JPS6232224A - Engine fuel supply device - Google Patents

Engine fuel supply device

Info

Publication number
JPS6232224A
JPS6232224A JP17222785A JP17222785A JPS6232224A JP S6232224 A JPS6232224 A JP S6232224A JP 17222785 A JP17222785 A JP 17222785A JP 17222785 A JP17222785 A JP 17222785A JP S6232224 A JPS6232224 A JP S6232224A
Authority
JP
Japan
Prior art keywords
intake
air
carburetor
engine
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17222785A
Other languages
Japanese (ja)
Inventor
Mitsuo Hitomi
光夫 人見
Toshiki Okazaki
俊基 岡崎
Junzo Sasaki
潤三 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP17222785A priority Critical patent/JPS6232224A/en
Publication of JPS6232224A publication Critical patent/JPS6232224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To decrease variations in pressure in a carburetor section to stabilize the supply of fuel appropriately, by canceling out pressure variations due to the air-intake action of an engine with pressure variations due to the discharging action of supercharged air from a pump type supercharger. CONSTITUTION:An air pump 10 as a pump type supercharger driven by an engine 1 is disposed in an intake-air passage 4 upstream of a serge tank 6 but downstream of an air cleaner 5. Further, the volume of a part of the intake- air passage 4 from the air discharge port 10a of the air pump 10 to a carburetor 7 is set to be substantially equal to the volume of the part of the intake-air passage 9 from the carburetor 7 to intake-air ports 2a-2d so that the natural frequencies of both parts of the intake-air passage 4 upstream and downstream of the carburetor 7 are made to be equal to each other. Further, the top discharge pressure of supercharged intake-air of the pump 10 is set to be coincident with the bottom intake-air pressure due to the intake actions of the intake-air ports 2a through 2d so that the discharge timing of supercharged intake-air is synchronized with the opening timing of the each intake-air port 2a-2d.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気通路に介設した気化器により燃料供給を
行うエンジンの燃料供給装置の改良に関し、特に、出力
の向上を図るべく上記吸気通路にポンプ式(機械式)過
給機を介、72 L、た場合の燃料供給の適正化対策に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a fuel supply device for an engine that supplies fuel by a carburetor installed in an intake passage. This article relates to measures to optimize fuel supply when a pump-type (mechanical) supercharger is used in a passageway with a capacity of 72 L.

(従来の技術) 従来より、この種のエンジンの燃料供給装置として、例
えば実開昭51−119404号公報に開示されるよう
に、エンジンの吸気通路に気化器を介設するとともに、
該気化器下流の吸気通路にポンプ式過給機を介設して、
該ポンプ式過給機による吸気過給によって吸入空気量を
増大させると同時に気化器からの燃料供給量を増大させ
て、エンジン出力の向上を図るようにしたものが知られ
ている。
(Prior Art) Conventionally, as a fuel supply device for this type of engine, a carburetor is interposed in the intake passage of the engine, as disclosed in, for example, Japanese Utility Model Application Publication No. 51-119404.
A pump type supercharger is interposed in the intake passage downstream of the carburetor,
It is known that the pump-type supercharger increases the amount of intake air through intake supercharging, and at the same time increases the amount of fuel supplied from the carburetor to improve the engine output.

〈発明が解決しようとする問題点) しかるに、上記従来の如く吸気通路の途中に気化器とポ
ンプ式過給機とを介設する場合には、エンジンの吸気弁
の開作動に基づく吸気作用によって吸気通路内に周期的
な圧力変動が生じるのにす。
(Problems to be Solved by the Invention) However, when a carburetor and a pump-type supercharger are interposed in the intake passage as in the above-mentioned conventional method, the intake action based on the opening operation of the intake valve of the engine Periodic pressure fluctuations occur within the intake passage.

