JPS6232751Y2 - - Google Patents

Info

Publication number
JPS6232751Y2
JPS6232751Y2 JP813681U JP813681U JPS6232751Y2 JP S6232751 Y2 JPS6232751 Y2 JP S6232751Y2 JP 813681 U JP813681 U JP 813681U JP 813681 U JP813681 U JP 813681U JP S6232751 Y2 JPS6232751 Y2 JP S6232751Y2
Authority
JP
Japan
Prior art keywords
axis
correction
thermal
machine tool
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP813681U
Other languages
Japanese (ja)
Other versions
JPS57122341U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP813681U priority Critical patent/JPS6232751Y2/ja
Publication of JPS57122341U publication Critical patent/JPS57122341U/ja
Application granted granted Critical
Publication of JPS6232751Y2 publication Critical patent/JPS6232751Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Description

【考案の詳細な説明】 本考案は工作機械の各座標軸系に生じている傾
き誤差の補正装置に関し、各座標軸系に発生する
熱歪みをも補正する機能を付加させたものであ
る。
[Detailed Description of the Invention] The present invention relates to a device for correcting inclination errors that occur in each coordinate axis system of a machine tool, and has an added function that also corrects thermal distortion that occurs in each coordinate axis system.

工作機械の主軸傾き誤差の補正技術が、特開昭
55−58949号によつて提案されている。この補正
技術は、工作機械主軸軸線方向の送り軸に対する
主軸軸線の傾きによる加工穴の芯ずれを補償する
ために、前記主軸軸線の傾き量を測定し、この傾
き量に基づき加工工具刃先位置の軸方向変化量に
応じたX軸方向及びY軸方向の補正量を求め、こ
の補正量に応じて加工位置の位置決め補正を行う
ようにした傾き誤差補正方法である。上記補正方
法では、加工穴の芯ずれを補償することのみ有効
なものであるから、X軸、Y軸方向の傾き誤差に
対しての補正機能を備えていない。更に、熱の影
響によつて各座標軸系が熱歪みを生じても、この
補償機能を備えていないので、現実に即した補正
能力を具備していることにはならない。
A technology for correcting machine tool spindle tilt errors was published in Japanese Patent Publication No.
No. 55-58949. This correction technology measures the amount of inclination of the main spindle axis and adjusts the cutting tool cutting edge position based on this amount of inclination, in order to compensate for the misalignment of the machined hole due to the inclination of the main spindle axis with respect to the feed axis in the direction of the machine tool spindle axis. This is a tilt error correction method in which correction amounts in the X-axis direction and Y-axis direction are determined according to the amount of change in the axial direction, and positioning correction of the processing position is performed in accordance with the correction amounts. The above correction method is effective only in compensating for misalignment of the machined hole, and therefore does not have a correction function for inclination errors in the X-axis and Y-axis directions. Furthermore, even if each coordinate axis system suffers thermal distortion due to the influence of heat, since it does not have a compensation function, it does not have a correction capability that is compatible with reality.

本考案は上述の事柄に鑑みて提案されたもの
で、工作機械の3軸座標系の傾き誤差及びこの誤
差が熱歪みによつて変動することを検出し、この
検出結果(検出補正値)により各軸モータを補正
駆動させ、3軸座標系の完壁な誤差補正を行うよ
うにしたものである。
The present invention was proposed in view of the above-mentioned issues, and detects the inclination error of the three-axis coordinate system of a machine tool and the fluctuation of this error due to thermal distortion, and uses the detection result (detection correction value) to Each axis motor is driven for correction, and complete error correction of the three-axis coordinate system is performed.

