JPS6234162B2 - - Google Patents

Info

Publication number
JPS6234162B2
JPS6234162B2 JP55073993A JP7399380A JPS6234162B2 JP S6234162 B2 JPS6234162 B2 JP S6234162B2 JP 55073993 A JP55073993 A JP 55073993A JP 7399380 A JP7399380 A JP 7399380A JP S6234162 B2 JPS6234162 B2 JP S6234162B2
Authority
JP
Japan
Prior art keywords
frequency
circuit
resonant
piezoelectric vibrator
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55073993A
Other languages
Japanese (ja)
Other versions
JPS56169909A (en
Inventor
Tetsuo Konno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP7399380A priority Critical patent/JPS56169909A/en
Publication of JPS56169909A publication Critical patent/JPS56169909A/en
Publication of JPS6234162B2 publication Critical patent/JPS6234162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/027Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using frequency conversion means which is variable with temperature, e.g. mixer, frequency divider, pulse add/substract logic circuit

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Description

【発明の詳細な説明】 本発明は圧電振動子を用いた発振回路に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oscillation circuit using a piezoelectric vibrator.

従来、例えば水晶発振回路の発振周波数を温度
補償するものが種々考えられており、その一つと
してサーミスタ等の感温素子を用いたものがある
が、これによると水晶振動子と感温素子とが分離
しているため補償効果に遅れが生じ、特に温度変
化が急激な場合にはこれに追随できないことがあ
つた。
Conventionally, various methods have been considered for temperature-compensating the oscillation frequency of a crystal oscillator circuit, one of which uses a temperature-sensitive element such as a thermistor. Because of the separation, there was a delay in the compensation effect, and it was sometimes impossible to follow this, especially when the temperature change was rapid.

そこで本発明は、厚みすべり水晶振動子を主共
振モードおよび副共振モードで同時に発振させ、
各発振周波数の温度特性を利用して温度補償を行
なうようにした水晶発振回路を提供するものであ
る。
Therefore, the present invention causes a thickness-shear crystal resonator to oscillate simultaneously in the main resonance mode and the sub-resonance mode,
The present invention provides a crystal oscillation circuit that performs temperature compensation using the temperature characteristics of each oscillation frequency.

以下本発明の一実施例を図面に基づいて説明す
る。
An embodiment of the present invention will be described below based on the drawings.

第1図において、Qは厚みすべり水晶振動子で
その両面には第2図のごとく電極E1〜E3を形成
してある。この水晶振動子Qの共振特性を示した
のが第3図で、主共振周波数に対してそれよ
り数%程度高い副共振周波数が存在する。水
晶振動子Qを主共振周波数で発振させるため
の第1の共振回路が、インバータV1、抵抗R1
よびコンデンサC1,C4,C5で、副共振周波数
で発振させるための第2の共振回路が、インバ
ータV2、抵抗R2、コイルLおよびコンデンサC2
……C5である。
In FIG. 1, Q is a thickness-shear crystal resonator, and electrodes E 1 to E 3 are formed on both sides of the crystal resonator as shown in FIG. FIG. 3 shows the resonance characteristics of this crystal resonator Q, in which there is a sub-resonant frequency 2 that is several percent higher than the main resonant frequency 1 . The first resonant circuit for causing the crystal resonator Q to oscillate at the main resonant frequency 1 is composed of an inverter V 1 , a resistor R 1 and capacitors C 1 , C 4 , C 5 and has a sub resonant frequency
The second resonant circuit for oscillating at 2 is composed of an inverter V 2 , a resistor R 2 , a coil L and a capacitor C 2
...It is C5 .

なお、副共振レベルは主共振レベルより低いた
め、第2の共振回路が主共振周波数に引き込
まれないように、コイルLおよびコンデンサC3
を挿入して副共振周波数に同調させてある。
Note that since the sub-resonance level is lower than the main resonance level, the coil L and capacitor C 3
is inserted and tuned to sub-resonant frequency 2 .

