JPS6233068B2 - - Google Patents

Info

Publication number
JPS6233068B2
JPS6233068B2 JP58206894A JP20689483A JPS6233068B2 JP S6233068 B2 JPS6233068 B2 JP S6233068B2 JP 58206894 A JP58206894 A JP 58206894A JP 20689483 A JP20689483 A JP 20689483A JP S6233068 B2 JPS6233068 B2 JP S6233068B2
Authority
JP
Japan
Prior art keywords
yarn
mixed
yarns
conductive
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58206894A
Other languages
Japanese (ja)
Other versions
JPS60104548A (en
Inventor
Yukio Nakagawa
Mitsuru Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI KASEI TEKISUTAIRU KK
Original Assignee
ASAHI KASEI TEKISUTAIRU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI KASEI TEKISUTAIRU KK filed Critical ASAHI KASEI TEKISUTAIRU KK
Priority to JP58206894A priority Critical patent/JPS60104548A/en
Publication of JPS60104548A publication Critical patent/JPS60104548A/en
Publication of JPS6233068B2 publication Critical patent/JPS6233068B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、防塵衣用布帛として好適な極めて優
れた防塵性と制電効果を有する、導電性繊維を混
用してなる衣服素材に関する。 〔従来の技術〕 従来、半導体の製造、生化学工業等の作業環境
即ち、クリーンルーム内に於いて、作業員は人体
からの発塵を防止すべく防塵作業衣を着用してい
る。然るに、昨今半導体素子はVLSIの時代に入
り、クリーンルーム空間での浮遊するパーテイク
ル(微細粒子)のみならず、作業員の人体又は下
着から生ずるダスト及び細菌の如き1μm以下の
超微粒子に関しても問題視されるに至つている。
しかしながら、十分満足できる解決手段が見出さ
れていないのが現状である。 一方、防塵作業衣用布帛に、半永久的に高性能
の帯電防止性を付与するには、導電糸を混入する
ことが行われている。然るに、従来の導電糸を混
入した布帛は、導電糸を単独で混入するかまたは
他素材との混紡もしくは交撚或いはカバリングに
依り作成されているが、導電糸の混用率が布帛全
重量の数パーセント以内であることと、導電糸が
部分的に使用されるため、主体となる地部を構成
する糸と性状が異ることは、製布プロセス並びに
布帛性能において種々の不都合を生ずる。即ち、
導電糸を単独で混用する場合は地部構成糸との原
糸特性、例えば、伸度、ヤング率、繊度(デニー
ル)等の差が大きく、製布プロセスで特別な配慮
が必要であるばかりでなく、布帛とした后も潜在
的な張力差から生じるパツカリング等の欠点が生
ずることがある。混紡糸の場合は、短繊維である
ため本来防塵衣料用として好ましくないばかりで
なく、地部を構成する糸として、それ自体からの
発塵防止の観点よりフイラメントを使用するため
に地部構成糸との形態並びに糸の特性の差が大き
すぎて不適である。一方、交撚或いはカバリング
方式による導電糸の混入においては、地部を構成
する糸と同一素材との交撚にすれば、地部を構成
する糸との性状差も比較的小さくできるが、スパ
イラル状に絡まつているため隣接する地部構成糸
との間に隙間が生じ、コーテイング加工により微
多孔皮膜を形成する場合、厚みが数ミクロン以下
の皮膜にすると、ピンホールが発生する。一方、
これを防止すべく皮膜の厚みを増すと透湿度が低
下し、着用時のムレ感が増す。 〔発明が解決しようとする問題点〕 本発明の目的は、上述の欠点を改善したもので
あり、製布プロセスの合理化と防塵性に優れ且つ
透湿性の向上を図つた、導電性繊維を混用せる、
防塵用布帛として好適な布帛を提供するにある。 〔問題点を解決するための手段〕 本発明に係る防塵衣用衣服素材は、導電糸を含
有する混繊糸であつて、導電糸を含まない隣接す
る地部構成糸との見掛け直径の差が10%以内であ
る混繊糸を交編織してなる衣服素材の少なくとも
片面に0.1μm〜5μmの微少なる孔径を有する
微多孔皮膜を有することを特徴とする。 本発明の衣服素材の地部を構成する糸は、格別
限定されるものではないが、発塵性の観点より合
成繊維よりなるフイラメントであることが好まし
い。一般には、単糸繊度0.1〜5デニール、合計
繊維20〜200デニールの原糸又は仮撚加工糸その
他の二次加工糸が用いられる。 一方、導電糸も格別限定されるものではなく、
常用される金属繊維、金属メツキ繊維、カーボン
練込み糸等のフイラメント糸が用いられる。通常
は、単糸繊度1〜50デニール、合計繊度10〜100
デニールのものが用いられる。 本明において使用する導電糸を混繊した糸は、
導電糸を含まない隣接する地部構成糸との見掛け
直径の差(絶対値)を10%以内、好ましくは5%
以内とする。このように混繊糸の太さを隣接する
地部構成糸と揃えることによつて両者の間隙並び
に布帛表面の凹凸を極めて小さくすることができ
る。ここで、見掛け直径の差(%)は下記の式に
より算出する。 見掛直径の差=地部構成糸の見掛直径−導電糸混入糸の見掛直径/地部構成糸の見掛け直径×100 なお、見掛け直径は理論値より算出する。 導電糸を混繊する方法としては、導電糸と混繊
相手とを糸軸方向に概ね平行に引揃えて、流体噴
射加工又は加撚を施す方法を採ることができる。
これらの方法を単独または併用することにより繊
維間の混繊性と収束性を高め一体化した複合形態
の混繊糸を得ることができる。これらの方法のう
ち、流体噴射加工において、導電糸と混繊相手素
材とを引揃えて噴射、交絡させる場合は、一工程
で混繊糸の作成を完了することが可能であるが、
加撚のみを施す加工においては、予め混繊相手素
材を引揃えておくことが混繊性を向上せしめるの
で好ましい。流体噴射加工は、導電糸と混繊相手
素材とをインタレース加工用ノズル又はタスラン
加工用ノズルに給糸することによつて行うことが
できる。インタレース加工用ノズルによる場合
は、導電糸を混繊相手に対して1〜2%オーバー
フイードし、繊維間に20〜100回/Mの交絡を付
与することが好ましい。タスラン加工用ノズルに
よる場合は、導電糸を4〜8%オーバーフイード
し、全体としての収束性を付与することが好まし
い。一方、引揃え・加撚方式では、混繊糸が収束
するに必要な最低限の加撚数を付与すればよく、
通常100T/M〜300T/Mでよい。上記混繊方式
のうち、流体噴射混繊方式が好ましく、就中、イ
ンタレース混繊が最も実用上有効である。 混繊糸と隣接する地部構成糸とは性状が相互に
近似していることが好ましく、従つて、導電糸と
混繊する相手繊維として地部構成糸と同一素材を
用い、かつ、この素材の混繊割合が30%以上であ
ることが好ましい。より好ましい混繊割合は50%
以上、最も好ましくは70%以上である。 混繊糸の太さについては、前述の理由並びに布
帛表面に平滑性を付与する観点より、混繊糸とこ
れに隣接する地部構成糸との見掛け直径の差が10
%以下でなければならず、好ましくは5%以下で
ある。なお、見掛け直径の差の大きさは、コーテ
イング加工を行う場合には特に重要な条件とな
り、見掛け直径の差が10%を超えるとピンホール