以下本考案の実施例を図面にもとづいて説明す
る。第1図に示す工作機械はNC付立型フライス
盤で、1はベツド、2はベツドと一体のコラム、
3はコラム2の摺動面2aに沿つて昇降動するニ
ーで、パルスモータPM−ZによつてZ軸方向に
昇降駆動される。4はサドルで、ニー3に嵌合し
て工作機械の前後方向(Y軸方向)にパルスモー
タPM−Yで進退駆動される。5はサドル4上に
載置するテーブルで、工作機械の左右方向(X軸
方向)にパルスモータPM−Xによつて駆動され
る。6は主軸7に嵌着したカツタで、テーブル5
上の工作物8をニー3の上昇移動によつて加工す
る。このような工作機械において、Z軸方向の傾
き誤差に大きく影響するコラム摺動面2aが傾い
ていると、X軸及びY軸に対する傾き誤差にも影
響を与え、これに熱変位による傾き誤差が付加さ
れて複雑な傾き誤差を生じる。上記工作機械の傾
き誤差の対応策として、Z軸の傾き誤差の原因と
なるコラム摺動面2aの加工精度向上を図る方法
が従来実施されていたが、この方法では工作機械
の生産コストを大幅に引き上げるので好ましくな
い。
Embodiments of the present invention will be described below based on the drawings. The machine tool shown in Figure 1 is a vertical milling machine with NC, 1 is a bed, 2 is a column integrated with the bed,
A knee 3 moves up and down along the sliding surface 2a of the column 2, and is driven up and down in the Z-axis direction by a pulse motor PM-Z. A saddle 4 is fitted to the knee 3 and is driven forward and backward in the longitudinal direction (Y-axis direction) of the machine tool by a pulse motor PM-Y. Reference numeral 5 denotes a table placed on the saddle 4, which is driven by a pulse motor PM-X in the left-right direction (X-axis direction) of the machine tool. 6 is a cutter fitted on the main shaft 7, and the table 5
The upper workpiece 8 is machined by the upward movement of the knee 3. In such a machine tool, if the column sliding surface 2a, which greatly affects the tilt error in the Z-axis direction, is tilted, it will also affect the tilt error in the X-axis and Y-axis, and the tilt error due to thermal displacement will also affect the tilt error in the X-axis and Y-axis. This results in a complex tilt error. As a countermeasure to the above-mentioned machine tool inclination error, a method has been conventionally implemented to improve the machining accuracy of the column sliding surface 2a, which causes the Z-axis inclination error, but this method significantly reduces the production cost of the machine tool. This is not desirable because it raises the

そこで、本考案においては、コラム摺動面2a
の加工精度をいたずらに向上させることなく、コ
ラム摺動面2a即ちZ軸の傾き誤差をX軸方向及
びY軸方向に対する補正量として求め、Z軸方向
の移動に対して、X,Y軸方向へテーブル及びサ
ドルを補正移動させ、Z軸方向の傾き誤差を解消
させるように制御するのである。そして、テーブ
ルのX軸方向及びY軸方向の傾き誤差に対しても
夫々補正値を求め、誤差補正を行うようにする。
更に、各軸方向の熱歪みを検出してこの補正値と
上記傾き誤差補正値との総補正値に基づき完全な
傾き補正が実行できるようにしたものである。
Therefore, in the present invention, the column sliding surface 2a
Without unnecessarily improving the machining accuracy of The table and saddle are moved to compensate, and control is performed to eliminate the tilt error in the Z-axis direction. Then, correction values are obtained for tilt errors of the table in the X-axis direction and Y-axis direction, respectively, and error correction is performed.
Furthermore, thermal distortion in each axial direction is detected, and complete tilt correction can be performed based on the total correction value of this correction value and the above-mentioned tilt error correction value.

上記各座標軸上に工作機械の製作時に生じた傾
き誤差及び熱歪みによる傾き誤差は、第2図に示
すよう座標表示される。即ち、工作機械の製作誤
差はZ軸方向において、Z′方向の傾き角度δをも
ち、X軸方向においてX′方向の傾き角度αをも
ち、Y軸方向においてY′方向の傾き角度βをも
つている。このような傾き誤差をもつ工作機械が
熱歪みを生ずるときの各座標軸系X″,Y″,Z″の
傾き角度α′,β′,δ′(機体温度によつて変位
する)は、上記傾き角度α,β,δに対してα+
α′,β+β′,δ+δ′のように加算される。従
つて、各軸の総補正値は傾き角度α+α′,β+
β′,δ+δ′によつて決定される。
On each of the above coordinate axes, inclination errors caused during manufacturing of the machine tool and inclination errors due to thermal distortion are displayed in coordinates as shown in FIG. In other words, the manufacturing error of a machine tool has a tilt angle δ in the Z' direction in the Z-axis direction, a tilt angle α in the X' direction in the X-axis direction, and a tilt angle β in the Y' direction in the Y-axis direction. ing. The inclination angles α′, β′, δ′ (displaced depending on the machine body temperature) of each coordinate axis system X″, Y″, Z″ when a machine tool with such an inclination error causes thermal distortion are as described above α+ for the tilt angles α, β, δ
They are added as α', β+β', and δ+δ'. Therefore, the total correction value for each axis is the tilt angle α + α′, β +
It is determined by β', δ+δ'.