この構成によつて、水晶振動子Qを同時に主共
振および副共振させることができ、端子P1から主
共振周波数が得られ、端子P2からは副共振周
波数が得られる。両周波数の温度特性につい
てみると、主共振周波数の温度特性は第4図
の曲線l1で表され、副共振周波数の温度特性
は曲線l2のごとく曲線l1より急峻なものとなる。
With this configuration, the crystal resonator Q can be caused to have main resonance and sub-resonance at the same time, and main resonance frequency 1 can be obtained from terminal P 1 and sub-resonance frequency 2 can be obtained from terminal P 2 . Looking at the temperature characteristics of both frequencies, the temperature characteristics of main resonant frequency 1 are represented by curve l 1 in Figure 4, and the temperature characteristics of sub-resonant frequency 2 are steeper than curve l 1 , as shown by curve l 2 . .

そこでまず、副共振周波数の温度特性によ
つて温度を検知し、これに基づいて主共振周波数
の温度補償を行なう例について説明する。
Therefore, first, the temperature is detected based on the temperature characteristics of sub-resonant frequency 2 , and based on this, the main resonant frequency is
An example of performing temperature compensation in step 1 will be explained.

本例では第5図のように、コンデンサC1にス
イツチング回路Sを介してコンデンサC6を並列
接続し、端子aにパルスPを供給してスイツチン
グ回路Sをオンオフさせるもので、パルスPのデ
ユーテイId/Ip(Id:パルス輻、Ip:パルスの周
期)を幅共振周波数の温度特性に応じて調整
することによつて、第1の共振回路の端子bから
みた実効的な負荷容量を変化させ、主共振周波数
を調整するものである。
In this example, as shown in Fig. 5, a capacitor C6 is connected in parallel to a capacitor C1 via a switching circuit S, and a pulse P is supplied to terminal a to turn on and off the switching circuit S. By adjusting Id/Ip (Id: pulse intensity, Ip: pulse period) according to the temperature characteristics of width resonance frequency 2 , the effective load capacity seen from terminal b of the first resonant circuit is changed. This is to adjust the main resonant frequency.

そこでパルスpのデユーテイによつて、端子b
からみた容量c(t)がいかに変化するかをみて
みる。
Therefore, depending on the duty of pulse p, terminal b
Let's take a look at how the capacitance c(t) changes when viewed from.

まず、端子bからみた容量c(t)をフーリエ
級数に展開すると、 c(t)=a0+a1cosωpt+a2cosωpt+… +b1sinωpt+b2sinωpt… となる。
First, when the capacitance c(t) seen from terminal b is expanded into a Fourier series, c(t)=a 0 +a 1 cosωpt+a 2 cosωpt+... +b 1 sinωpt+b 2 sinωpt...

ただし、 ωp=2πp,p=1/τp a0=1/τp∫〓 c(t)dt an=2/τp∫〓 c(t)cosnωpt dt bn=2/τp∫〓 c(t)sinnωpt dt とする。 However, ωp=2πp, p=1/τp a 0 =1/τp∫〓 p 0 c(t) dt an=2/τp∫〓 p 0 c(t) cosnωpt dt bn=2/τp∫〓 p 0 Let c(t) sinnωpt dt.

故に、 で表わされる。この式内には、スイツチング周波
数n・p(n=1,2,3……)成分が含まれ
ており、これに対する水晶振動子Qの応答性につ
いてみる。
Therefore, It is expressed as This equation includes a switching frequency n·p (n=1, 2, 3...) component, and the response of the crystal resonator Q to this component will be examined.

