and a sufficient anticorrosion effect cannot be obtained, which is not preferable. Zn also has the effect of making the potential of the intermediate layer less noble, and is necessary when the Cu content in the core material is low. However, if the amount of Zn is less than 0.1%, the potential lowering effect cannot be expected;
If the amount of Zn exceeds 1.0%, evaporation and scattering during brazing becomes significant and may contaminate the furnace. Moreover, in combination with the core material made of the above chemical components,
Since the core material originally has a potential above a certain level, there is almost no need to lower the potential to the extent that it is necessary to add more than 1.0% of Zn. As detailed above, the Al alloy BS according to the present invention
By forming a brazing material layer on one or both sides of a core material whose chemical composition has been specified, through an intermediate layer whose thickness and electrochemical properties are adjusted, the core material and wax material contained in the intermediate layer are separated. Since the shielding effect of the material layer and the sacrificial anode effect on the core material are effectively utilized,
Demonstrates outstanding water and corrosion resistance. Moreover, by specifically specifying the alloy components of the core material, the mechanical strength is also increased, so it can meet the recent demands for thinner walls and lighter weights. Therefore, this Al alloy BS
exhibits its excellent performance as a vacuum brazing material for heat exchangers. In particular, Al alloy BS is widely used as a vacuum brazing material for heat exchangers as explained at the beginning, but if the Al alloy BS of the present invention is used as a partition wall between the heat medium (especially Corrosion caused by water) is drastically reduced and its lifespan can be greatly extended. Next, experimental examples will be given to further clarify the structure and effects of the present invention. Experimental example: The AL alloy for the core material shown in Table 1, the Al alloy for the intermediate layer shown in Table 2, and the brazing material consisting of Al-10%Si-1.5%Mg were used, and these were shown in Tables 3 and 4. A BS with a plate thickness of 1 mm was prepared by combining as shown. The potential difference (difference in natural potential in a 3.5% NaCl aqueous solution) between the core material and the intermediate layer of each BS obtained is also listed in Tables 3 and 4. Furthermore, the following corrosion tests and strength tests were conducted using each of the obtained BSs. The results are shown in Tables 3 and 4. [Corrosion test] Using each BS, Figure 1 (enlarged sectional view of the main part: 1 in the figure shows the core material, 2 shows the intermediate layer, 3 shows the brazing metal layer, A shows the flat part, and B shows the fillet part, respectively. ) A specimen for corrosion testing is prepared by vacuum brazing. The brazed side of each specimen obtained was used as the test surface,
It is immersed in a corrosive solution containing 3000 ppm of Cl ions and 10 ppm of Cu ions, and subjected to a repeated temperature cycle of 80°C x 8 hours ← → room temperature x 16 hours for 3 months, and then the erosion depth is measured using cross-sectional micrographs. The corrosion resistance values shown in Tables 3 and 4 represent the maximum erosion depths obtained in this test. [Strength] A test piece specified in JIS Z 2201 No. 5 is cut from each BS and heated for 5 minutes in a vacuum at a temperature just below the melting point of the brazing filler metal (550°C). Then at room temperature
After holding for 20 days and aging hardening, a tensile test is performed. The strength values in Tables 3 and 4 indicate the average value of 5 tests.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 これらの実験結果から次の様に考察することが
できる。 (1) No.1〜44は何れも本発明の規定要件を全て満
たす実施例であり、耐食性及び強度共に極めて
良好である。 (2) No.45,46及び53は芯材と中間層の電位差が小
さすぎる比較例であり、犠牲陽極作用が発揮さ
れない為耐食性が極めて悪い。特にNo.46は後記
No.54と同様電位差がマイナス(芯材の電位が中
間層の電位よりも卑)である為貫通腐食が生じ
ている。 (3) No.47〜49は上記電位差が過大である比較例で
あり、中間層の腐食が著しい為BS全体の耐食
性が劣悪である。 (4) No.50及び51は中間層のクラツド率が過小又は
過大である比較例であり、過小の場合(No.50)
は犠牲陽極作用が十分発揮されない為耐食性が
乏しく、一方過大である場合(No.51)はの強度
がやや低くなつている。 (5) No.54〜60は芯材の合金成分が規定要件を外れ
る比較例であり、強度及び耐食性の何れかが極
端に悪く実用に耐えない。
[Table] From these experimental results, the following can be considered. (1) Nos. 1 to 44 are all examples that satisfy all the specified requirements of the present invention, and have extremely good corrosion resistance and strength. (2) Nos. 45, 46, and 53 are comparative examples in which the potential difference between the core material and the intermediate layer is too small, and the sacrificial anode action is not exhibited, resulting in extremely poor corrosion resistance. Especially No.46 will be explained later.
Like No. 54, the potential difference is negative (the potential of the core material is more base than the potential of the intermediate layer), so penetrating corrosion occurs. (3) Nos. 47 to 49 are comparative examples in which the above potential difference is excessive, and the corrosion resistance of the entire BS is poor because the intermediate layer is severely corroded. (4) Nos. 50 and 51 are comparative examples in which the cladding ratio of the middle class is too small or too large, and when it is too small (No. 50)
Since the sacrificial anode effect is not fully exerted, the corrosion resistance is poor, while when it is too large (No. 51), the strength is somewhat low. (5) Nos. 54 to 60 are comparative examples in which the alloy composition of the core material exceeds the specified requirements, and either the strength or corrosion resistance is extremely poor and cannot be put to practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐食性試験で使用した供試片の要部拡
大断面図である。 1……芯材、2……中間層、3……ろう材、A
……平担部、B……フイレツト部。
FIG. 1 is an enlarged sectional view of the main part of the specimen used in the corrosion resistance test. 1... Core material, 2... Intermediate layer, 3... Brazing material, A
... flat part, B... fillet part.