が発生し易くなる。 上記混繊糸の割合は布帛重量に対する導電糸の
混用率として0.5〜10重量%であることが好まし
い。混繊糸を交編織する方法は限定されるもので
はなく、混繊糸を配列して、然るべき密度、組織
にて常法にて製編又は製織する。 上記のように交編織した素材の少なくとも片面
に0.1〜5μmの微小な孔径を有する微多孔皮膜
を形成する。このような微多孔皮膜を形成するこ
とによつて、0.3μm以上の塵の防塵率が50%以
上であり、透湿度が2500g/m2/24hrs以上であ
る衣服素材とすることができる。 微多孔皮膜は一般に衣服素材に形成される透湿
性樹脂コーテイングの場合と同様に周知の方法に
よつて形成することができる。微多孔皮膜の形成
法は、プリマーの有機溶剤溶液を衣服素材上にコ
ーテイングして直接形成する方法、および該溶液
から一旦製膜して、得られたフイルムを衣服素材
上に貼着する方法とに分けられる。 コーテイングによつて衣服素材上に微多孔皮膜
を直接形成する方法としては、先ず、例えばポリ
ウレタンエラストマーを主体とする極性有機溶剤
溶液を衣服素材基布に塗布し、次いで該基材を凝
固浴中に導いてポリウレタンエラストマーを凝固
させて微多孔構造を形成する所謂湿式凝固法が挙
げられる。なお、この湿式凝固法において、ポリ
ウレタン溶剤溶液中に孔径調節剤、すなわち、凝
固浴に可溶な物質を添加して孔径を調節すること
ができる。また、微多孔皮膜の直接形成法とし
て、ポリウレタン等のエラストマー中に発泡剤を
含ませたものの液状物を衣服素材上に塗布し、次
いで、熱処理により発泡剤を分解させて炭酸ガス
等の気体をエラストマー中に放出して気孔を形成
する所謂乾式発泡法が挙げられる。 一旦製膜して得たフイルムを衣服素材上に貼着
する方法としては、ポリテトラフロロエチレン、
ポリビニリデンフロライド等のフイブリル化フイ
ルムまたは湿式凝固法によつて得られるポリウレ
タン等の微多孔フイルムにエマルジヨン糸または
溶剤糸の接着剤をフイルムの全面または点もしく
は線状に塗布したうえ衣服素材に貼り合わせる方
法が採られる。 〔発明の効果〕 本発明の衣服素材は次のような特長をもつてい
る。 (1) 混繊糸は、地部の構成糸と太さが同じである
ため、外観、性状共に、地部の構成糸と極めて
近似し(特に、地部の構成糸と同一素材で混繊
したときは、より一層近似する)、製織に於い
て、従来の如く二つのビームを使用して製織す
る必要がなくく、1つのビームで支障なく製織
可能となり、コスト合理化が出来る。また、導
電糸は地部を構成する素材に均一に混繊され
る。 (2) 混繊糸と地部とを構成する隣接した糸間との
間隙が小さく且つ布帛表面の凹凸が極めて小さ
い。従つて、従来の布帛に比較してダストの透
過率が低く、防塵効果がよい。一方、地部の糸
との潜在張力差も少なく、縫製時のアイロニン
グによるパツカリングの発生もない。 (3) 微多孔皮膜のコーテイング加工をするに際し
て、布帛表面の凹凸が極めて小さいため、該皮
膜を4〜5μ程度に薄膜化してもピンホールの
発生がない。従つて、微多孔皮膜を形成すると
きは防塵効果は極めて高くなり、しかも、薄膜
化することにより透湿度が向上し、着用時のム
レ感がなくなり快適である。 (4) 導電糸は混繊糸として分散混入されるため、
帯電した静電気のコロナ放電効果を促進し、制
電効果も向上する。 以上の如く、本発明に係る防塵衣用衣服素材
は、優れたプロセスアビリテイと防塵性、制電性
を示す。 〔実施例〕 以下、実施例について本発明の衣服素材を具体
的に説明する。 実施例において、透湿度及び摩擦帯電圧は各々
JISZ−0208及びJISL−1094(温度20℃、湿度50
%)で測定した。また、通気度はJIS−L−1097
(フラジール法)に依る。 一方、防塵率は塵測定器(光散乱方式ダストカ
ウンター)により次式により求めた。(n=10)
なお、測定対象としたダストの粒径は0.3〜0.5μ
mである。 防塵率=(1−試料布帛を透過したダストの数/試料空気の元のダストの数)×100% 実施例 1 経糸として、ポリエステルフイラメント75d/
36f(見掛け直径877μm)と、ポリエステルフイ
ラメント50d/24fと導電糸20d/3f(カーボン練
込みタイプのポリアミド繊維)とのインタレース
混繊糸(インターレース加工用ノズルを用いて流
体噴射混繊を行つて調製した。見掛け直径837μ
m。)とを27:1の割合で配列、また、緯糸とし
て、ポリエステル仮撚加工糸(2ヒータータイ
プ)75d/36fを用いて、〓〓ツイルにて、W.J.L
(450r.p.m)を用い、経糸密度120本/吋、緯糸
密度107本/吋にて製織し、次いで、次のように
コーテイング加工を行つた。 即ち、織物の片面(裏面)に、ジメチルホルム
アミドに溶解した30重量%のポリエステル型ポリ
ウレタンエラストマー溶液100重量部にジメチル
ホルムアミド20重量部を添加し、十分に撹拌し
た。次にこの混和溶液をナイフコーターを用い、
塗布量が固形分で5g/m2になるように塗布し、
直ちに水中にて5分間凝固させ、60℃温湯に10分
間浸漬した後マングルで脱水、120℃で3分間乾
燥し、150℃で1分間セツトして、仕上げた。得
られた布帛の性能を第1表に示す。 実施例 2 実施例として、経糸として、ポリエステルフイ
ラメント75d/36f(見掛け直径877μm)と、ポ
リエステルフイラメント50d/24fと導電糸20d/
3f(カーボン練込タイプ、ポリアミド繊維)との
引揃え、加撚(s250T/M)混繊糸(見掛け直径
964μm)とを27:1の割合で配列し、緯糸とし
てポリエステル加工糸(2ヒータ−)75d/36fを
用いて、実施例1と同様に、製織、コーテイング
仕上加工した。得られた布帛の性能を第1表に示
す。 比較例 1 比較例として、経糸にポリエステルフイラメン
ト75d/36f(見掛け直径877μm)と、ポリエス
テルフイラメント50d/24fと導電糸20d/3f(カ
ーボン練込みタイプ、ポリアミド繊維)との交撚
糸(s580T/M)(見掛け直径1099μm)とを
27:1の割合で配列し、緯糸にはポリエステル加
工糸(2ヒータ−)75d/36fを用いて〓〓ツイル
にてレピア織機(150r.p.m)で、交撚糸と地部
の構成糸とを各々別ビームで供給し、経糸密度
120本/吋、緯糸密度107本/吋にて製織した。次
に、実施例1および2と同様にコーテイング仕上
とした。得られた布帛の性能を第1表に示す。
[Industrial Field of Application] The present invention relates to a clothing material mixed with conductive fibers, which has extremely excellent dustproof properties and antistatic effects, and is suitable as a fabric for dustproof clothing. [Prior Art] Conventionally, in work environments such as semiconductor manufacturing and biochemical industries, that is, in clean rooms, workers wear dust-proof work clothes to prevent dust from being generated from the human body. However, semiconductor devices have recently entered the era of VLSI, and not only floating particles (fine particles) in clean room spaces, but also ultrafine particles of 1 μm or less such as dust and bacteria generated from workers' bodies or underwear are becoming a problem. It has reached the point where