次に本考案の傾き誤差補正装置の第1実施例を
第3図に示すブロツク線図で説明する。CPUは
CNC装置(コンピユータ内蔵型数値制御装置)
のコンピユータ、10はテープリーダ、11は操
作盤である。12はインタフエース、13は位置
補正制御回路で各パルスモータPM−X,PM−
Y,PM−Zに対しての指令部となる。14は各
軸熱歪補正回路で、熱歪みに対応して補正パルス
を位置補正制御回路13に発信する。即ち、各座
標軸の熱歪み量が温度変化に対応したデータとし
て熱補償メモリMX,MY,MZに登録されてお
り、工作機械の各座標軸系に備えた温度センサ
TX,TY,TZからの測定温度情報により熱補償
メモリから測定温度に対応した各軸系の熱補正値
を個々に出力する。15は各座標軸系のメモリ制
御回路で、各座標軸系の傾き誤差が補正値メモリ
HX,HY,HZに登録されており、この補正値メ
モリから各軸系の傾き誤差補正値を個々に位置補
正制御回路13へ出力する。上記の如く、位置補
正制御回路13には、コンピユータCPUからの
NC指令信号のほかに各軸熱歪補正回路14から
の熱歪み補正値、メモリ制御回路15からの傾き
誤差補正値が総補正値信号として入力する。総補
正値信号を入力した位置補正制御回路13はコン
ピユータCPUで上記情報を演算処理して各軸の
速度制御回路16〜18から駆動回路19〜21
を介して各パルスモータPM−X,PM−Y,PM
−Zを送り制御時に補正駆動するように構成され
ている。
Next, a first embodiment of the tilt error correction device of the present invention will be described with reference to the block diagram shown in FIG. CPU is
CNC device (computer built-in numerical control device)
10 is a tape reader, and 11 is an operation panel. 12 is an interface, 13 is a position correction control circuit for each pulse motor PM-X, PM-
Serves as a command unit for Y and PM-Z. Reference numeral 14 denotes a thermal distortion correction circuit for each axis, which transmits correction pulses to the position correction control circuit 13 in response to thermal distortion. In other words, the amount of thermal strain for each coordinate axis is registered in the thermal compensation memories MX, MY, and MZ as data corresponding to temperature changes, and the temperature sensor installed in each coordinate axis system of the machine tool
Based on the measured temperature information from TX, TY, and TZ, the thermal compensation memory outputs individual thermal correction values for each axis system corresponding to the measured temperature. 15 is a memory control circuit for each coordinate axis system, and the tilt error of each coordinate axis system is stored as a correction value memory.
It is registered in HX, HY, and HZ, and the tilt error correction values for each axis system are individually output from this correction value memory to the position correction control circuit 13. As mentioned above, the position correction control circuit 13 receives input from the computer CPU.
In addition to the NC command signal, the thermal distortion correction value from each axis thermal distortion correction circuit 14 and the tilt error correction value from the memory control circuit 15 are input as a total correction value signal. The position correction control circuit 13 to which the total correction value signal has been input processes the above information using a computer CPU and sends the information from the speed control circuits 16 to 18 of each axis to the drive circuits 19 to 21.
through each pulse motor PM-X, PM-Y, PM
-Z is configured to be corrected and driven during feed control.