Claims (1)

【特許請求の範囲】 1 Si:0.2〜1.0%(以下特記しない限り重量%
を意味する) Mg:0.1〜0.5% Cu:0.2〜1.0% を、Si/Mg(重量比)=1〜2.5の条件下で含有
し、更に Mn:0.05〜0.5% Cr:0.05〜0.5% Zr:0.05〜0.5% の3種からなる群より選択される1種以上の元素
を含有し、残部がAl及び不可避不純物よりなる
Al合金を芯材として用い、該芯材の片面若しく
は両面に、クラツド率で3〜15%の厚みを有し且
つ前記芯材より20〜100mV卑な電位差を有する
Al合金からなる中間層を介して、ろう材層を形
成してなることを特徴とする真空ろう付用耐水・
高強度ブレージングシート。 2 特許請求の範囲第1項において、中間層が、
純アルミニユウムあるいは Mn:0.05〜0.5% Cr:0.05〜0.5% Zr:0.05〜0.5% Cu:0.05〜0.5% Mg:0.05〜0.5% Zn:0.1〜1.0% の6種からなる群より選択される1種以上の元素
を含み、残部がAlおよび不純物よりなるAl合金
であるブレージングシート。 3 Si:0.2〜1.0% Mg:0.1〜0.5% Cu:0.2〜1.0% を、Si/Mg(重量比)=1〜2.5の条件下で含有
し、更に Mn:0.05〜0.5% Cr:0.05〜0.5% Zr:0.05〜0.5% の3種からなる群より選択される1種以上の元素
を含み、残部がAl及び不可避不純物であるAl合
金を芯材として用い、該芯材の、熱媒体と接する
側の面に形成されるろう材と芯材との間に、クラ
ツド率で3〜15%の厚さを有し且つ芯材より20〜
100mV卑な電位差を有するAl合金からなる中間
層を介在させてブレージングシートを構成し、熱
媒体と接触する側の隔壁を該ブレージングシート
で構成してなることを特徴とする真空ろう付熱交
換器。 4 特許請求の範囲第3項において、中間層が純
アルミニウム、或は Mn:0.05〜0.5% Cr:0.05〜0.5% Zr:0.05〜0.5% Cu:0.05〜0.5% Mg:0.05〜0.5% Zn:0.1〜1.0% の6種からなる群より選択される1種以上の元素
を含み、残部がAl及び不純物よりなるAl合金で
ある真空ろう付熱交換器。
[Claims] 1 Si: 0.2 to 1.0% (wt% unless otherwise specified)
) Mg: 0.1 to 0.5% Cu: 0.2 to 1.0% under the conditions of Si/Mg (weight ratio) = 1 to 2.5, and further Mn: 0.05 to 0.5% Cr: 0.05 to 0.5% Zr : Contains one or more elements selected from the group consisting of 0.05 to 0.5%, and the remainder consists of Al and inevitable impurities.
An Al alloy is used as a core material, and one or both sides of the core material have a thickness of 3 to 15% in terms of cladding ratio, and have a potential difference of 20 to 100 mV less base than the core material.
Water resistant for vacuum brazing, characterized by forming a brazing metal layer through an intermediate layer made of Al alloy.
High strength brazing sheet. 2 In claim 1, the intermediate layer is
Pure aluminum or 1 selected from the group consisting of 6 types: Mn: 0.05-0.5% Cr: 0.05-0.5% Zr: 0.05-0.5% Cu: 0.05-0.5% Mg: 0.05-0.5% Zn: 0.1-1.0% A brazing sheet that is an Al alloy containing at least one element, with the remainder consisting of Al and impurities. 3 Contains Si: 0.2 to 1.0% Mg: 0.1 to 0.5% Cu: 0.2 to 1.0% under the conditions of Si/Mg (weight ratio) = 1 to 2.5, and further contains Mn: 0.05 to 0.5% Cr: 0.05 to 0.5% Zr: An Al alloy containing one or more elements selected from the group consisting of 0.05 to 0.5%, the balance being Al and inevitable impurities, is used as a core material, and the core material is a heat medium. There should be a thickness of 3 to 15% in cladding ratio between the brazing filler metal and the core material formed on the contacting surfaces, and a thickness of 20 to 20% greater than the core material.
A vacuum brazed heat exchanger characterized in that a brazing sheet is formed by interposing an intermediate layer made of an Al alloy having a base potential difference of 100 mV, and a partition wall on the side that contacts a heat medium is formed of the brazing sheet. . 4 In claim 3, the intermediate layer is made of pure aluminum, or Mn: 0.05-0.5% Cr: 0.05-0.5% Zr: 0.05-0.5% Cu: 0.05-0.5% Mg: 0.05-0.5% Zn: A vacuum brazed heat exchanger which is an Al alloy containing 0.1 to 1.0% of one or more elements selected from the group consisting of six types, with the balance being Al and impurities.
JP10716184A 1984-05-25 1984-05-25 Water resistant, high strength brazing sheet for vacuum brazing and heat exchanger using said sheet Granted JPS60251243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10716184A JPS60251243A (en) 1984-05-25 1984-05-25 Water resistant, high strength brazing sheet for vacuum brazing and heat exchanger using said sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10716184A JPS60251243A (en) 1984-05-25 1984-05-25 Water resistant, high strength brazing sheet for vacuum brazing and heat exchanger using said sheet

