JPS6233502B2 - - Google Patents

Info

Publication number
JPS6233502B2
JPS6233502B2 JP22078A JP22078A JPS6233502B2 JP S6233502 B2 JPS6233502 B2 JP S6233502B2 JP 22078 A JP22078 A JP 22078A JP 22078 A JP22078 A JP 22078A JP S6233502 B2 JPS6233502 B2 JP S6233502B2
Authority
JP
Japan
Prior art keywords
accumulator
amount
liquid level
heating
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22078A
Other languages
Japanese (ja)
Other versions
JPS5494150A (en
Inventor
Kazuya Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22078A priority Critical patent/JPS5494150A/en
Publication of JPS5494150A publication Critical patent/JPS5494150A/en
Publication of JPS6233502B2 publication Critical patent/JPS6233502B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0681Expansion valves combined with a sensor the sensor is heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明はアキユムレータを備えた冷凍装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system equipped with an accumulator.

冷凍装置の減圧装置としては温度式自動膨脹弁
またはキヤピラリーチユーブが使用されている。
従来の温度式自動膨脹弁は、蒸発器の出口に感熱
筒を設け、蒸発器出口経路の冷媒の過熱度が設定
値になる様に膨脹弁の開度を制御して冷媒流量を
調整している。
A thermostatic automatic expansion valve or a capillary reach tube is used as a pressure reducing device in a refrigeration system.
Conventional temperature-type automatic expansion valves are equipped with a heat-sensitive cylinder at the outlet of the evaporator, and the opening degree of the expansion valve is controlled to adjust the refrigerant flow rate so that the degree of superheating of the refrigerant in the evaporator outlet path reaches the set value. There is.

蒸発器でこの過熱度を得るためには蒸発器の伝
熱面積のかなり大きな部分を必要とするが、一方
この過熱域は熱伝達が悪いので殆んど伝熱には寄
与しない。従つてこの過熱度を出来るだけ小さく
抑えることが望ましいわけである。しかし乍ら例
えば多パスの蒸発器の場合、各パスの冷媒流量の
分布は均等でなく安定な運転を得るには過熱度を
大きくとらなければならない。また冷凍負荷の温
度範囲が広い冷凍装置の場合では蒸発温度の低い
所で過熱度を小さく定めても蒸発温度の高い所で
は過熱度は過大なものになる。以上の様に温度式
自動膨脹弁の実際の使用にあたつては、過熱域が
蒸発器の伝熱面積の数10%を占めることもあり、
蒸発器の小形化の妨げになつている。
Achieving this degree of superheat in the evaporator requires a fairly large portion of the heat transfer area of the evaporator, but on the other hand, this superheat area contributes little to heat transfer due to poor heat transfer. Therefore, it is desirable to keep this degree of superheating as low as possible. However, in the case of a multi-pass evaporator, for example, the distribution of the refrigerant flow rate in each pass is not uniform, and the degree of superheating must be increased to obtain stable operation. Furthermore, in the case of a refrigeration system with a wide temperature range of refrigeration load, even if the degree of superheating is set small at a location where the evaporation temperature is low, the degree of superheating will be excessive at a location where the evaporation temperature is high. As mentioned above, in actual use of thermostatic automatic expansion valves, the superheat area may occupy several tens of percent of the heat transfer area of the evaporator.
This is an impediment to downsizing of the evaporator.

本発明は上記に鑑みて発明されたもので、蒸発
器出口の冷媒の過熱度が生じない様に冷媒流量を
制御することを目的とする。
The present invention was invented in view of the above, and an object of the present invention is to control the flow rate of refrigerant so that the degree of superheating of the refrigerant at the outlet of the evaporator does not occur.

本発明の特徴は、蒸発器出口配管またはアキユ
ムレータに設けた感熱筒に加熱器を設け、一方ア
キユムレータに液位検出装置を設け、この検出装
置と上記加熱器を結合し、アキユムレータ内の液
位が上昇すれば加熱量を減じ、また液位が下降す
れば加熱量を増し、アキユムレータの液位が常に
一定に保たれる様に、蒸発器より適宜液状冷媒が
流出する様に膨脹弁を制御し、蒸発器出口の冷媒
が若干の湿り状態となり過熱度が生じない様にす
る特徴を有する。
A feature of the present invention is that a heater is provided in the evaporator outlet piping or a heat-sensitive cylinder provided in the accumulator, and a liquid level detection device is provided in the accumulator, and this detection device and the heater are coupled, so that the liquid level in the accumulator is When the liquid level rises, the amount of heating is reduced, and when the liquid level falls, the amount of heating is increased, and the expansion valve is controlled so that the liquid refrigerant flows out from the evaporator as appropriate so that the liquid level in the accumulator is always kept constant. , the refrigerant at the outlet of the evaporator becomes slightly moist, thereby preventing superheating.