えて、ポンプ式過給機の過給空気の吐出作用により上記
吸気通路の圧力変動が助長されて更に大きくなることが
多い。そして、この場合には、気化器での空気流れが非
常に不安定になって燃料供給量が増減変動し、適正な燃
料供給が行われない欠点が生じる。特に、吸気の動的効
果を利用して出力の向上を図るようにしたものでは顕著
である。
Moreover, the pressure fluctuations in the intake passage are often exacerbated by the discharge action of the supercharged air of the pump-type supercharger and become even larger. In this case, the air flow in the carburetor becomes extremely unstable, causing the amount of fuel supplied to fluctuate, resulting in a disadvantage that proper fuel supply cannot be performed. This is particularly noticeable in devices that utilize the dynamic effect of intake air to improve output.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、エンジンの吸気作用に起因する圧力変動とポンプ
式過給機からの過給空気の吐出作用による圧力変動とを
気化器部で相殺するようにすることにより、気化器部で
の圧力変動を小さく低減して空気流れを安定させ、よっ
て燃料供給、を増減変化なく適切に行うことにある。
The present invention has been made in view of the above, and its purpose is to reduce pressure fluctuations caused by the intake action of the engine and pressure fluctuations caused by the discharge action of supercharged air from the pump-type supercharger into the carburetor section. By offsetting the pressure fluctuations in the carburetor part, the pressure fluctuations in the carburetor part are reduced to a small extent, the air flow is stabilized, and the fuel supply can therefore be carried out appropriately without any increase or decrease.

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段は、吸気通
路に気化器を介設したエンジンの燃料供給装置において
、上記気化器上流の吸気通路にポンプ式過給機を介設す
るとともに、該ポンプ式過給機の空気吐出口から気化器
までの吸気通路の固有振動数を、上記気化器から吸気ポ
ートまでの吸気通路の固有振動数にほぼ等しく設定し、
また上記ポンプ式過給機の空気吐出タイミングを上記吸
気ポートの間タイミングに同期させるように設定する構
成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention provides a fuel supply system for an engine in which a carburetor is interposed in the intake passage. A supercharger is provided, and the natural frequency of the intake passage from the air discharge port of the pump type supercharger to the carburetor is set approximately equal to the natural frequency of the intake passage from the carburetor to the intake port. death,
Further, the air discharge timing of the pump type supercharger is set to be synchronized with the timing between the intake ports.

(作用) 以上の構成により、本発明では、吸気ポートからの空気
吸入とポンプ式過給機からの過給空気の吐出とが同一タ
イミングで行われるのが4!i!返されて、エンジン吸
気負圧パルスと過給空気の吐出パルスとが同時にかつ周
期的に発生して、それぞれ気化器に向って伝播される。
(Function) With the above configuration, in the present invention, air intake from the intake port and discharge of supercharged air from the pump type supercharger are performed at the same timing. i! In return, engine intake vacuum pulses and charge air discharge pulses are generated simultaneously and periodically and each propagated toward the carburetor.

そして、吸気ポートから気化器までの吸気通路の固有振
動数と、ポンプ式過給機の空気吐出口から気化器までの
吸気通路の固有撮動数がほぼ等しいことから、気化器部
でのエンジン吸気に起因する圧力変動波形と過給空気の
吐出圧力波形とが互いに逆位相になって相殺さ机、気化
器部での圧力変動が小さく低減される。その結果、気化
器部での空気流れが安定して、燃料供給が増減変化する
ことなく適切に行われることになる。
Since the natural frequency of the intake passage from the intake port to the carburetor and the natural vibration frequency of the intake passage from the air discharge port of the pump-type supercharger to the carburetor are almost equal, The pressure fluctuation waveform caused by the intake air and the discharge pressure waveform of the supercharged air are in opposite phase to each other and cancel each other out, so that the pressure fluctuation in the carburetor section is reduced to a small level. As a result, the air flow in the carburetor section becomes stable, and the fuel supply is properly performed without fluctuations.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明を4気筒エンジンの燃料供給装置に適用
した実施例を示す。同図において、1は第1〜第4の気
筒1a〜1dを有するエンジンであって、該エンジン1
の各気筒1a〜1dには吸気ポート2a〜2dと排気ポ
ート38〜3dどがそれぞれ開口されている。
FIG. 1 shows an embodiment in which the present invention is applied to a fuel supply system for a four-cylinder engine. In the figure, 1 is an engine having first to fourth cylinders 1a to 1d;
Intake ports 2a to 2d and exhaust ports 38 to 3d are opened in each of the cylinders 1a to 1d, respectively.