However, the current situation is that a fully satisfactory solution has not been found. On the other hand, in order to semi-permanently impart high-performance antistatic properties to fabrics for dust-proof work clothes, conductive threads are mixed into the fabrics. However, conventional fabrics mixed with conductive threads are created by mixing conductive threads alone or by blending or twisting with other materials, or by covering, but the mixing ratio of conductive threads is limited to the total weight of the fabric. % or less, and because the conductive yarn is partially used, its properties are different from those of the yarn constituting the main base, which causes various problems in the fabric-making process and fabric performance. That is,
When a conductive yarn is mixed alone, there is a large difference in raw yarn properties such as elongation, Young's modulus, fineness (denier), etc. from the base yarn, and special consideration is required in the fabric-making process. Moreover, even after fabrication, defects such as puckering may occur due to potential tension differences. In the case of blended yarn, it is not only inherently undesirable for use in dust-proof clothing because it is a short fiber, but also because filaments are used as the yarn that makes up the base part from the perspective of preventing dust generation from itself. The difference in the form and properties of the yarn is too large, making it unsuitable. On the other hand, in the case of mixing conductive yarns by intertwisting or covering method, if the yarns constituting the base part are mixed with the same material, the difference in properties between the yarns constituting the base part can be relatively small; Because they are entangled in a shape, a gap is created between the adjacent base component yarns, and when a microporous film is formed by coating, pinholes will occur if the thickness of the film is several microns or less. on the other hand,
In order to prevent this, increasing the thickness of the film reduces moisture permeability and increases the feeling of stuffiness when worn. [Problems to be Solved by the Invention] The purpose of the present invention is to improve the above-mentioned drawbacks, and to streamline the fabric manufacturing process, and to provide a mixture of conductive fibers with excellent dustproof properties and improved moisture permeability. Let,
To provide a fabric suitable as a dustproof fabric. [Means for Solving the Problems] The clothing material for dust-proof clothing according to the present invention is a mixed fiber yarn containing conductive yarn, and has a difference in apparent diameter between adjacent base component yarns that do not contain conductive yarn. It is characterized by having a microporous film having minute pore diameters of 0.1 μm to 5 μm on at least one side of a garment material made by knitting and weaving mixed yarns having a pore diameter of 10% or less. The yarn constituting the base of the clothing material of the present invention is not particularly limited, but from the viewpoint of dust generation, it is preferably a filament made of synthetic fiber. Generally, raw yarn, false twisted yarn, or other secondary yarn with a single fiber fineness of 0.1 to 5 deniers and a total fiber count of 20 to 200 deniers is used. On the other hand, conductive threads are not particularly limited,
Commonly used filament yarns such as metal fibers, metal plated fibers, and carbon kneaded yarns are used. Normally, single yarn fineness is 1 to 50 denier, total fineness is 10 to 100.