本発明の一実施例を図面にもとづき説明する。 An embodiment of the present invention will be described based on the drawings.

第1図において、圧縮機1で圧縮された冷媒ガ
スは凝縮器2で凝縮し、温度式膨脹弁3で減圧膨
脹し蒸発器4に入る。ここで蒸発した冷媒は湿り
状態でアキユムレータ5に入り、液部分はアキユ
ムレータ内にたまり、ガス部分はU字管6の上端
開口部より吸入され圧縮機吸入側に吸入される。
U字管6の下部には油戻し孔7が設けられてお
り、アキユムレータ内の液冷媒はこの孔より圧縮
機へ一定量流出する。液位検出装置としては種々
あるが、ここでは一例としてアキユムレータ内に
フロート8を設ける。フロート8はロツド9によ
り支点10に接続され支点10を中心として動
く。可変抵抗器11の軸はこの支点部でロツドに
接続され、フロート8が上昇すると抵抗値が増大
し、下降すると減少する。ロツド9の上下にスト
ツパ12,12′がありフロート8の動きは制限
される。膨脹弁の感熱筒13は蒸発器の出口配管
に設置され加熱器として電気ヒータ14により加
熱される。アキユムレータ5内の液位が上昇し、
可変抵抗器11の抵抗値が増大すると制御装置1
5により電気ヒータ14の加熱量は減少し、液位
が下降すると加熱量は増大する。又ロツドの上部
ストツバ12の位置で加熱量はゼロになる。制御
装置15の制御回路の一例を第2図に示す。この
電気回路は通常SCRと呼ばれるサイリスタ(以
下SCRと呼ぶ)16を制御する周知のものであ
り、整流器17、ツエナーダイオード18、ユニ
ジヤンクシヨントランジスタ19、パルストラン
ス20、抵抗21,22,23、コンデンサ24
より構成される。アキユムレータ内の液位の上昇
により可変抵抗器11の抵抗が増大すると、コン
デンサ24の充電時間が長くなり、SCR16が
導通する時間が短くなり加熱量は減少する。ロツ
ド9が上部のストツパ12にあたつた位置での可
変抵抗器11の抵抗値でSCR16が導通しない
様に抵抗22、コンデンサ24は定められる。
In FIG. 1, refrigerant gas compressed by a compressor 1 is condensed in a condenser 2, expanded under reduced pressure by a thermostatic expansion valve 3, and then enters an evaporator 4. The evaporated refrigerant enters the accumulator 5 in a wet state, the liquid portion accumulates in the accumulator, and the gas portion is sucked through the upper opening of the U-shaped pipe 6 and into the compressor suction side.
An oil return hole 7 is provided at the bottom of the U-shaped pipe 6, and a certain amount of liquid refrigerant in the accumulator flows out from this hole to the compressor. There are various types of liquid level detection devices, but here, as an example, a float 8 is provided in the accumulator. The float 8 is connected to a fulcrum 10 by a rod 9 and moves around the fulcrum 10. The shaft of the variable resistor 11 is connected to a rod at this fulcrum, and the resistance value increases when the float 8 rises and decreases when it falls. There are stoppers 12 and 12' above and below the rod 9, and the movement of the float 8 is restricted. The heat-sensitive cylinder 13 of the expansion valve is installed in the outlet pipe of the evaporator and heated by an electric heater 14 as a heater. The liquid level in the accumulator 5 rises,
When the resistance value of the variable resistor 11 increases, the control device 1
5, the heating amount of the electric heater 14 decreases, and as the liquid level falls, the heating amount increases. Also, the amount of heating becomes zero at the position of the upper stopper 12 of the rod. An example of a control circuit of the control device 15 is shown in FIG. This electric circuit is a well-known one that controls a thyristor (hereinafter referred to as SCR) 16, which is usually called an SCR, and includes a rectifier 17, a Zener diode 18, a unidirectional transistor 19, a pulse transformer 20, resistors 21, 22, 23, and a capacitor. 24
It consists of When the resistance of the variable resistor 11 increases due to a rise in the liquid level in the accumulator, the charging time of the capacitor 24 becomes longer, the time during which the SCR 16 is conductive becomes shorter, and the amount of heating decreases. The resistor 22 and capacitor 24 are determined so that the SCR 16 does not become conductive at the resistance value of the variable resistor 11 at the position where the rod 9 hits the upper stopper 12.