第1の共振回路の受動部の時定数τcは、 τc≒2Q/ω(Q:水晶振動子のQ値、ω
=2π:発振周波数)で表わされる。
したがつて、パルスpの周波数pをp≫1/
τcとなるように設定しておくことにより、周波
数pのスイツチングを与えても水晶発振周波数
スペクトルのp成分はほとんど無視できる。そ
のため、上記(1)のn・p(p=1/τp)成
分を含む項は無視でき、負荷容量は等価的にc
(t)=c1+c6・τd/τpで表わされ、実効的な
負荷容量がパルスpのデユーテイによつて決まる
ことがわかる。したがつて、パルスpのデユーテ
イによつて発振周波数が調整されるものである。
しかもコンデンサc6を接続したときおよび遮断し
たときの周波数が同じであり、常に一定の周波数
が得られる。因みに、水晶振動子Qとして、発振
周波数が約4.2MHzでQ値が3×105〜5×105程度
のものを用いた場合に、Q値が高いため、パルス
pの周波数pを10KHz程度に設定しておくこと
により、この周波数pによつて第1の共振回路
の発振周波数が影響を受けることはほとんどな
い。
The time constant τc of the passive part of the first resonant circuit is τc≒2Q/ω 0 (Q: Q value of the crystal resonator, ω 0
=2π 0 , 0 : oscillation frequency).
Therefore, the frequency p of the pulse p is p≫1/
By setting τc, even if switching of frequency p is applied, the p component of the crystal oscillation frequency spectrum can be almost ignored. Therefore, the term including the n・p (p=1/τp) component in (1) above can be ignored, and the load capacity is equivalently c
(t)=c 1 +c 6 ·τd/τp, and it can be seen that the effective load capacity is determined by the duty of pulse p. Therefore, the oscillation frequency is adjusted by the duty of the pulse p.
Moreover, the frequency is the same when the capacitor c6 is connected and when it is cut off, so a constant frequency is always obtained. Incidentally, when using a crystal resonator Q with an oscillation frequency of approximately 4.2 MHz and a Q value of approximately 3 × 10 5 to 5 × 10 5 , the frequency p of the pulse p is set to approximately 10 KHz because the Q value is high. By setting this frequency p, the oscillation frequency of the first resonant circuit is hardly affected by this frequency p.

したがつて、第1の共振回路の発振周波数は安
定性を損なわれることなく、パルスpのデユーテ
イによつて調整される。
Therefore, the oscillation frequency of the first resonant circuit can be adjusted by the duty of the pulse p without sacrificing stability.

副共振周波数をパルスpに変換して温度補
償を行なう構成を示したのが第6図である。同図
において、Mはミキサで、副共振周波数と温
度補償後の主共振周波数との差の周波数出力
を生じるものである。D1は分周回路、Tはタイ
ミングパルス発生回路、CTはミキサMからの差
の周波数をカウントするためのカウンタ、LAは
ラツチ回路である。DTはデータ変換回路で、差
の周波数をデユーテイ指定用のデジタルデータに
変換するものである。PCはプリセツタブルダウ
ンカウンタ、G1,G2はゲート回路である。
FIG. 6 shows a configuration in which temperature compensation is performed by converting the sub-resonant frequency 2 into a pulse p. In the figure, M is a mixer that generates a frequency output of the difference between the sub-resonant frequency 2 and the main resonant frequency 1 after temperature compensation. D1 is a frequency dividing circuit, T is a timing pulse generating circuit, CT is a counter for counting the frequency difference from mixer M, and LA is a latch circuit. DT is a data conversion circuit that converts the difference frequency into digital data for duty specification. PC is a presettable down counter, and G 1 and G 2 are gate circuits.

動作について説明すると、タイミングパルス発
生回路Tは分周回路D1からのパルスを受けて、
周期的に以下のようなパルスを発生する。
To explain the operation, the timing pulse generating circuit T receives a pulse from the frequency dividing circuit D1 , and
It periodically generates the following pulses.