Denier ones are used. The yarn mixed with conductive yarn used in the present invention is
The difference in apparent diameter (absolute value) between adjacent ground component yarns that do not include conductive yarns is within 10%, preferably 5%.
within. In this way, by making the thickness of the mixed yarn the same as that of the adjacent ground component yarn, the gap between them and the irregularities on the surface of the fabric can be made extremely small. Here, the difference (%) in apparent diameter is calculated by the following formula. Difference in apparent diameter = Apparent diameter of base component yarn - Apparent diameter of conductive yarn mixed yarn / Apparent diameter of base component yarn x 100 The apparent diameter is calculated from a theoretical value. As a method for blending the conductive yarns, a method may be adopted in which the conductive yarn and the fiber-mixing partner are aligned approximately parallel to the yarn axis direction and subjected to fluid jet processing or twisting.
By using these methods alone or in combination, it is possible to obtain a mixed fiber yarn in a composite form in which the fibers are blended and converged and are integrated. Among these methods, in fluid jet processing, when the conductive yarn and the mixed material are aligned, jetted, and intertwined, it is possible to complete the creation of the mixed fiber yarn in one step.
In processing where only twisting is applied, it is preferable to align the materials to be mixed in advance because this improves the fiber mixing properties. The fluid jet processing can be performed by feeding the conductive yarn and the material to be mixed into an interlace processing nozzle or a taslan processing nozzle. When using an interlacing nozzle, it is preferable to overfeed the conductive yarn by 1 to 2% with respect to the interlacing partner, and to provide interlacing between the fibers at a rate of 20 to 100 times/M. When using a Taslan processing nozzle, it is preferable to overfeed the conductive yarn by 4 to 8% to provide convergence as a whole. On the other hand, in the pulling/twisting method, it is only necessary to apply the minimum number of twists necessary for the mixed yarn to converge.
Usually 100T/M to 300T/M is sufficient. Among the above-mentioned mixing methods, the fluid jet mixing method is preferable, and interlace mixing is the most practically effective. It is preferable that the properties of the mixed yarn and the adjacent base component yarn are similar to each other. Therefore, the same material as the base component yarn is used as the partner fiber to be mixed with the conductive yarn, and this material It is preferable that the mixed fiber ratio is 30% or more. A more preferable blending ratio is 50%
or more, most preferably 70% or more. Regarding the thickness of the mixed yarn, for the reasons mentioned above and from the perspective of imparting smoothness to the fabric surface, the difference in apparent diameter between the mixed yarn and the adjacent ground component yarn is 10.