また、4は上記エンジン1の各気筒1a〜1dに吸気を
供給するための吸気通路であって、該吸気通路4の上流
端はエアクリーナ5を介して大気に連通し、下流側は上
記エンジン1の4つの気筒1a〜1dに対応して第1〜
第4の分岐吸気通路48〜4dに分岐して該第1〜第4
の気筒1a〜1dの吸気ポート2a〜2dに連通接続さ
れている。上記吸気通路4の各吸気ポート2a〜2d上
流側、詳しくは第1〜第4の分岐吸気通路48〜4dの
集合部4e上流側には、各気筒1a〜1d間の吸気干渉
を低減するためのサージタンク6および、該サージタン
ク6下流側で燃料を吸気通路4内に吸出し供給する気化
器7が各々介設されており、該気化器7から供給した霧
化燃料を吸気と混合したのち、この混合気を第1〜第4
分岐吸気通路48〜4dを介して各気筒1a〜1dに供
給するようになされている。
Reference numeral 4 denotes an intake passage for supplying intake air to each cylinder 1a to 1d of the engine 1, the upstream end of the intake passage 4 communicates with the atmosphere via an air cleaner 5, and the downstream end communicates with the atmosphere. The first to four cylinders 1a to 1d correspond to the four cylinders 1a to 1d.
The first to fourth branched intake passages are branched into fourth branched intake passages 48 to 4d.
The intake ports 2a to 2d of the cylinders 1a to 1d are connected in communication. The upstream side of each intake port 2a to 2d of the intake passage 4, more specifically, the upstream side of the gathering portion 4e of the first to fourth branch intake passages 48 to 4d, is provided to reduce intake interference between the cylinders 1a to 1d. A surge tank 6 and a carburetor 7 for sucking and supplying fuel into the intake passage 4 are provided on the downstream side of the surge tank 6, and after mixing the atomized fuel supplied from the carburetor 7 with intake air, , this mixture is divided into the first to fourth
The air is supplied to each cylinder 1a-1d via branch intake passages 48-4d.

そして、上記吸気通路4のサージタンク6上流側でエア
クリーナ5下流側には、上記エンジン1により駆動され
て吸気を機械過給するポンプ式、過給機としてのエアポ
ンプ10が介設されていて、該エアポンプ10による吸
気過給により、吸気用の増大と共に気化器7からの燃料
供給量を増大させて、エンジン出力の向上を図るように
なされている。
An air pump 10 serving as a pump-type supercharger, which is driven by the engine 1 and mechanically supercharges intake air, is interposed on the upstream side of the surge tank 6 and the downstream side of the air cleaner 5 in the intake passage 4. The intake supercharging by the air pump 10 increases the amount of intake air and also increases the amount of fuel supplied from the carburetor 7, thereby improving engine output.

而して、上記各吸気ポート2a〜2dの開に基づくエン
ジン吸気負圧パルスの発生と、エアポンプ10による過
給吸気の吐出正圧パルスの発生との双方が絡んで生じる
。吸気通路4の気化器7での大きな圧力変動を低減すべ
く、上記エアポンプ10の空気吐出口10aから気化器
7までの吸気通路4は、その容積が気化器7から各吸気
ポート2a〜2dまでの吸気通路4の容積とほぼ等しく
なるよう設けられていて、この気化器7上下流の吸気通
路の各固有振動数が互いにほぼ等しくなるように予め設
定されている。
This occurs due to the interaction between the generation of engine intake negative pressure pulses based on the opening of each of the intake ports 2a to 2d and the generation of discharge positive pressure pulses of supercharged intake air by the air pump 10. In order to reduce large pressure fluctuations in the carburetor 7 of the intake passage 4, the intake passage 4 from the air discharge port 10a of the air pump 10 to the carburetor 7 has a volume that extends from the carburetor 7 to each intake port 2a to 2d. The natural frequencies of the intake passages upstream and downstream of the carburetor 7 are set in advance to be approximately equal to each other.