Publications (2)

Publication Number Publication Date
JPS60251243A JPS60251243A (en) 1985-12-11
JPS6234826B2 true JPS6234826B2 (en) 1987-07-29

Family

ID=14452036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10716184A Granted JPS60251243A (en) 1984-05-25 1984-05-25 Water resistant, high strength brazing sheet for vacuum brazing and heat exchanger using said sheet

Country Status (1)

Country Link
JP (1) JPS60251243A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615702B2 (en) * 1990-07-25 1994-03-02 スカイアルミニウム株式会社 Core material for brazing sheet
FR2752930B1 (en) 1996-08-29 1998-11-13 Valeo Thermique Moteur Sa COLLAR COLLECTOR, BASED ON ALUMINUM, FOR HEAT EXCHANGER, ESPECIALLY A MOTOR VEHICLE
JP3494591B2 (en) * 1999-06-23 2004-02-09 株式会社デンソー Aluminum alloy brazing sheet with good corrosion resistance for vacuum brazing and heat exchanger using the same
JP2008523296A (en) * 2004-12-13 2008-07-03 ベール ゲーエムベーハー ウント コー カーゲー Heat exchange device for gas containing acid
JP2012148344A (en) * 2012-03-12 2012-08-09 Kobe Steel Ltd Aluminum alloy composite material and heat exchanger
JP6838079B2 (en) 2016-04-19 2021-03-03 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH Aluminum composite with corrosion protection layer
JP6487974B2 (en) 2017-08-17 2019-03-20 株式会社Uacj Aluminum alloy brazing sheet for heat exchanger and method for producing aluminum alloy brazing sheet for heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164748A (en) * 1982-03-25 1983-09-29 Mitsubishi Alum Co Ltd High strength composite al alloy material with superior pitting corrosion resistance
JPS59150052A (en) * 1983-02-14 1984-08-28 Kobe Steel Ltd Al composite material for brazed heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164748A (en) * 1982-03-25 1983-09-29 Mitsubishi Alum Co Ltd High strength composite al alloy material with superior pitting corrosion resistance
JPS59150052A (en) * 1983-02-14 1984-08-28 Kobe Steel Ltd Al composite material for brazed heat exchanger

Also Published As

Publication number Publication date
JPS60251243A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
JPS6248742B2 (en)
US4649087A (en) Corrosion resistant aluminum brazing sheet
JP2564190B2 (en) Aluminum alloy composite for brazing
US4828794A (en) Corrosion resistant aluminum material
JPS6289597A (en) Aluminum brazing sheet for brazing
JPS6234826B2 (en)
JPS59100251A (en) Corrosion resistant aluminum alloy with high strength for brazing
JPS6234827B2 (en)
JPH1088266A (en) Brazing sheet made of aluminum alloy
JP4019775B2 (en) Aluminum alloy brazing sheet for heat exchangers with excellent corrosion resistance
JP3765327B2 (en) Brazing aluminum alloy composite member and brazing method
JPS5925158B2 (en) Brazed aluminum heat exchanger
JPH07179969A (en) Laminated brazing sheet made of aluminum alloy for heat exchanger
JP3858255B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JP4019337B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JPH06184686A (en) Aluminum alloy brazing sheet with high strength and high corrosion resistance for heat exchanger
JPH0333770B2 (en)
JP3858254B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JPS58110653A (en) Heat exchanger made of brazed aluminum
JP3375189B2 (en) Composite brazing sheet for heat exchanger made of aluminum alloy
JP2595845B2 (en) Brazing sheet with excellent corrosion resistance
JP3246970B2 (en) Aluminum heat exchanger composite
JPS58164749A (en) Composite al alloy material with superior pitting corrosion resistance
JPH01159343A (en) Al alloy clad fin material for heat exchanger having superior brazability and corrosion resistance
JP2000297338A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance under alkaline environment and acid environment