% or less, preferably 5% or less. Note that the size of the difference in apparent diameter is a particularly important condition when performing coating processing, and if the difference in apparent diameter exceeds 10%, pinholes are likely to occur. The proportion of the mixed fiber yarn is preferably 0.5 to 10% by weight based on the weight of the fabric. The method of mixing, knitting, and weaving the mixed fiber yarns is not limited, and the mixed fiber yarns are arranged and knitted or woven with an appropriate density and texture using a conventional method. A microporous film having a micropore diameter of 0.1 to 5 μm is formed on at least one side of the material mixed and woven as described above. By forming such a microporous film, a clothing material can be obtained that has a dustproof rate of 50% or more against dust of 0.3 μm or more and a moisture permeability of 2500 g/m 2 /24 hrs or more. The microporous coating can be formed by a well-known method in the same manner as in the case of moisture-permeable resin coatings generally formed on clothing materials. The microporous film can be formed by directly coating clothing materials with an organic solvent solution of a primer, or by forming a film from the solution and pasting the resulting film onto clothing materials. It can be divided into A method for directly forming a microporous film on a clothing material by coating involves first applying a polar organic solvent solution containing, for example, polyurethane elastomer to the clothing material base fabric, and then placing the base material in a coagulation bath. The so-called wet coagulation method is one in which the polyurethane elastomer is coagulated to form a microporous structure. In this wet coagulation method, the pore size can be adjusted by adding a pore size control agent, that is, a substance soluble in the coagulation bath, to the polyurethane solvent solution. In addition, as a method for directly forming a microporous film, a liquid product of an elastomer such as polyurethane impregnated with a foaming agent is applied onto the clothing material, and then the foaming agent is decomposed by heat treatment to release gases such as carbon dioxide. One example is the so-called dry foaming method in which pores are formed in the elastomer. Polytetrafluoroethylene, polytetrafluoroethylene,
A fibrillated film such as polyvinylidene fluoride or a microporous film such as polyurethane obtained by a wet coagulation method is coated with emulsion thread or solvent thread adhesive on the entire surface of the film or in dots or lines, and then applied to a clothing material. A matching method is adopted. [Effects of the Invention] The clothing material of the present invention has the following features. (1) Since the mixed yarn has the same thickness as the yarn that makes up the base, it is extremely similar in appearance and properties to the yarn that makes up the base (especially when mixed yarns are made of the same material as the yarn that makes up the base). In weaving, there is no need to use two beams as in the past, and weaving can be carried out without any problems with one beam, resulting in cost rationalization. Further, the conductive yarn is uniformly mixed with the material that makes up the base. (2) The gap between the mixed yarn and the adjacent yarns constituting the base is small, and the irregularities on the surface of the fabric are extremely small. Therefore, compared to conventional fabrics, the dust permeability is lower and the dust-proofing effect is better. On the other hand, there is little difference in potential tension between the yarn and the base thread, and there is no occurrence of puckering due to ironing during sewing. (3) When coating a microporous film, since the irregularities on the surface of the fabric are extremely small, pinholes do not occur even if the film is thinned to about 4 to 5 μm. Therefore, when a microporous film is formed, the dustproof effect is extremely high, and by making the film thinner, moisture permeability is improved, and the feeling of stuffiness when worn is eliminated, making it comfortable. (4) Since the conductive yarn is dispersed and mixed as a mixed yarn,