さらに、上記エアポンプ10は、その過給空気の吐出回
数が4気筒エンジン1の1サイクル当りの吸気口故に等
しい4回に設定されているとともに、過給吸気の吐出圧
トップが各吸気ポート2a〜2dの吸気による吸気圧ボ
トムにほぼ一致するよう設定されていて、よって過給吸
気の吐出タイミングが予め各吸気ボー1〜28〜2dの
間タイミングに同期するよう設定されている。
Further, the air pump 10 is set to discharge the supercharged air four times, which is equal to four times because of the intake port per cycle of the four-cylinder engine 1, and the top discharge pressure of the supercharged air is set to each of the intake ports 2a to 2a. The timing is set to almost match the bottom of the intake pressure caused by intake air 2d, and therefore the discharge timing of the supercharged intake air is set in advance to synchronize with the timing during each intake bow 1-28-2d.

加えて、上記吸気通路4の気化器7下流側で集合部4e
上流側には、シャッターバルブ11により吸気通路4と
連通又は遮断される共鳴タンク12が設けられていると
ともに、吸気通路4の気化器7上流側でサージタンク6
下流側には、上記共鳴タンク12とほぼ同一容積の他の
共鳴タンク13が上記シャッターバルブ11と連動する
伯のシャッターバルブ14により吸気通路4と連通又は
遮断されるように設けられている。尚、図中、15はエ
ンジン1の金気11ia〜1dからの排気ガスを1つに
台湾せしめて排出する排気通路である。
In addition, on the downstream side of the carburetor 7 in the intake passage 4, there is a gathering portion 4e.
A resonance tank 12 is provided on the upstream side, which communicates with or is cut off from the intake passage 4 by a shutter valve 11, and a surge tank 6 is provided on the upstream side of the carburetor 7 of the intake passage 4.
On the downstream side, another resonance tank 13 having approximately the same volume as the resonance tank 12 is provided so as to be communicated with or blocked from the intake passage 4 by a shutter valve 14 that is interlocked with the shutter valve 11. In the figure, reference numeral 15 denotes an exhaust passage through which the exhaust gases from the gases 11ia to 1d of the engine 1 are combined into one and discharged.

したがって、上記実施例においては、エンジン1の各吸
気ポート2a〜2dが順次開くタイミングに同期してエ
アポンプ10の空気吐出口10aから過給空気が吐出さ
れるのが繰返されることにより、吸入空気量の増大と気
化器7からの燃料供給量の増大とが図られて、エンジン
1の出力が向上する。
Therefore, in the embodiment described above, the amount of intake air is and the amount of fuel supplied from the carburetor 7, thereby improving the output of the engine 1.

その際、第2図に示すように、エンジン1の第1〜第4
気筒の吸気ポート2a〜2dがエンジン1の1ナイクル
中に1−3−4 ・−2の順序で聞くのに伴い4つの負
圧のエンジン吸気パルスが発生し、またこれと同期して
エアポンプ10の空気吐出口10aでは4つの正圧の過
給空気の吐出パルスが発生して、それぞれ吸気通路4の
気化器7に向って伝播する。そして、吸気通路4の気化
器7の部位では、各吸気ポート28〜2dから気化器7
までの吸気通路4の固有振!ilJ数に対して、エアポ
ンプ10の空気吐出口10aから気化器7までの吸気通
284の固有撮動数が等しいので、第3図に示すように
、エンジン吸気パルスによる吸気圧力変動波形と、過給
空気の吐出パルスによる吐出圧力変動波形とが互いに逆
位相になって相殺され、圧力変動は小さく低減される。
At that time, as shown in FIG.
Four negative pressure engine intake pulses are generated as the intake ports 2a to 2d of the cylinders are heard in the order of 1-3-4 and -2 during one cycle of the engine 1, and in synchronization with this, the air pump 10 Four positive-pressure supercharged air discharge pulses are generated at the air discharge port 10a and propagate toward the carburetor 7 in the intake passage 4, respectively. At the carburetor 7 portion of the intake passage 4, each intake port 28 to 2d is connected to the carburetor 7.
Natural vibration of intake passage 4 up to! Since the specific imaging number of the intake vent 284 from the air discharge port 10a of the air pump 10 to the carburetor 7 is equal to the ilJ number, as shown in FIG. The discharge pressure fluctuation waveform due to the discharge pulse of the supplied air is in opposite phase to each other and cancels each other out, so that the pressure fluctuation is reduced to a small level.

その結果、気化器7での空気流れが安定して、適切な燃
料供給が行われることになり、エンジン性能の向上を図
ることができる。
As a result, the air flow in the carburetor 7 is stabilized, and appropriate fuel supply is performed, making it possible to improve engine performance.