まず端子t1から第8図t1の1パルスを発生して
カウンタCTをクリアする。つぎに端子t2から第
8図t2のように所定幅のパルスを発生してゲート
回路G1を開き、差の周波数をカウンタCTに供給
してこれをカウントさせる。そして端子t3から第
8図t3のパルスが発生してカウンタCTの内容
(差の周波数)がラツチ回路LAにラツチされ、そ
の出力がデータ変換回路DTに供給される。デー
タ変換回路DTには、予め以下のようなデータが
プログラムしてある。端子P1から生じる主共振周
波数は以下の動作によつて目標周波数
傍に温度補償されるものであるため、ミキサMか
ら生じる差の周波数△は幅共振周波数と目
標周波数との差の周波数()とな
り、これは第4図の曲線l2とほぼ同じ温度特性を
呈することになる。つまり差の周波数△=(
)は曲線l2に沿つて、温度の上昇に伴つ
て増大するものである。
First, one pulse t1 in FIG. 8 is generated from the terminal t1 to clear the counter CT. Next, a pulse of a predetermined width is generated from the terminal t2 as shown in FIG. 8 t2 to open the gate circuit G1 , and the difference frequency is supplied to the counter CT to be counted. Then, the pulse t3 in FIG. 8 is generated from the terminal t3 , the contents of the counter CT (difference frequency) are latched in the latch circuit LA, and its output is supplied to the data conversion circuit DT. The data conversion circuit DT is preprogrammed with the following data. Since the main resonance frequency 1 generated from the terminal P 1 is temperature compensated to near the target frequency 0 by the following operation, the difference frequency △ generated from the mixer M is the difference between the width resonance frequency 2 and the target frequency 0 . The frequency is ( 2-0 ), which exhibits almost the same temperature characteristics as the curve l2 in FIG. In other words, the difference frequency △=(
2-0 ) increases along the curve l2 as the temperature rises.

そこで、例えば主共振周波数を温度TLか
らTMの範囲内において目標周波数±1PPM
内に補償する場合には、第7図のように、曲線l1
で示した補償前の主共振周波数が上記補償幅
2PPMずつずれる温度T11,T13,……,T21,T22
……を予め計測しておく。なお、第7図の縦軸に
おける△Fは、補償前の主共振周波数と目標
周波数との差の周波数である。
Therefore, for example, if the main resonance frequency 1 is within the range of temperature TL to TM, the target frequency is 0 ±1PPM.
In the case of compensating within 1, the curve l 1
The main resonant frequency 1 before compensation shown in is the above compensation width
Temperatures deviated by 2PPM T 11 , T 13 , ..., T 21 , T 22
Measure ... in advance. Note that ΔF on the vertical axis in FIG. 7 is the frequency difference between the main resonance frequency 1 before compensation and the target frequency 0 .

そして、上記で計測した各温度における副共振
周波数を計測し、これと目標周波数との
差の周波数()を算出する。データ変
換回路DT内には上記各温度における差の周波数
)に対応したデータをプログラムし
ておき、このうちから上記でラツチ回路LAにラ
ツチされた差の周波数()に対応した
データが選択され、ダウンカウンタPCに供給さ
れるものである。このデータは、タイミングパル
ス発生回路Tの端子t4からの第8図t4のパルスに
よつてダウンカウンタPCにプリセツトされる。
このプリセツトによつて、ダウンカウンタPCの
出力は“1”になり、ゲート回路G2が開いて分
周回路D1からのパルスがダウンカウンタPCに供
給される。そしてダウンカウンタPCが上記デー
タによつて設定された値を計数すると、その出力
が“0”に反転する。
Then, the sub-resonant frequency 2 at each temperature measured above is measured, and the difference frequency ( 2-0 ) between this and the target frequency 0 is calculated. The data conversion circuit DT is programmed with data corresponding to the frequency difference ( 2 - 0 ) at each temperature, and from this data the frequency ( 2 - 0 ) of the difference latched in the latch circuit LA above is programmed. The corresponding data is selected and supplied to the down counter PC. This data is preset in the down counter PC by the pulse t4 in FIG. 8 from the terminal t4 of the timing pulse generating circuit T.
Due to this preset, the output of the down counter PC becomes "1", the gate circuit G2 is opened, and the pulse from the frequency dividing circuit D1 is supplied to the down counter PC. When the down counter PC counts the value set by the above data, its output is inverted to "0".

