JPS6234743B2 - - Google Patents

Info

Publication number
JPS6234743B2
JPS6234743B2 JP54000592A JP59279A JPS6234743B2 JP S6234743 B2 JPS6234743 B2 JP S6234743B2 JP 54000592 A JP54000592 A JP 54000592A JP 59279 A JP59279 A JP 59279A JP S6234743 B2 JPS6234743 B2 JP S6234743B2
Authority
JP
Japan
Prior art keywords
aqueous solution
sodium
sodium acrylate
polymerization
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54000592A
Other languages
Japanese (ja)
Other versions
JPS5594334A (en
Inventor
Yoshiaki Ito
Atsuhiko Nitsuta
Tomio Tanaka
Haruto Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59279A priority Critical patent/JPS5594334A/en
Publication of JPS5594334A publication Critical patent/JPS5594334A/en
Publication of JPS6234743B2 publication Critical patent/JPS6234743B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアクリル酸ソーダ塩の重合又は共重合
に先だつて、アクリル酸ソーダ塩の水溶液をあら
かじめキレートイオン交換樹脂で前処理するアク
リル酸ソーダ塩の精製方法に関する。 近年アクリル酸ソーダ塩を重合又は共重合して
高分子量の溶解性良好な水溶性共重合体の開発が
なされているが、本方法ではアクリル酸ソーダ塩
の水溶液をキレートイオン交換樹脂処理すること
によつて純粋なアクリル酸ソーダ塩水溶液を得
て、アクリルアミドとの共重合により溶解性良好
な高分子重合体を得るものである。 すなわち、アクリル酸ソーダ塩水溶液をその
まゝ直接周知の重合反応に供した場合必ずしも商
品としての性質を満足する重合体が得られない。 つまりアクリル酸ソーダ塩の高分子量重合体の
多くは、紙加工剤、繊維処理剤、凝集剤、増粘
剤、歩留り向上剤、等として使用されるが、その
際高分子量にすると必要とされる水への溶解性が
悪くなり又満足される各種性能が得られない。 本発明者はかかる欠点を有しない高分子量重合
体を製造すべく鋭意研究した結果、アクリル酸ソ
ーダ塩水溶液をキレートイオン交換樹脂、特にナ
トリウム型キレートイオン交換樹脂で処理した後
重合又は、共重合に供するならば極めて溶解性の
すぐれた高分子量の重合体が得られることを見出
し、本発明に到達した。 ナトリウム型キレートイオン交換樹脂は処理液
がアクリル酸ソーダ塩水溶液であるために市販の
ナトリウム型キレートイオン交換樹脂をそのまま
又は完全に苛性ソーダでNa型にした後アクリル
酸ソーダ塩水溶液を処理する方法を用いる。 本発明方法で重合に供されるアクリル酸ソーダ
塩水溶液は、アクリル酸の水溶液と苛性ソーダ水
溶液とを当モルで反応させ、アクリル酸をほゞ
100%アクリル酸ソーダ水溶液とする。この水溶
液をアルカリ側へは苛性ソーダで、酸側へはアク
リル酸を用いてほゞ中性PHで7〜10に調節する。 このアクリル酸ソーダ水溶液中にはアクリル酸
の製造上不純物として含有される微量の酢酸、プ
ロピオン酸、アクリロニトリル、アクロレイン、
蟻酸、アクリル酸ダイマー(CH2=CH−
COOCH2CH2−COOH)、ホルマリン、マレイン
酸、フマール酸、アセトン、プロトアネモネン等
の有機物、重合禁止剤及び製造上触媒として使用
された重金属その他銅、鉄、クロム、鉛、水銀、
ニツケル、コバルト、ビスマス、リン、モリブデ
ン、アルミニウム、カルシユウム、マグネシウム
等の金属イオンや苛性ソーダの製造上不純分とし
て含有される微量のNa2CO3、Nacl、Fe2O3
SiO2、Al2O3、CaO、Na2SO4等が微量不純物とし
て存在している。 この不純物は重合工程に使用された時長い反応
時間を要したり、開始剤を多量に必要としたり、
又連鎖移動等を助長し分岐したポリマーを与える
ことが見出されている。 そこでほゞ中性(PH=7〜10)にPH調節したア
クリル酸ソーダ塩水溶液をあらかじめナトリウム
型キレートイオン交換樹脂中に通すことによりア
クリル酸ソーダがアクリル酸にもどることなく不
純物を除去し純粋なアクリル酸ソーダ塩水溶液を
得るものと推察する。 この様にして得られたアクリル酸ソーダ水溶液
と例えばアクリルアミドモノマーとの混合水溶液
を用いて水溶液重合体を製造するが、重合方法は
周知の水溶液重合が適用される。また、共重合成
分として、アクリル酸ソーダ、アクリルアミドの
他に他のビニルモノマー、たとえば少量のアクリ
ル酸、2−アクリルアミド−2−メチルプロパン
スルホン酸塩などを用いることもできる。 水溶液重合は好ましくは、70wt%以下更に好
ましくは、10〜40wt%モノマー水溶液を不活性
ガスたとえばN2ガスにて溶存酸素が0.1ppm以下
程度になるまで脱酸素を行い、重合開始剤として
過硫酸カリや過硫酸アンモニウムをモノマーに対
して10-5〜2×10-5モル添加し普通50〜80℃に加
熱することにより行われる。上記以下の温度で重
合を行う場合には還元性金属塩や第3級アンを上
記触媒と併用したレドツクス触媒を用いるのが良
い。 その他レドツクス触媒とアゾビス系触媒との組
合せ等も用いられる。 実施例 1 アクリル酸ソーダ塩水溶液の調整 撹拌機及び冷却用ジヤケツトを備えた槽の中
に80%アクリル酸水溶液(大阪有機化学株式会
社のAN法品)90.09gを入れ、その中に20%苛
性ソーダ200g(三井東圧株式会社のHg法品48
%苛性ソーダを蒸留水で稀釈したもの)を液中
温度が40℃以下に保つ様して添加した后蒸留水
23.46gを入れ30%アクリル酸ソーダ水溶液を
作る。得られたアクリル酸ソーダ水溶液はアク
リル酸水溶液又は苛性ソーダ水溶液にてPH7〜
10に調整する。 アクリル酸ソーダ水溶液の処理 で得られた反応液をナトリウム型キレート
イオン交換樹脂レバチツトTP−207(バイエル
社製品)70mlを直径25mmの塔に充填したイオン
交換塔を通し精製した。 又で得られた反応液をナトリウム型キレー
トイオン交換樹脂エポラスMX−8(ミヨシ油
脂製品)、70mlを直径25mmの塔に充填したイオ
ン交換塔を通し精製した。 重合方法 上記アクリル酸ソーダ水溶液の未処理のもの
(A)、ナトリウム型キレートイオン交換樹脂レバ
チツトTP−207処理のもの(B)、ナトリウム型キ
レートイオン交換樹脂エポラスMX−8処理し
たもの(C)の3種を用意し、それぞれアクリルア
ミドとの混合物(アクリルアミド/アクリル酸
ソーダ、モル比=85/15)の20wt%水溶液を
作り、PHを7.5に調整し、重合フラスコに該水