しかも、吸気通路4の吸気脈動効果を常に有効に発揮さ
せるべく吸気系の固有撮動数を変える場合には、互いに
連動するシャッターバルブ11゜14により2つの共鳴
タンク12.13が同時に吸気通路4に連通又は遮断さ
れるので、この2つの共鳴タンク12.13が開いた場
合には、第5図に示すように、共鳴点く最大値)がエン
ジン高回転側に移動するものの、エアポンプ10の空気
吐出口10aから気化器7までの吸気通路4の固有振動
数は、気化器7から吸気ポート28〜2dまでの吸気通
路4の固有撮動数と常に一致して、第4図に示すように
、気化器7の部位での吸気圧力変動波形と吐出圧力変動
波形とが常に逆位相になり、上記効果(気化器7からの
適切な燃料供給)を確保することができる。
Moreover, when changing the specific number of image pickups of the intake system in order to always effectively exhibit the intake pulsation effect of the intake passage 4, the two resonance tanks 12 and 13 are simultaneously activated in the intake passage 4 by the mutually interlocking shutter valves 11 and 14. Therefore, when these two resonance tanks 12 and 13 are opened, the resonance point (maximum value) moves to the high engine speed side as shown in FIG. 5, but the air pump 10 The natural frequency of the intake passage 4 from the air discharge port 10a to the carburetor 7 always matches the natural vibration frequency of the intake passage 4 from the carburetor 7 to the intake ports 28 to 2d, as shown in FIG. In addition, the intake pressure fluctuation waveform and the discharge pressure fluctuation waveform at the carburetor 7 are always in opposite phase, so that the above effect (appropriate fuel supply from the carburetor 7) can be ensured.

第6図および第7図は固有振動数の可変構造の変形例を
示し、上記実施例では2つの共鳴タンク12.13をそ
れぞれ吸気通路4の気化器7上下流に設けたのに代え、
第6図に示すものでは、気化器7上下流に吸気通路4を
バイパスするバイパス通路16.16を設け、吸気の流
通系路を互いに連動するシせツタ−バルブ17.17に
より切換えて、吸気通路長を可変にしたものである。ま
た、第7図に示すものでは、気化器7上流の吸気通路4
に共鳴タンク18を設け、気化器7下流の分岐吸気通路
4a〜4dに各々これらを連通する連通路19を設けて
、固有振動数を可変にするようにしたものである。この
場合、吸気通路4の気化器7での圧力変動を小さく低減
して適切な燃料供給を確保しながら、吸気通路4の吸気
脈動効果を常に有効に発揮させることができる。
FIGS. 6 and 7 show a modification of the variable natural frequency structure, in which in place of the two resonance tanks 12 and 13 provided upstream and downstream of the carburetor 7 in the intake passage 4 in the above embodiment,
In the device shown in FIG. 6, a bypass passage 16.16 is provided upstream and downstream of the carburetor 7 to bypass the intake passage 4, and the intake air circulation path is switched by mutually interlocking shutter valves 17.17. The passage length is variable. Moreover, in the one shown in FIG. 7, the intake passage 4 upstream of the carburetor 7
A resonance tank 18 is provided in the engine, and a communication path 19 is provided in each of the branch intake paths 4a to 4d downstream of the carburetor 7 to communicate with each other, thereby making the natural frequency variable. In this case, the pressure fluctuation in the carburetor 7 of the intake passage 4 can be reduced to a small extent to ensure appropriate fuel supply, while the intake pulsation effect of the intake passage 4 can always be effectively exhibited.