したがつて、タイミングパルス発生回路Tの端
子t1〜t4からのパルスによる上記動作が繰り返さ
れることによつて、ダウンカウンタPCの出力か
らは、第8図t5のように端子t4からのパルスと同
一周期でかつデータ変換回路DTからのデータに
応じたパルス幅のパルスが生じる。すなわち、デ
ータ変換回路DTからのデータに対応したデユー
テイのパルスが生じ、スイツチング回路Sが開閉
される。これによつて、端子P1からりの主共振周
波数が第7図の波線l3で示すごとく、目標周
波数±1PPM内に温度補償され、これが本発
振回路の出力周波数として用いられるものであ
る。
Therefore, by repeating the above operation using the pulses from the terminals t1 to t4 of the timing pulse generation circuit T, the output of the down counter PC is output from the terminal t4 as shown in FIG. 8, t5 . A pulse is generated that has the same period as the pulse and has a pulse width that corresponds to the data from the data conversion circuit DT. That is, a duty pulse corresponding to the data from the data conversion circuit DT is generated, and the switching circuit S is opened and closed. As a result, the main resonant frequency 1 from the terminal P1 is temperature-compensated to within the target frequency 0 ±1PPM, as shown by the broken line l3 in Figure 7, and this is used as the output frequency of the oscillator circuit. be.

因みに、実験によると、室温で主共振周波数
が約4194MHzで副共振周波数が4356MHzの
ものを用いて、−30℃から70℃まで±1PPM内に
抑え込むことができた。
Incidentally, according to experiments, the main resonant frequency at room temperature
Using a device with 1 of about 4194 MHz and sub-resonant frequency 2 of 4356 MHz, we were able to suppress temperatures from -30°C to 70°C within ±1 PPM.

なお水晶振動子に代えてチタン酸バリウム等の
圧電振動子を用いてもよい。
Note that a piezoelectric vibrator made of barium titanate or the like may be used instead of the crystal vibrator.