本考案の実施例は上述の如くであり、以下その
作用を説明する。先ず、常温状態にある立型フラ
イス盤の製作時に生じた各軸の傾き誤差は、第2
図に示すようX軸方向においてX′方向の傾き角
度αをもち(α′=0)、Y軸方向においてY′方
向の傾き角度βをもち(β′=0)、Z軸方向にお
いてZ′方向の傾き角度δ(δ′=0)をもつてい
る。この状態でニー3を昇降駆動すると、補正値
メモリHZに登録されているZ座標軸系の傾き誤
差の補正値をメモリ制御回路15とコンピユータ
CPUとの間で演算し、Z軸方向の傾き角度δを
X軸及びY軸方向の補正量として求め、位置補正
制御回路13でZ軸方向の単位当りの移動に対し
てX,Y軸方向へテーブル及びサドルを補正移動
させ、Z軸方向の傾き誤差を解消させるように、
各パルスモータPM−X,PM−Y,PM−Zを補
正駆動する。そして、テーブル5のX軸方向及び
Y軸方向の傾き角度α,βの誤差に対しても夫々
補正値メモリHX,HYに登録されているX及びY
座標軸系の傾き誤差の補正値をメモリ制御回路1
5とコンピユータCPUとの間で演算し、X軸方
向の傾き角度αをY軸及びZ軸方向の補正量とす
ると共にY軸方向の傾き角度βをX軸及びZ軸方
向の補正量として求める。更に、位置補正制御回
路13でX軸方向の単位当りの移動に対してY,
Z軸方向へサドル及びニーを補正移動させると共
に、Y軸方向の単位当りの移動に対してX,Z軸
方向へテーブル、ニーを補正移動させ、これでX
軸及びY軸方向の傾き誤差を解消するように、各
パルスモータPM−X,PM−Y,PM−Zを補正
駆動する。
The embodiment of the present invention is as described above, and its operation will be explained below. First, the inclination error of each axis that occurred when manufacturing a vertical milling machine at room temperature is
As shown in the figure, it has a tilt angle α in the X' direction in the X-axis direction (α' = 0), a tilt angle β in the Y' direction in the Y-axis direction (β' = 0), and a tilt angle Z' in the Z-axis direction. The direction has an inclination angle δ (δ'=0). When the knee 3 is driven up and down in this state, the correction value for the inclination error of the Z coordinate axis system registered in the correction value memory HZ is transferred to the memory control circuit 15 and the computer.
The tilt angle δ in the Z-axis direction is calculated with the CPU as the correction amount in the X-axis and Y-axis directions, and the position correction control circuit 13 calculates the tilt angle δ in the To correct the table and saddle and eliminate the tilt error in the Z-axis direction,
Each pulse motor PM-X, PM-Y, PM-Z is driven for correction. For errors in the tilt angles α and β in the X-axis direction and Y-axis direction of table 5, the X and Y values registered in the correction value memories HX and HY, respectively
The correction value for the tilt error of the coordinate axis system is stored in the memory control circuit 1.
5 and the computer CPU, the tilt angle α in the X-axis direction is determined as the correction amount in the Y-axis and Z-axis directions, and the tilt angle β in the Y-axis direction is determined as the correction amount in the X-axis and Z-axis directions. . Furthermore, the position correction control circuit 13 calculates Y,
In addition to moving the saddle and knee in the Z-axis direction, the table and knee are also moved in the X- and Z-axis directions to compensate for the unit movement in the Y-axis direction.
Each of the pulse motors PM-X, PM-Y, and PM-Z is driven to correct so as to eliminate tilt errors in the axial and Y-axis directions.