上記装置の作用について説明する。蒸発器4の
出口配管に取付けられた感熱筒13はヒータ14
で加熱されているため、この加熱量に見合つた分
だけ感熱筒温度は蒸発器出口の冷媒温度より上昇
する。このため蒸発器出口で冷媒が飽和状態であ
つても、膨脹弁3は、加熱量に見合つた分だけ過
熱している様に作動する。従つてヒータ14の加
熱量によつて蒸発器出口の液戻り量が定まる。ア
キユムレータ内の液位が下降すると制御装置15
によりヒータ加熱量が増し、蒸発器4よりの液戻
り量は増し、液位が上昇すると液戻り量は減り、
アキユムレータ5内の液冷媒はU字管6の油戻し
孔7より常にある一定量圧縮機へ流出している
が、この流出量と、蒸発器4よりの液戻り量が等
しくなつた所で液位が定まる。アキユムレータ5
の液冷媒が設定液位であれば蒸発器4の出口で少
量の液戻り量があるように、液位検出装置、制御
装置、加熱器を介し膨張弁開度は制御される。し
かしてアキユムレータ内のU字管6の油戻し孔7
から圧縮機へ流出する小量の液冷媒と同量の液冷
媒が蒸発器4から流出することとなる。即ち、蒸
発器4出口部での冷媒の状態は若干の湿り状態に
なり、従つて蒸発器出口では常に過熱度が生じな
いように保たれる。
The operation of the above device will be explained. The heat sensitive tube 13 attached to the outlet pipe of the evaporator 4 is a heater 14
Since the refrigerant temperature is increased by an amount commensurate with the amount of heating, the temperature of the heat-sensitive tube rises above the refrigerant temperature at the outlet of the evaporator. Therefore, even if the refrigerant is saturated at the evaporator outlet, the expansion valve 3 operates as if it were superheated by an amount commensurate with the amount of heating. Therefore, the amount of liquid returned at the evaporator outlet is determined by the amount of heating by the heater 14. When the liquid level in the accumulator falls, the control device 15
The amount of heater heating increases, the amount of liquid returned from the evaporator 4 increases, and as the liquid level rises, the amount of liquid returned decreases.
A certain amount of liquid refrigerant in the accumulator 5 always flows out to the compressor from the oil return hole 7 of the U-shaped tube 6, but when this flow rate becomes equal to the liquid return amount from the evaporator 4, the liquid refrigerant cools down. The rank is determined. Accumulator 5
The opening degree of the expansion valve is controlled via the liquid level detection device, the control device, and the heater so that if the liquid refrigerant is at the set liquid level, a small amount of liquid returns at the outlet of the evaporator 4. Therefore, the oil return hole 7 of the U-shaped pipe 6 in the accumulator
The same amount of liquid refrigerant flows out from the evaporator 4 as the small amount of liquid refrigerant that flows out from the evaporator 4 to the compressor. That is, the state of the refrigerant at the outlet of the evaporator 4 becomes slightly wet, so that the degree of superheat does not occur at the outlet of the evaporator at all times.

油戻し孔7よりの液冷媒流出量と同量の液冷媒
が蒸発器よりアキユムレータに戻つてくるが、油
戻し孔7よりの流出量は液位と油戻し孔径が定ま
るとほゞ一定となる。このため冷凍負荷の大きい
場合は圧縮機へ吸入される冷媒の湿り度は減少
し、また冷凍負荷の小さい場合はこの湿り度は増
大する。この実施例では圧縮機1は冷媒を湿り状
態で吸入するが、圧縮機入口で湿り状態であつて
も、内部でモータ発熱等でかなり加熱される。こ
のためシリンダ(図示せず)入口では多くは冷媒
は過熱状態となる。従つて冷凍負荷が最小の即
ち、吸入冷媒の湿り度が最大となる時点で、圧縮
機が液圧縮に対して十分安全な様に油戻し孔7よ
りの液戻り量を定めればよい。
The same amount of liquid refrigerant as the amount flowing out from the oil return hole 7 returns to the accumulator from the evaporator, but the amount flowing out from the oil return hole 7 becomes approximately constant once the liquid level and the oil return hole diameter are determined. . Therefore, when the refrigeration load is large, the humidity of the refrigerant sucked into the compressor decreases, and when the refrigeration load is small, the humidity increases. In this embodiment, the compressor 1 sucks refrigerant in a wet state, but even if the refrigerant is wet at the compressor inlet, it is considerably heated internally by heat generated by the motor and the like. For this reason, the refrigerant is often in a superheated state at the inlet of the cylinder (not shown). Therefore, the amount of liquid returned from the oil return hole 7 may be determined so that the compressor is sufficiently safe for liquid compression when the refrigeration load is at its minimum, that is, when the wetness of the sucked refrigerant is at its maximum.