溶液を1Kg仕込んだ。系内の溶存酸素を窒素ガ
スで充分に追い出した後、20℃で過硫酸アンモ
ニウムを単量体1モルに対して1.0×10-5モル
と重亜硫酸ソーダ0.5×10-5モルを水に溶解し
添加し、重合熱による昇温とそれによる重合が
進行するままに放置し反応を進行させ、上記昇
温が認められなくなつた所で該反応を終了せし
める。この様にして重合すると弾力性のある含
水ゲルが得られる。 かくして得られたポリマーを3mm角以下に切
断后、85℃で2時間乾燥し、粉砕し、粉末
Sampleを得た。 得られたポリマーの性能試験 ポリマーの性能は次の項目について比較検討
した。 溶解性:ビーカー中に重合体の粉末サンプル
を0.4g採取、予じめ500mlビーカー中に400
mlの蒸留水を入れて用意した中に撹拌機(羽
根の径50mmの3枚羽根)の回転数400rpmの
状態で撹拌して、その中に前記粉末サンプル
を入れ、室温で90分間溶解後、150メツシユ
の金網を通して過を行ない溶解性を測定し
た。 不溶解分量は25℃で16時間以上乾燥した後
その重量を測定した。 なお過が完全にできなかつた場合は
WNF(Would Not Filter)と評価した。 粘度:上記液中に1規定の塩化ナトリウム
溶液になるように塩化ナトリウムを添加し、
溶解後25℃でブルツクフイールド回転粘度計
B8L型BLアダプター付で60rpmとして粘度
を測定した。 実施例 2 アクリル酸ソーダ水溶液の調整及びアクリル酸
ソーダ水溶液の処理は前記と同様に処理した。前
記アクリル酸ソーダ水溶液の未処理のもの(D)、ナ
トリウム型キレートイオン交換樹脂レバチツト
TP−207処理のもの(E)、ナトリウム型キレートイ
オン交換樹脂エポラスMX−8処理したもの(F)の
3種を用意し、それぞれアクリルアミドとの混合
物(アクリルアミド/アクリル酸ソーダ、モル比
=85/15)の30wt%水溶液を作りPHを7.5に調整
し、重合フラスコに該水溶液を1Kg仕込み、さら
にアゾビスイソブチロニトリルを前記混合物単量
体1モルに対して0.3×10-3モルの割合でメタノ
ール10gに溶解し添加した。 反応系内の溶存酸素を窒素ガスに充分追い出し
た後、窒素ガス雰囲気中で0℃にて過硫酸アンモ
ニウムを上記単量体1モルに対して0.7×10-5
ルと硫酸第一鉄アンモニウム0.3×10-5モルを水
に溶解し、添加して重合を開始させた。重合熱に
よる昇温とそれによる重合が進行するままに放置
し反応を進させ、上記昇温が認められなくなつた
ところで該重合反応を終了せしめた。この様にし
て得られた重合体ゲルを実施例1と同様にして粉
末サンプルを得た。又、得られたポリマーの性能
試験は実施例1と同様にして行つた。 比較例 1 実施例1で得られた30%アクリル酸ソーダ水溶
液600mlを、1000mlのフラスコ中に入れ、室温、
常圧下にて毎分25c.c.の空気を吹込みながら、25℃
で2時間撹拌処理した。 次いでナトリウム型強酸性陽イオン交換樹脂ア
ンバーライトIR−120(オルガノ社製品)70c.c.を
直径25mmの塔に充填したイオン交換樹脂塔を通
し、精製した。 上記アクリル酸ソーダについて、実施例1と全
く同様な重合法で重合してポリマー粉末(H)と及
び、実施例2と全く同様な重合法で重合してポリ
マー粉末(G)を得て、比較評価した。 得られたポリマーの性状を下表に示す。
The present invention relates to a method for purifying sodium acrylate salt, in which an aqueous solution of sodium acrylate salt is pretreated with a chelate ion exchange resin prior to polymerization or copolymerization of sodium acrylate salt. In recent years, water-soluble copolymers with high molecular weight and good solubility have been developed by polymerizing or copolymerizing sodium acrylate salt, but in this method, an aqueous solution of sodium acrylate salt is treated with a chelate ion exchange resin. Thus, a pure sodium acrylic acid salt aqueous solution is obtained, and a high-molecular polymer with good solubility is obtained by copolymerizing it with acrylamide. That is, when an aqueous solution of sodium acrylic acid salt is directly subjected to a well-known polymerization reaction, a polymer that satisfies commercial properties cannot necessarily be obtained. In other words, many high molecular weight polymers of sodium acrylic acid salt are used as paper processing agents, fiber treatment agents, flocculants, thickeners, retention improvers, etc. The solubility in water becomes poor and various satisfactory performances cannot be obtained. As a result of intensive research to produce a high molecular weight polymer that does not have such drawbacks, the present inventors have found that after treating an aqueous solution of sodium acrylate with a chelate ion exchange resin, particularly a sodium type chelate ion exchange resin, polymerization or copolymerization is possible. It was discovered that a high-molecular weight polymer with extremely high solubility can be obtained by providing a polymer with a high molecular weight, and the present invention was achieved based on this finding. Since