以上のように本発明によれば、厚みすべり圧電
振動子をその主共振周波数および副共振周波数で
同時に発振させ両周波数の差の周波数に対応した
デユーテイで周波数がω/2Qより高いパルス
によつてスイツチング回路をスイツチングして負
荷容量に並列に容量素子を接続および遮断するよ
うにしたので、極めて広い温度範囲内で温度補償
が行え、しかも容量素子を接続したときおよび遮
断したときの周波数を同じにでき、周波数標準と
して用いる上で特に大きな効果を発揮する。
As described above, according to the present invention, the thickness-shear piezoelectric vibrator is simultaneously oscillated at its main resonant frequency and sub-resonant frequency, and a pulse having a frequency higher than ω 0 /2Q is generated with a duty corresponding to the difference between the two frequencies. By switching the switching circuit to connect and disconnect the capacitive element in parallel with the load capacitance, temperature compensation can be performed within an extremely wide temperature range, and the frequency is the same when the capacitive element is connected and disconnected. It is particularly effective when used as a frequency standard.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は主および副共振周波数を得るための構
成の一例を示した電気回路図、第2図は第1図で
用いた圧電振動子の正面および背面図、第3図は
圧電振動子の共振特性を示した特性図、第4図は
圧電振動子の温度特性を示した特性図、第5図は
主共振周波数の補正を行なうための構成の一例を
示した電気回路図、第6図は本発明の一実施例を
示した電気回路図、第7図は温度補償前および補
償後の主共振周波数の温度特性を示した特性図、
第8図は動作説明のためのタイムチヤート、第9
図は主および副共振周波数の差の周波数の温度特
性を示した特性図である。 Q……厚みすべり圧電振動子、V1,V2……イ
ンバータ、R1,R2……抵抗、C1〜C5……コンデ
ンサ、L……コイル、S……スイツチング回路、
C6……コンデンサ、M……ミキサ、D1……分周
回路、T……タイミングパルス発生回路、CT…
…カウンタ、LA……ラツチ回路、DT……データ
変換回路、PC……プリセツタブルダウンカウン
タ、G1,G2……ゲート回路。
Figure 1 is an electric circuit diagram showing an example of the configuration for obtaining the main and sub-resonant frequencies, Figure 2 is a front and rear view of the piezoelectric vibrator used in Figure 1, and Figure 3 is a diagram of the piezoelectric vibrator used in Figure 1. Figure 4 is a characteristic diagram showing the resonance characteristics. Figure 4 is a characteristic diagram showing the temperature characteristics of the piezoelectric vibrator. Figure 5 is an electric circuit diagram showing an example of a configuration for correcting the main resonance frequency. Figure 6. is an electric circuit diagram showing an embodiment of the present invention, FIG. 7 is a characteristic diagram showing the temperature characteristics of the main resonant frequency before and after temperature compensation,
Figure 8 is a time chart for explaining the operation, Figure 9
The figure is a characteristic diagram showing the frequency temperature characteristic of the difference between the main and sub-resonant frequencies. Q...Thickness-slip piezoelectric vibrator, V1 , V2 ...Inverter, R1 , R2 ...Resistor, C1 to C5 ...Capacitor, L...Coil, S...Switching circuit,
C 6 ... Capacitor, M ... Mixer, D 1 ... Frequency divider circuit, T ... Timing pulse generation circuit, CT ...
...Counter, LA...Latch circuit, DT...Data conversion circuit, PC...Presettable down counter, G1 , G2 ...Gate circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 厚みすべり圧電振動子をその主共振周波数で
発振させる第1の共振回路と、上記厚みすべり圧
電振動子をその副共振周波数で発振させる第2の
共振回路と、上記厚みすべり圧電振動子の主共振
周波数と副共振周波数との差の周波数を検出する
検出回路と、上記厚みすべり圧電振動子の負荷容
量に並列に容量素子を接続および遮断するスイツ
チング回路と、上記検出回路からの差の周波数を
カウントするカウンタと、このカウンタの内容を
ラツチするラツチ回路と、このラツチ回路の出力
によつて上記差の周波数に応じたデユーテイ指定
用のデータを生じるデータ変換回路と、このデー
タ変換回路からのデータをプリセツトされ一定周
期のクロツクパルスをカウントするダウンカウン
タと、周期が2Q/ω(Q;圧電振動子のQ
値、ω=2π;発振周波数)より短
いタイミングパルスを発生して上記カウンタ,上
記ラツチ回路,上記データ変換回路および上記ダ
ウンカウンタの動作を制御し上記ダウンカウンタ
から周期が2Q/ω以下でデユーテイが上記差
の周波数に対応したパルスを発生せしめるタイミ
ングパルス発生回路とからなり、上記ダウンカウ
ンタの出力によつて上記スイツチング回路を開閉
することを特徴とする圧電振動子を用いた発振回
路。
1 a first resonant circuit that causes the thickness-shear piezoelectric vibrator to oscillate at its main resonant frequency; a second resonant circuit that causes the thickness-shear piezoelectric vibrator to oscillate at its sub-resonant frequency; A detection circuit that detects the frequency difference between the resonant frequency and the sub-resonance frequency, a switching circuit that connects and disconnects a capacitive element in parallel to the load capacitance of the thickness-shear piezoelectric vibrator, and a switching circuit that detects the frequency difference between the resonant frequency and the sub-resonance frequency. A counter that counts, a latch circuit that latches the contents of this counter, a data conversion circuit that uses the output of this latch circuit to generate data for specifying a duty according to the above-mentioned difference frequency, and data from this data conversion circuit. A down counter that counts clock pulses with a preset period and a period of 2Q/ω 0 (Q; Q of the piezoelectric vibrator)
ω 0 =2π 0 , 0 ; oscillation frequency) to control the operations of the counter, the latch circuit, the data conversion circuit, and the down counter, so that the cycle is 2Q/ω from the down counter. oscillation using a piezoelectric vibrator, comprising a timing pulse generation circuit that generates a pulse whose duty corresponds to the frequency of said difference when the duty is 0 or less, and said switching circuit is opened and closed by the output of said down counter. circuit.
JP7399380A 1980-06-02 1980-06-02 Oscillating circuit using piezoelectric oscillator Granted JPS56169909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7399380A JPS56169909A (en) 1980-06-02 1980-06-02 Oscillating circuit using piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7399380A JPS56169909A (en) 1980-06-02 1980-06-02 Oscillating circuit using piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JPS56169909A JPS56169909A (en) 1981-12-26
JPS6234162B2 true JPS6234162B2 (en) 1987-07-24