次に、工作機械(立型フライス盤)の温度上昇
により第2図の座標表示の如く、Z軸において
Z″方向に熱変位角δ′だけ歪み(総傾き角度δ+
δ′)、X軸においてX″方向に熱変位角α′だけ歪
み(総傾き角度α′+α)、Y軸においてY″方向
に熱変位角β′だけ歪む(総傾き角度β+β′)。
この熱歪みは、各軸の温度センサTX,TY,TZ
からの測定温度により熱補償メモリMX,MY,
MZから測定温度に対応した各座標軸系の熱歪補
正値を個々に各軸熱歪補正回路14に出力する。
この熱歪補正値を各軸熱歪補正回路14とコンピ
ユータCPUとの間で演算し、X軸方向の熱歪み
角度α′をY軸及びZ軸方向の補正量とすると共
にY軸方向の熱歪み角度β′をX軸及びZ軸方向
の補正量とし、更にZ軸方向の熱歪み角度δ′を
X軸及びY軸方向の補正量として求める。そし
て、上記補正量は位置補正制御回路13へ出力し
て、X軸方向の単位当りの移動に対してY,Z軸
方向へサドル及びニーを補正移動させると共に、
Y軸方向の単位当りの移動に対してはX,Z軸方
向へテーブル、ニーを補正移動させ、更にZ軸方
向の単位当りの移動に対してX,Y軸方向へテー
ブル、サドルを補正移動させる。これでX軸、Y
軸及びZ軸方向の熱歪みによる傾き誤差を解消す
るように、各パルスモータPM−X,PM−Y,
PM−Zを補正駆動する。ところで、上記熱歪み
の補正送りを実行するときでも工作機械の製作誤
差によつて生じた各軸の傾き誤差の補正送りも同
時に実行される。即ち、両者が同時に実行される
ときは、位置補正制御回路13は各軸熱歪補正回
路14及びメモリ制御回路15からの各補正値を
総補正値(α+α′,β+β′,δ+δ′)として
加算処理し、工作機の傾き誤差及び熱歪みによる
傾き誤差を同時に完全補正することができる。
Next, due to the temperature rise of the machine tool (vertical milling machine), the Z axis will change as shown in the coordinate display in Figure 2.
Distortion in Z″ direction by thermal displacement angle δ′ (total tilt angle δ+
δ'), distorted in the X-axis by a thermal displacement angle α' in the X'' direction (total inclination angle α'+α), and distorted in the Y-axis by a thermal displacement angle β' in the Y'' direction (total inclination angle β+β').
This thermal distortion is caused by the temperature sensor TX, TY, TZ of each axis.
Thermal compensation memory MX, MY,
Thermal distortion correction values of each coordinate axis system corresponding to the measured temperature are individually outputted from the MZ to each axis thermal distortion correction circuit 14.
This thermal distortion correction value is calculated between each axis thermal distortion correction circuit 14 and the computer CPU, and the thermal distortion angle α' in the X-axis direction is set as the correction amount in the Y-axis and Z-axis directions, and The distortion angle β' is determined as the correction amount in the X-axis and Z-axis directions, and the thermal distortion angle δ' in the Z-axis direction is determined as the correction amount in the X-axis and Y-axis directions. Then, the above correction amount is output to the position correction control circuit 13, and the saddle and knee are corrected and moved in the Y and Z axis directions with respect to the unit movement in the X axis direction.
For a unit movement in the Y-axis direction, the table and knee are compensated for in the X and Z-axis directions, and furthermore, for a unit movement in the Z-axis direction, the table and saddle are compensated for in the X and Y-axis directions. let Now the X axis, Y
Each pulse motor PM-X, PM-Y,
Drive PM-Z for correction. By the way, even when the above-mentioned thermal distortion correction feed is executed, correction feed for the inclination errors of each axis caused by manufacturing errors of the machine tool is also executed at the same time. That is, when both are executed at the same time, the position correction control circuit 13 adds each correction value from each axis thermal distortion correction circuit 14 and memory control circuit 15 as a total correction value (α+α′, β+β′, δ+δ′). It is possible to completely correct the tilt error of the machine tool and the tilt error due to thermal distortion at the same time.

尚、本考案は上記一実施例に限定されることな
く、考案の要旨内での設計変更が可能である。例
えば各軸系の温度センサTX,TY,TZを歪みセ
ンサに変更して各軸の熱歪みを直接検出し、この
検出結果を熱補償メモリMX,MY,MZに一定時
間間隔毎に新規登録しなおし、熱歪みの補正指令
とするようにしてもよい。この方法によるとき
は、工作機械の現実の熱歪みを検出して補正する
ので、より完壁な歪み補正ができる。
Incidentally, the present invention is not limited to the above-described one embodiment, and design changes can be made within the gist of the invention. For example, change the temperature sensors TX, TY, and TZ of each axis system to strain sensors to directly detect the thermal strain of each axis, and newly register the detection results in the thermal compensation memories MX, MY, and MZ at regular time intervals. Note that the command may be used as a correction command for thermal distortion. When using this method, the actual thermal distortion of the machine tool is detected and corrected, so more complete distortion correction can be achieved.