It promotes the corona discharge effect of charged static electricity and improves the antistatic effect. As described above, the dust-proof clothing material according to the present invention exhibits excellent processability, dust-proofing properties, and antistatic properties. [Example] Hereinafter, the clothing material of the present invention will be specifically described with reference to Examples. In the examples, moisture permeability and frictional charging voltage are each
JISZ-0208 and JISL-1094 (temperature 20℃, humidity 50
%). In addition, the air permeability is JIS-L-1097
(Based on the Frazier method). On the other hand, the dustproof rate was determined using a dust measuring device (light scattering type dust counter) using the following formula. (n=10)
The particle size of the dust to be measured was 0.3 to 0.5μ.
It is m. Dustproof rate = (1 - number of dust that passed through the sample fabric / number of original dust in the sample air) x 100% Example 1 As warp, polyester filament 75d/
36f (apparent diameter 877 μm), interlaced mixed fiber yarn of polyester filament 50d/24f and conductive thread 20d/3f (carbon kneaded type polyamide fiber) (fluid jet mixed yarn using an interlacing nozzle) Prepared. Apparent diameter 837μ
m. ) in a ratio of 27:1, and using polyester false twisted yarn (2 heater type) 75d/36f as the weft, twill, WJL
(450 rpm) at a warp density of 120 threads/inch and a weft density of 107 threads/inch, and then coating processing was performed as follows. That is, 20 parts by weight of dimethylformamide was added to 100 parts by weight of a 30% by weight polyester-type polyurethane elastomer solution dissolved in dimethylformamide on one side (back side) of the fabric, and the mixture was thoroughly stirred. Next, apply this mixed solution using a knife coater,
Apply so that the amount of solid content is 5g/ m2 ,
It was immediately coagulated in water for 5 minutes, immersed in hot water at 60°C for 10 minutes, dehydrated with a mangle, dried at 120°C for 3 minutes, and finished at 150°C for 1 minute. The performance of the obtained fabric is shown in Table 1. Example 2 As an example, polyester filament 75d/36f (apparent diameter 877 μm), polyester filament 50d/24f and conductive thread 20d/36f were used as warp threads.
3f (carbon kneaded type, polyamide fiber) and twisted (s250T/M) blended yarn (apparent diameter
964 μm) were arranged in a ratio of 27:1, and weaving and coating were carried out in the same manner as in Example 1 using polyester processed yarn (2 heaters) 75d/36f as the weft. The performance of the obtained fabric is shown in Table 1. Comparative Example 1 As a comparative example, warp yarns were polyester filament 75d/36f (apparent diameter 877 μm), polyester filament 50d/24f and conductive yarn 20d/3f (carbon kneaded type, polyamide fiber) twisted yarn (s580T/M). (apparent diameter 1099μm)
Arranged at a ratio of 27:1, using polyester processed yarn (2 heaters) 75d/36f for the weft. Each is supplied with a separate beam, and the warp density
It was woven at a weft density of 120 yarns/inch and a weft density of 107 yarns/inch. Next, it was coated and finished in the same manner as in Examples 1 and 2. The performance of the obtained fabric is shown in Table 1.