the treatment liquid for sodium type chelate ion exchange resin is a sodium acrylate salt aqueous solution, a method is used in which a commercially available sodium type chelate ion exchange resin is used as it is, or it is completely converted to Na type with caustic soda and then treated with a sodium acrylate salt aqueous solution. . The aqueous acrylic acid salt aqueous solution to be subjected to polymerization in the method of the present invention is obtained by reacting an aqueous solution of acrylic acid and an aqueous caustic soda solution in equimolar amounts, so that almost no acrylic acid is present in the aqueous solution.
Make a 100% sodium acrylate aqueous solution. This aqueous solution is adjusted to a neutral pH of 7 to 10 using caustic soda for the alkaline side and acrylic acid for the acid side. This sodium acrylate aqueous solution contains trace amounts of acetic acid, propionic acid, acrylonitrile, acrolein,
Formic acid, acrylic acid dimer (CH 2 = CH−
COOCH 2 CH 2 −COOH), organic substances such as formalin, maleic acid, fumaric acid, acetone, and protoanemonene, heavy metals used as polymerization inhibitors and catalysts in production, and other copper, iron, chromium, lead, mercury,
Metal ions such as nickel, cobalt, bismuth, phosphorus, molybdenum, aluminum, calcium, and magnesium, as well as trace amounts of Na 2 CO 3 , NaCl, Fe 2 O 3 , which are contained as impurities in the production of caustic soda.
SiO 2 , Al 2 O 3 , CaO, Na 2 SO 4 and the like are present as trace impurities. When these impurities are used in the polymerization process, they require long reaction times, large amounts of initiator,
It has also been found that it promotes chain transfer and the like to give branched polymers. Therefore, by passing an aqueous sodium acrylate salt solution whose pH has been adjusted to approximately neutrality (PH = 7 to 10) through a sodium-type chelate ion exchange resin, impurities are removed without the sodium acrylate returning to acrylic acid, resulting in pure acrylic acid. It is assumed that an aqueous solution of sodium acrylic acid salt is obtained. An aqueous solution polymer is produced using the mixed aqueous solution of the sodium acrylate aqueous solution obtained in this way and, for example, an acrylamide monomer, and a well-known aqueous solution polymerization method is applied as the polymerization method. In addition to sodium acrylate and acrylamide, other vinyl monomers such as small amounts of acrylic acid, 2-acrylamido-2-methylpropanesulfonate, etc. can also be used as copolymerization components. In the aqueous solution polymerization, preferably 70 wt% or less, more preferably 10 to 40 wt% monomer aqueous solution is deoxidized with an inert gas such as N 2 gas until the dissolved oxygen becomes about 0.1 ppm or less, and persulfuric acid is used as a polymerization initiator. This is usually carried out by adding 10 -5 to 2 x 10 -5 moles of potash or ammonium persulfate to the monomer and heating the mixture to 50 to 80°C. When polymerization is carried out at a temperature below the above, it is preferable to use a redox catalyst containing a reducing metal salt or a tertiary ammonium in combination with the above catalyst. Other combinations of redox catalysts and azobis catalysts are also used. Example 1 Preparation of aqueous acrylic acid salt solution 90.09 g of an 80% acrylic acid aqueous solution (AN product manufactured by Osaka Organic Chemical Co., Ltd.) was placed in a tank equipped with a stirrer and a cooling jacket, and 20% caustic soda was added thereto. 200g (Mitsui Toatsu Co., Ltd. Hg method product 48