以上により冷凍負荷にかかわらず本発明の膨脹
機構により常に蒸発器は過熱度が生じないように
用いることが出来る。
As described above, the expansion mechanism of the present invention allows the evaporator to be used without overheating regardless of the refrigeration load.

次にこの発明の他の実施例について説明する。
圧縮機が冷媒の湿り吸入に対して安全性の余裕が
ない場合は、第3図に示す様に圧縮機吸入側と高
圧側のライン(この例では凝縮器出口)との間に
熱交換器30を設け、圧縮機吸入位置で過熱状態
にすればよい。また第4図に示す様に、アキユム
レータ下部に熱交換器31を設け、ここに高圧側
ラインを導いて、アキユムレータ内の液を加熱す
る。この場合蒸発器よりの液戻り量は、油戻し孔
よりの流出量と熱交換器25の加熱による蒸発量
とにバランスするので、油戻し孔よりの液戻り量
は僅少におさえられる。その他の部分は第1図の
実施例と同様であるので同符号を付しその説明を
省略する。
Next, other embodiments of the invention will be described.
If the compressor does not have a safety margin against wet refrigerant suction, install a heat exchanger between the compressor suction side and the high pressure side line (in this example, the condenser outlet) as shown in Figure 3. 30 may be provided and brought into a superheated state at the compressor suction position. Further, as shown in FIG. 4, a heat exchanger 31 is provided at the bottom of the accumulator, and a high-pressure side line is led here to heat the liquid in the accumulator. In this case, the amount of liquid returned from the evaporator is balanced by the amount of outflow from the oil return hole and the amount of evaporation due to heating of the heat exchanger 25, so the amount of liquid returned from the oil return hole is kept to a small level. The other parts are the same as those in the embodiment shown in FIG. 1, so the same reference numerals are given and the explanation thereof will be omitted.

以上説明したように本発明は、アキユムレータ
に液位検出器を設け、この液位を一定に保つよう
に膨脹弁の感熱筒を加熱器で加熱するから、冷凍
負荷によらずに蒸発器出口での冷媒の状態は若干
の湿り状態になり、過熱度が生じないように保つ
ことができ、従来蒸発器の大きな部分を占めてい
た過熱域がなくなり、熱伝達を向上し、かつ蒸発
器を小形化することができる。
As explained above, in the present invention, a liquid level detector is provided in the accumulator, and the heat-sensitive tube of the expansion valve is heated by a heater to keep the liquid level constant. The state of the refrigerant becomes slightly moist and can be kept from superheating, eliminating the superheat zone that traditionally occupies a large part of the evaporator, improving heat transfer and making the evaporator more compact. can be converted into

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷凍装置の系
統図、第2図は制御装置の回路図、第3図は他の
実施例を示す冷凍装置の系統図、第4図は更に他
の実施例を示すアキユムレータの詳細図である。 1……圧縮機、2……凝縮器、3……膨脹弁、
4……蒸発器、5……アキユムレータ、8……フ
ロート、9……ロツド、10……支点、11……
…可変抵抗器、13……感熱筒、14……加熱
器、15……制御装置、30,31……熱交換
器。
Fig. 1 is a system diagram of a refrigeration system showing one embodiment of the present invention, Fig. 2 is a circuit diagram of a control device, Fig. 3 is a system diagram of a refrigeration system showing another embodiment, and Fig. 4 is a system diagram of a refrigeration system showing another embodiment. FIG. 2 is a detailed diagram of an accumulator showing an embodiment of the invention. 1... Compressor, 2... Condenser, 3... Expansion valve,
4... Evaporator, 5... Accumulator, 8... Float, 9... Rod, 10... Fulcrum, 11...
... Variable resistor, 13 ... Heat-sensitive cylinder, 14 ... Heater, 15 ... Control device, 30, 31 ... Heat exchanger.