【表】 上の実施例および比較例から明らかな如く、本
発明の布帛は、防塵効果が良好であり、特に微多
孔皮膜を形成する際に、薄膜化(5μm)しても
ピンホールがないため、防塵効果が顕著であると
共に高透湿度が可能となり着用時のムレ感がなく
快適に作業が行える。その他、パツカリング、制
電効果も良好であり、且つ製布プロセスも1ビー
ムのW.J.Lで可能故コストが低減し、プロセスが
合理化される。
[Table] As is clear from the above Examples and Comparative Examples, the fabric of the present invention has a good dustproof effect, and in particular, when forming a microporous film, there are no pinholes even when the film is made thin (5 μm). Therefore, it has a remarkable dustproof effect and high moisture permeability, so you can work comfortably without feeling stuffy when wearing it. In addition, it has good puckering and antistatic effects, and the fabric manufacturing process can be done with a single beam WJL, reducing costs and streamlining the process.

Claims (1)

【特許請求の範囲】[Claims] 1 導電糸を交編織してなる布帛に於いて、導電
糸を含有する混繊糸であつて、導電糸を含まない
隣接する地部構成糸との見掛け直径の差が10%以
内である混繊糸を用いて光編織してなる衣服素材
の少なくとも片面に、0.1〜5μmの孔径をもつ
微多孔皮膜を有する防塵衣用衣服素材。
1. For fabrics made by mixing and weaving conductive yarns, blended yarns that contain conductive yarns and have a difference in apparent diameter of 10% or less from adjacent ground component yarns that do not contain conductive yarns. A clothing material for dust-proof clothing, which has a microporous film with a pore size of 0.1 to 5 μm on at least one side of the clothing material, which is optically knitted using fiber yarn.
JP58206894A 1983-11-05 1983-11-05 Clothing material Granted JPS60104548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58206894A JPS60104548A (en) 1983-11-05 1983-11-05 Clothing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58206894A JPS60104548A (en) 1983-11-05 1983-11-05 Clothing material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63123009A Division JPS63307938A (en) 1988-05-21 1988-05-21 Manufacture of clothing material for dustproof clothes