% caustic soda diluted with distilled water) is added to the solution to keep the temperature below 40℃.
Add 23.46g to make a 30% sodium acrylate aqueous solution. The obtained sodium acrylic acid aqueous solution has a pH of 7 to 7 with acrylic acid aqueous solution or caustic soda aqueous solution
Adjust to 10. Treatment of the sodium acrylate aqueous solution The reaction solution obtained was purified by passing through an ion exchange column filled with 70 ml of a sodium type chelate ion exchange resin Levachit TP-207 (product of Bayer) in a column with a diameter of 25 mm. The reaction solution obtained in step 1 was purified by passing through an ion exchange column filled with 70 ml of sodium type chelate ion exchange resin Eporus MX-8 (Miyoshi Oil Products) in a column with a diameter of 25 mm. Polymerization method Untreated version of the above sodium acrylate aqueous solution
Three types were prepared: (A), one treated with sodium type chelate ion exchange resin Revacit TP-207 (B), and one treated with sodium type chelate ion exchange resin Eporus MX-8 (C), and a mixture with acrylamide ( A 20 wt% aqueous solution of acrylamide/sodium acrylate (molar ratio = 85/15) was prepared, the pH was adjusted to 7.5, and 1 kg of the aqueous solution was charged into a polymerization flask. After thoroughly expelling dissolved oxygen in the system with nitrogen gas, dissolve ammonium persulfate (1.0 x 10 -5 mol) and sodium bisulfite (0.5 x 10 -5 mol) in water per 1 mol of monomer at 20°C. The reaction is allowed to proceed as the temperature rises due to the heat of polymerization and the resulting polymerization proceeds, and the reaction is terminated when the temperature rise is no longer observed. Polymerization in this manner yields an elastic hydrogel. The thus obtained polymer was cut into pieces of 3 mm square or less, dried at 85°C for 2 hours, crushed, and powdered.
I got a sample. Performance Test of the Obtained Polymer The performance of the polymer was compared and studied with respect to the following items. Solubility: Collect 0.4g of polymer powder sample in a beaker, add 400g to a 500ml beaker in advance.
ml of distilled water, stirred at 400 rpm using a stirrer (three blades with a blade diameter of 50 mm), put the powder sample in it, and dissolved it at room temperature for 90 minutes. Solubility was measured by passing through a 150 mesh wire mesh. The undissolved amount was determined by drying at 25°C for 16 hours or more and then measuring its weight. In addition, if you are unable to complete the
It was rated as WNF (Would Not Filter). Viscosity: Add sodium chloride to the above solution to make a 1N sodium chloride solution,
Bruckfield rotational viscometer at 25 °C after dissolution