本考案によるときは工作機械のX軸、Y軸、Z
軸の各座標軸方向の傾き誤差を登録する補正値メ
モリと、この補正値メモリから得られる各座標軸
系の傾き誤差の補正値を異なる他の二軸方向の移
動量としてコンピユータとの間で演算するメモリ
制御回路と、工作機械の各座標軸系の熱歪みを歪
みセンサで検出してこの熱歪み量を一定時間間隔
毎に新規登録する熱補償メモリまたは機体温度セ
ンサからの測定温度により予め登録した各軸熱歪
み量を呼び出す熱補償メモリと、この熱歪みの補
正値を異なる他の二軸方向の移動量としてコンピ
ユータとの間で演算する各軸熱歪補正回路と、上
記各軸熱歪補正回路及びメモリ制御回路からの熱
歪み及び傾き誤差の補正値を総補正値として加算
処理し、工作機械の送り制御時に各軸のパルスモ
ータを補正駆動する位置補正制御回路とを備えた
から、工作機械の3軸座標系の傾き誤差の補正を
行うことができるので、工作機械の製造組立精度
を必要以上に向上させなくても非常に高い切削精
度が保証された工作機械が低コストで生産するこ
とができるほか、工作機械に熱歪みが生じてもこ
れに適応して補正制御されるので、工作機械の傾
き誤差及び熱歪みによる傾き誤差を同時に完全補
正することができる効果がある。
When using this invention, the X-axis, Y-axis, and Z-axis of the machine tool
A correction value memory that registers the inclination error in each coordinate axis direction of the axis, and a computer calculate the correction value for the inclination error in each coordinate axis system obtained from this correction value memory as the amount of movement in the other two different axes directions. The memory control circuit and the thermal compensation memory that detects the thermal strain of each coordinate axis system of the machine tool with a strain sensor and newly registers the amount of thermal strain at fixed time intervals, or the temperature measured from the machine body temperature sensor. A thermal compensation memory that reads the amount of axial thermal distortion, a thermal distortion correction circuit for each axis that calculates the correction value for this thermal distortion with a computer as a movement amount in two different axial directions, and a thermal distortion correction circuit for each axis described above. and a position correction control circuit that adds the thermal distortion and tilt error correction values from the memory control circuit as a total correction value, and corrects and drives the pulse motor of each axis during machine tool feed control. Since tilt errors in the 3-axis coordinate system can be corrected, machine tools that guarantee extremely high cutting accuracy can be produced at low cost without unnecessarily improving the manufacturing and assembly accuracy of machine tools. In addition, even if thermal distortion occurs in the machine tool, correction control is performed in accordance with the thermal distortion, so that it is possible to completely correct the inclination error of the machine tool and the inclination error due to thermal distortion at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置を装備した立型NCフライ
ス盤の正面図、第2図は工作機械のフライス盤が
各座標軸系で傾き誤差と熱変位歪みを生じた状態
を示す座標変位図、第3図は本考案の傾き誤差補
正装置のブロツク線図である。 3……ニー、4……サドル、5……テーブル、
12……インタフエース、13……位置補正制御
回路、14……各軸熱歪補正回路、15……メモ
リ制御回路、16〜18……各軸速度制御回路、
19〜21……駆動回路、TX,TY,TZ……温
度センサ、MX,MY,MZ……熱補償メモリ、
HX,HY,HZ……補正値メモリ、PM−X,PM
−Y,PM−Z……各軸のパルスモータ、CPU…
…コンピユータ、α,β,δ……機体の傾き角
度、α′,β′,δ′……熱歪みによる傾き角度。
Figure 1 is a front view of a vertical NC milling machine equipped with the device of the present invention, Figure 2 is a coordinate displacement diagram showing the state in which the milling machine of the machine tool has tilt errors and thermal displacement distortions in each coordinate axis system, and Figure 3 is a block diagram of the tilt error correction device of the present invention. 3...knee, 4...saddle, 5...table,
12...Interface, 13...Position correction control circuit, 14...Each axis thermal distortion correction circuit, 15...Memory control circuit, 16-18...Each axis speed control circuit,
19-21...drive circuit, TX, TY, TZ...temperature sensor, MX, MY, MZ...thermal compensation memory,
HX, HY, HZ...Correction value memory, PM-X, PM
-Y, PM-Z...Pulse motor for each axis, CPU...
...Computer, α, β, δ...Inclination angle of the aircraft, α', β', δ'...Inclination angle due to thermal distortion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 工作機械のX軸、Y軸、Z軸の各座標軸方向の
傾き誤差を登録する補正値メモリと、この補正値
メモリから得られる各座標軸系の傾き誤差の補正
値を異なる他の二軸方向の移動量としてコンピユ
ータとの間で演算するメモリ制御回路と、工作機
械の各座標軸系の熱歪みを歪みセンサで検出して
この熱歪み量を一定時間間隔毎に新規登録する熱
補償メモリまたは機体温度センサからの測定温度
により予め登録した各軸熱歪み量を呼び出す熱補
償メモリと、この熱歪みの補正値を異なる他の二
軸方向の移動量としてコンピユータとの間で演算
する各軸熱歪補正回路と、上記各軸熱歪補正回路
及びメモリ制御回路からの熱歪み及び傾き誤差の
補正値を総補正値として加算処理し、工作機械の
送り制御時に各軸のパルスモータを補正駆動する
位置補正制御回路とを備えたことを特徴とする工
作機械の傾き誤差補正装置。
A correction value memory that registers the inclination error in each coordinate axis direction of the machine tool's X-axis, Y-axis, and Z-axis, and a correction value for the inclination error of each coordinate axis system obtained from this correction value memory are stored in two different axes directions. A memory control circuit that calculates movement distance with the computer, and a thermal compensation memory or machine body temperature that detects thermal strain in each coordinate axis system of the machine tool with a strain sensor and newly registers the amount of thermal strain at fixed time intervals. Thermal distortion correction for each axis calculates the correction value for this thermal distortion between the computer and the thermal compensation memory that calls the amount of thermal distortion for each axis registered in advance based on the measured temperature from the sensor and the amount of movement in two different axial directions. The correction values for thermal distortion and inclination error from the circuit, the above-mentioned thermal distortion correction circuit for each axis, and the memory control circuit are added together as a total correction value, and position correction is performed to correct and drive the pulse motor of each axis during feed control of the machine tool. An inclination error correction device for a machine tool, characterized by comprising a control circuit.
JP813681U 1981-01-22 1981-01-22 Expired JPS6232751Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP813681U JPS6232751Y2 (en) 1981-01-22 1981-01-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP813681U JPS6232751Y2 (en) 1981-01-22 1981-01-22