Publications (2)

Publication Number Publication Date
JPS60104548A JPS60104548A (en) 1985-06-08
JPS6233068B2 true JPS6233068B2 (en) 1987-07-18

Family

ID=16530814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58206894A Granted JPS60104548A (en) 1983-11-05 1983-11-05 Clothing material

Country Status (1)

Country Link
JP (1) JPS60104548A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582747A (en) * 1984-02-16 1986-04-15 Teijin Limited Dust-proof fabric
JPS63187966U (en) * 1987-05-26 1988-12-01
CN103692744A (en) * 2013-12-20 2014-04-02 吴江市圆明印花厂 Novel detachable dustproof fabric

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134544A (en) * 1977-04-28 1978-11-24 Teijin Ltd Dusttfree sterilized cloth
JPS5473924A (en) * 1977-11-10 1979-06-13 Saint Gobain Apparatus for continuously applying adhesive and like onto moving mineral yarn
JPS55158352A (en) * 1979-05-28 1980-12-09 Unitika Ltd Antistatic method of polyester synthetic fiber fabric
JPS5626076A (en) * 1979-08-02 1981-03-13 Toray Industries Moisture permeable and waterproof coated fabric
JPS57139537A (en) * 1981-02-23 1982-08-28 Toray Industries Anti-static blended fiber yarn knitted fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134544A (en) * 1977-04-28 1978-11-24 Teijin Ltd Dusttfree sterilized cloth
JPS5473924A (en) * 1977-11-10 1979-06-13 Saint Gobain Apparatus for continuously applying adhesive and like onto moving mineral yarn
JPS55158352A (en) * 1979-05-28 1980-12-09 Unitika Ltd Antistatic method of polyester synthetic fiber fabric
JPS5626076A (en) * 1979-08-02 1981-03-13 Toray Industries Moisture permeable and waterproof coated fabric
JPS57139537A (en) * 1981-02-23 1982-08-28 Toray Industries Anti-static blended fiber yarn knitted fabric

Also Published As

Publication number Publication date
JPS60104548A (en) 1985-06-08

Similar Documents

Publication Publication Date Title
US4388370A (en) Electrically-conductive fibres
US4756969A (en) Highly electrically conductive filament and a process for preparation thereof
CN109371527B (en) Polyester conductive lining cloth and production process thereof
JPS6233068B2 (en)
EP0222239B1 (en) Electrically conductive combination yarn, and textile made of the same
JPH0311894B2 (en)
JPH03152229A (en) Conjugate yarn
JP4280546B2 (en) Conductive composite fiber and conductive woven / knitted fabric
JP3212193U (en) Antistatic yarn and antistatic fabric
KR100229091B1 (en) Manufacturing method of elasticity yarn
JPS6320559B2 (en)
JPH0223615B2 (en)
JP4255362B2 (en) Textile product and manufacturing method thereof
JPS6142012B2 (en)
CN109468713A (en) Method of fire resistance fibre and products thereof is prepared after a kind of polyacrylonitrile/polyester two-component skin-core structure oxidation
JPH01139833A (en) Fiber materials excellent in flexibility
CN218596606U (en) Nylon filament with light-resistant function
JP2000110042A (en) Antistatic machine sewing thread
JP3211052B2 (en) Water-repellent fabric using extruded and spun fluororesin fiber and method for producing the water-repellent fabric
JPH0424240A (en) Woven fabric of polyamide combined filament yarn
JPH10310944A (en) Antistatic sewing yarn
JPS6036636Y2 (en) Antistatic warp knitted fabric
JP2848791B2 (en) Antistatic microfiber fabric and method for producing the same
JPS62238842A (en) Water repellent fabric
JPS58149327A (en) Production of electroconductive conjugated fiber