Viscosity was measured at 60 rpm using a B8L type BL adapter. Example 2 Preparation of an aqueous sodium acrylate solution and treatment of an aqueous sodium acrylate solution were carried out in the same manner as described above. Untreated aqueous solution of sodium acrylate (D), sodium type chelate ion exchange resin Revacit
Three types were prepared: one treated with TP-207 (E) and one treated with sodium type chelate ion exchange resin Eporus MX-8 (F), and each was mixed with acrylamide (acrylamide/sodium acrylate, molar ratio = 85/ Prepare a 30 wt% aqueous solution of 15), adjust the pH to 7.5, charge 1 kg of the aqueous solution into a polymerization flask, and add azobisisobutyronitrile at a ratio of 0.3 x 10 -3 mol per 1 mol of monomers in the mixture. It was dissolved in 10 g of methanol and added. After sufficiently expelling dissolved oxygen in the reaction system with nitrogen gas, ammonium persulfate was added at 0.7 x 10 -5 mol and ferrous ammonium sulfate was added at 0.7 x 10 -5 mol per mol of the above monomer and 0.3 x ferrous ammonium sulfate at 0°C in a nitrogen gas atmosphere. 10 -5 mol was dissolved in water and added to initiate polymerization. The reaction was allowed to proceed as the temperature increased due to the heat of polymerization and the resulting polymerization progressed, and the polymerization reaction was terminated when the temperature increase was no longer observed. A powder sample of the polymer gel thus obtained was obtained in the same manner as in Example 1. Further, the performance test of the obtained polymer was conducted in the same manner as in Example 1. Comparative Example 1 600 ml of the 30% sodium acrylate aqueous solution obtained in Example 1 was placed in a 1000 ml flask and heated to room temperature.
25℃ while blowing 25c.c. of air per minute under normal pressure.
The mixture was stirred for 2 hours. Next, the mixture was purified by passing through an ion exchange resin column filled with 70 c.c. of sodium type strongly acidic cation exchange resin Amberlite IR-120 (product of Organo Co., Ltd.) in a column having a diameter of 25 mm. The above sodium acrylate was polymerized using the same polymerization method as in Example 1 to obtain polymer powder (H), and polymer powder (G) was obtained using the same polymerization method as in Example 2 for comparison. evaluated. The properties of the obtained polymer are shown in the table below.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 水に可溶な重合体の製造において、アクリル
酸ソーダ塩を一成分とする重合体又は共重合体の
重合に先立つて原料として用いるアクリル酸ソー
ダ塩をあらかじめキレートイオン交換樹脂で処理
することを特徴とするアクリル酸ソーダ塩の精製
方法。
1. In the production of water-soluble polymers, the sodium acrylate salt used as a raw material must be treated with a chelate ion exchange resin in advance before polymerizing a polymer or copolymer containing sodium acrylate salt as one component. Characteristic method for purifying sodium acrylic acid salt.
JP59279A 1979-01-10 1979-01-10 Purification of sodium acrylate Granted JPS5594334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59279A JPS5594334A (en) 1979-01-10 1979-01-10 Purification of sodium acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59279A JPS5594334A (en) 1979-01-10 1979-01-10 Purification of sodium acrylate