Publications (2)

Publication Number Publication Date
JPS57122341U JPS57122341U (en) 1982-07-30
JPS6232751Y2 true JPS6232751Y2 (en) 1987-08-21

Family

ID=29806301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP813681U Expired JPS6232751Y2 (en) 1981-01-22 1981-01-22

Country Status (1)

Country Link
JP (1) JPS6232751Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045419B2 (en) * 2007-12-21 2012-10-10 三菱電機株式会社 Telescope device and telescope system

Also Published As

Publication number Publication date
JPS57122341U (en) 1982-07-30

Similar Documents

Publication Publication Date Title
US6097168A (en) Position control apparatus and method of the same, numerical control program preparation apparatus and method of the same, and methods of controlling numerical control machine tool
US6681145B1 (en) Method for improving the accuracy of machines
US5492440A (en) Apparatus for movement of an object
JPS6389253A (en) Method and device for correcting error
JP2003108206A (en) Correction system for nc machine tool
US20070180962A1 (en) Control method for a machine tool with numerical control
US5214592A (en) Machine tool position correcting method and apparatus
JP6803043B2 (en) How to measure geometric error of machine tools
EP1128931B1 (en) New method of error compensation for angular errors in machining (droop compensation)
JPH0783977B2 (en) Machine tool thermal displacement compensation method
JPS6232751Y2 (en)
JP7009326B2 (en) Numerical control device for machine tools
JPH08229774A (en) Deformation correcting machining method for machine tool
EP0625739B1 (en) Apparatus for movement of an object
JP2002239872A (en) Thermal displacement correcting method and thermal displacement correcting coefficient changing method as well as numerical control device having the same correcting function
JPH02100856A (en) Method and device for correcting positioning error of machine tool feeding system
KR19980018851A (en) POSITION CONTROL SYSTEM AND POSITION CONTROL METHOD
JPH0386447A (en) Copying control device
JPS6159860B2 (en)
JPH05169351A (en) Thermal displacement compensation method of machine tool
JPS58109251A (en) Numeric control working system
JP2004148422A (en) Multi-axis machining device, machining method in multi-axis machining device and program
JPS6240751Y2 (en)
JP3221688B2 (en) NC machine with automatic thermal displacement correction means
JP2539097B2 (en) Machining error correction method and machine tool