Claims (1)

【特許請求の範囲】 1 圧縮機、凝縮器、温度式自動膨脹弁、蒸発
器、油(液)戻し細孔を備えたアキユムレータを
順次配管接続して冷媒回路を形成し、アキユムレ
ータに液位検出装置を設け、蒸発器の出口配管ま
たはアキユムレータに設けた膨脹弁の感熱筒に加
熱器を設け、上記液位検出装置を制御装置を介在
して上記加熱器に結合し、上記制御装置は、アキ
ユムレータ内の液位が上昇すれば加熱量を減じ、
液位が下降すれば加熱量を増加し、上記膨脹弁は
上記加熱量を感熱筒にて検出して、上記加熱量が
増加すれば弁開度を増加し、加熱量が減少すれば
弁開度を減少するように制御され、アキユムレー
タ内の液位をほぼ一定に保持するように膨脹弁の
開度を制御することを特徴とする冷凍装置。 2 アキユムレータより圧縮機吸入側に至る経路
と高圧側経路とを熱交換状態に設けてなる特許請
求の範囲第1項記載の冷凍装置。 3 アキユムレータ底部に液加熱用の加熱器を設
けてなる特許請求の範囲第1項記載の冷凍装置。
[Claims] 1. A compressor, a condenser, a thermostatic automatic expansion valve, an evaporator, and an accumulator equipped with oil (liquid) return pores are sequentially connected via piping to form a refrigerant circuit, and the accumulator is equipped with a liquid level detection system. a heater is provided in the outlet piping of the evaporator or a heat-sensitive cylinder of an expansion valve provided in the accumulator, and the liquid level detection device is coupled to the heater via a control device, and the control device is connected to the accumulator. If the liquid level inside rises, reduce the amount of heating,
When the liquid level decreases, the amount of heating is increased, and the expansion valve detects the amount of heating with a heat-sensitive cylinder. If the amount of heating increases, the valve opening degree is increased, and if the amount of heating decreases, the valve opens. A refrigeration system characterized in that the opening degree of an expansion valve is controlled so as to decrease the liquid level in the accumulator, and the opening degree of the expansion valve is controlled so as to maintain the liquid level in the accumulator at a substantially constant level. 2. The refrigeration system according to claim 1, wherein a path from the accumulator to the compressor suction side and a high-pressure side path are provided in a heat exchange state. 3. The refrigeration system according to claim 1, wherein a heater for heating the liquid is provided at the bottom of the accumulator.
JP22078A 1978-01-06 1978-01-06 Freezer Granted JPS5494150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22078A JPS5494150A (en) 1978-01-06 1978-01-06 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22078A JPS5494150A (en) 1978-01-06 1978-01-06 Freezer

Publications (2)

Publication Number Publication Date
JPS5494150A JPS5494150A (en) 1979-07-25
JPS6233502B2 true JPS6233502B2 (en) 1987-07-21

Family

ID=11467871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22078A Granted JPS5494150A (en) 1978-01-06 1978-01-06 Freezer

Country Status (1)

Country Link
JP (1) JPS5494150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137185U (en) * 1988-03-14 1989-09-20
JPH01137188U (en) * 1988-03-14 1989-09-20

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000042839A (en) * 1998-12-28 2000-07-15 신영주 Heat exchanger
CN111765614A (en) * 2019-04-02 2020-10-13 开利公司 Air conditioning system and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137185U (en) * 1988-03-14 1989-09-20
JPH01137188U (en) * 1988-03-14 1989-09-20

Also Published As

Publication number Publication date
JPS5494150A (en) 1979-07-25

Similar Documents

Publication Publication Date Title
US4688390A (en) Refrigerant control for multiple heat exchangers
US4441901A (en) Heat pump type airconditioner
DK166169B (en) COOLING SYSTEM AND INCREMENTALLY ADJUSTABLE EXPANSION VALVE
US3651655A (en) Control system for multiple stage absorption refrigeration system
JPS5878050A (en) Heat pump circuit
US3014351A (en) Refrigeration system and control
JPS6233502B2 (en)
US2869330A (en) Means and method for controlling high side pressure in heat transfer systems of the compression type
US3054273A (en) Thermal expansion valve
KR100417197B1 (en) Absorption type refrigerating apparatus
US3550391A (en) Absorption refrigeration system having compensated dilution control
US2196778A (en) Refrigeration
US2028260A (en) Car heater
US4290272A (en) Means and method for independently controlling vapor compression cycle device evaporator superheat and thermal transfer capacity
JPS6051025B2 (en) Accumulator with float-operated expansion device
US3212525A (en) Valves for refrigeration apparatus having cooling and/or heating cycles
JP2568709B2 (en) Heat transfer device
US4202181A (en) Fuel conservation controller for heating and refrigeration apparatus
US4393661A (en) Means and method for regulating flowrate in a vapor compression cycle device
US2204060A (en) Refrigeration
US2412168A (en) Vapor heating system
US4346567A (en) Heat pump control valve
JPS6027323Y2 (en) air conditioner
JPH0419408Y2 (en)
US2853275A (en) Air conditioning system