Publications (2)

Publication Number Publication Date
JPS5594334A JPS5594334A (en) 1980-07-17
JPS6234743B2 true JPS6234743B2 (en) 1987-07-28

Family

ID=11477998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59279A Granted JPS5594334A (en) 1979-01-10 1979-01-10 Purification of sodium acrylate

Country Status (1)

Country Link
JP (1) JPS5594334A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69333752T3 (en) 1992-06-10 2011-03-03 Nippon Shokubai Co. Ltd. Process for the preparation of a hydrophilic resin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387309A (en) * 1977-01-11 1978-08-01 Mitsui Toatsu Chem Inc Purification of sodium salt of acrylic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387309A (en) * 1977-01-11 1978-08-01 Mitsui Toatsu Chem Inc Purification of sodium salt of acrylic acid

Also Published As

Publication number Publication date
JPS5594334A (en) 1980-07-17

Similar Documents

Publication Publication Date Title
US4504640A (en) Process for producing monoallylamine polymer
US3864323A (en) Method of manufacturing polycoagulants
US3686145A (en) Hydroxycarboxylic acid polymers from polyacroleins
US4622356A (en) Polyacrylamide and polyacrylic acid polymers
KR100400146B1 (en) Use as water-soluble polymers and paper-based dry strength additives prepared from meth (acrylamide), ethylenically unsaturated aliphatic carboxylic acids or salts thereof and polyvinyl monomers
JPH0676580B2 (en) Flushing liquid for drilling
JPS6213361B2 (en)
US3968093A (en) Process for producing partially hydrolyzed polyacrylamide in the presence of alkali metal hydroxide and boric acid
JPS6234743B2 (en)
JPS5867706A (en) Manufacture of copolymer from monoethylenically unsaturated mono- and dicarboxylic acid
US3507840A (en) Method of removing water from water-soluble polymers
JPS6054295B2 (en) Method for purifying soda salt of acrylic acid
US2868738A (en) Preparation of cation-exchange resins by oxidation of vinylalkoxy sulfide polymers
JPS60240711A (en) Production of water-soluble high-mw polymer powder
US4313001A (en) Process for purifying aqueous acrylamide solutions
JP3008369B2 (en) Method for producing amphoteric polymer
US4412063A (en) Polytetrahydrofurans containing terminal acrylate or methacrylate groups
JPS624047B2 (en)
CA1153497A (en) Poly-(alpha-alkoxy)acrylamide and poly-(alpha-alkoxy) acrylamide complexes
EP0065078B1 (en) A process for improving the polymerizability of acrylonitrile, acrylamide, acrylic acid and mixtures thereof
SU1671667A1 (en) Copolymer and acrylamide and n,n-dimethyl-n-(2-hydroxyethyl)-ammonium-methacrylate as flocculants
JPH0212483B2 (en)
JP3313652B2 (en) Production method of water-soluble polymer
JPS63235313A (en) Preparation of maleic acid copolymer
JPH0364200B2 (en)