Family

ID=13534146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7399380A Granted JPS56169909A (en) 1980-06-02 1980-06-02 Oscillating circuit using piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPS56169909A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174407A (en) * 1988-12-27 1990-07-05 Nippon Dempa Kogyo Co Ltd Temperature compensated frequency crystal oscillator
WO1997026504A1 (en) * 1996-01-17 1997-07-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit arrangement for the metrological determination of diameters of metal bodies

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080869A (en) * 1973-11-15 1975-07-01
JPS5084274A (en) * 1973-11-26 1975-07-08
JPS53145675A (en) * 1977-05-25 1978-12-19 Seiko Epson Corp Temperature compensating electronic watch
JPS54158839A (en) * 1978-06-06 1979-12-15 Citizen Watch Co Ltd Temperature compensating device of oscillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080869A (en) * 1973-11-15 1975-07-01
JPS5084274A (en) * 1973-11-26 1975-07-08
JPS53145675A (en) * 1977-05-25 1978-12-19 Seiko Epson Corp Temperature compensating electronic watch
JPS54158839A (en) * 1978-06-06 1979-12-15 Citizen Watch Co Ltd Temperature compensating device of oscillator

Also Published As

Publication number Publication date
JPS56169909A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
US10135390B2 (en) Periodic kick-starter for a crystal oscillator
NL9201372A (en) Temperature compensated oscillator circuit.
Ballato Frequency-temperature-load capacitance behavior of resonators for TCXO application
US4583059A (en) Adjustable frequency crystal oscillator with temperature compensation
JPS59139708A (en) Piezoelectric oscillator
JPS6234162B2 (en)
JPS6154283B2 (en)
US8674776B2 (en) Oscillator circuit, oscillator, electronic apparatus, and activation method oscillator circuit
US6259333B1 (en) Temperature compensation quartz oscillator
JP3288830B2 (en) Oscillation integrated circuit
US5399997A (en) Oscillation circuit
Segovia-Fernandez et al. Nonlinear lumped electrical model for contour mode AlN resonators
JPH02174407A (en) Temperature compensated frequency crystal oscillator
JP4805706B2 (en) Constant temperature crystal oscillator
JP2001016039A (en) Variable frequency oscillation circuit
RU2108662C1 (en) System for correcting frequency deviation of voltage- controlled oscillator by means of second oscillator
US4994765A (en) Stabilized gated oscillator utilizing a ceramic resonator
RU2066853C1 (en) Device measuring temperature
KR840002253Y1 (en) Frequency adjustor of oscillator
RU2208901C2 (en) Pulse generator
SU557465A1 (en) Multifrequency crystal oscillator
JPS6318884B2 (en)
JPH02183128A (en) Piezo-electric vibrator for temperature detection, and detection of temperature
JPS641970B2 (en)
JPH07122964A (en) Surface acoustic wave resonator