(発明の効果) 以上説明したように、本発明によれば、吸気通路に気化
器を配置したエンジンの燃料供給装置において、上記気
化器の上流の吸気通路にポンプ式過給機を介設するとと
もに、該ポンプ式過給機の過給空気の吐出による吐出圧
力変動でもって吸気ボーj〜の開による吸気圧力*初を
相殺し、吸気通路の気化器部での圧力変動を小さく低減
するようにしたので、上記ポンプ式過給機による吸気過
給効果を有効に発揮しながら、気化器部での空気流れを
安定にして適正な燃料供給を行うことができ、エンジン
性能の向上を図ることができるものである。
(Effects of the Invention) As explained above, according to the present invention, in a fuel supply system for an engine in which a carburetor is disposed in an intake passage, a pump type supercharger is interposed in the intake passage upstream of the carburetor. At the same time, the fluctuation in the discharge pressure due to the discharge of supercharged air from the pump-type supercharger offsets the intake pressure* due to the opening of the intake valve, thereby reducing the pressure fluctuation in the carburetor section of the intake passage to a small level. As a result, while effectively utilizing the intake supercharging effect of the pump-type supercharger, it is possible to stabilize the air flow in the carburetor section and provide appropriate fuel supply, thereby improving engine performance. It is something that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は4気筒エンジン
の燃料供給装置に適用した場合の全体概略構成図、第2
図はエンジン吸気パルスと過給空気の吐出パルスとの周
期を示す説明図、第3図はエアポンプによる吐出圧力変
動波形とエンジンの吸気圧力変動波形との気化器部での
逆位相関係を示す図、第4図は2つの共鳴タンクの開状
態と閉状態とにおける第3図相当図、第5図は共鳴タン
クを問いた場合の共鳴点の移動の様子を示す図、第6図
および第7図はそれぞれ固有振動数の可変構造の変形例
を示す概略図である。 1・・・エンジン、2a〜2d・・・吸気ポート、4・
・・吸気通路、7・・・気化器、10・・・エアポンプ
、10a・・・空気吐出口。 特許出願人    マツダ株式会社  :2;−)−4 代  理  人     弁理士  前  1)  弘
 ミー゛;−−1、−−
The drawings show embodiments of the present invention, and FIG. 1 is an overall schematic configuration diagram when applied to a fuel supply system for a four-cylinder engine, and FIG.
The figure is an explanatory diagram showing the cycle of the engine intake pulse and the discharge pulse of supercharged air, and Figure 3 is a diagram showing the antiphase relationship in the carburetor section between the discharge pressure fluctuation waveform by the air pump and the engine intake pressure fluctuation waveform. , FIG. 4 is a diagram corresponding to FIG. 3 when the two resonance tanks are in an open state and a closed state, FIG. Each figure is a schematic diagram showing a modified example of the variable natural frequency structure. 1... Engine, 2a-2d... Intake port, 4.
...Intake passage, 7...Carburizer, 10...Air pump, 10a...Air discharge port. Patent applicant Mazda Motor Corporation: 2;-)-4 Agent Patent attorney 1) Hiro Mi゛;--1,--

Claims (1)

【特許請求の範囲】[Claims] (1)吸気通路に気化器を介設したエンジンの燃料供給
装置において、上記気化器上流の吸気通路にはポンプ式
過給機が介設されており、該ポンプ式過給機の空気吐出
口から気化器までの吸気通路の固有振動数は上記気化器
から吸気ポートまでの吸気通路の固有振動数にほぼ等し
く設定され、かつ上記ポンプ式過給機の空気吐出タイミ
ングは上記吸気ポートの間タイミングに同期するように
設定されていることを特徴とするエンジンの燃料供給装
置。
(1) In an engine fuel supply system in which a carburetor is interposed in an intake passage, a pump type supercharger is interposed in the intake passage upstream of the carburetor, and an air discharge port of the pump type supercharger is provided. The natural frequency of the intake passage from the carburetor to the intake port is set approximately equal to the natural frequency of the intake passage from the carburetor to the intake port, and the air discharge timing of the pump type supercharger is set at a timing between the intake ports. An engine fuel supply device characterized in that the engine fuel supply device is configured to be synchronized with the engine.
JP17222785A 1985-08-05 1985-08-05 Engine fuel supply device Pending JPS6232224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17222785A JPS6232224A (en) 1985-08-05 1985-08-05 Engine fuel supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17222785A JPS6232224A (en) 1985-08-05 1985-08-05 Engine fuel supply device

Publications (1)

Publication Number Publication Date
JPS6232224A true JPS6232224A (en) 1987-02-12

Family

ID=15937955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17222785A Pending JPS6232224A (en) 1985-08-05 1985-08-05 Engine fuel supply device

Country Status (1)

Country Link
JP (1) JPS6232224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078659A (en) * 2013-10-17 2015-04-23 株式会社豊田中央研究所 Engine supercharger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078659A (en) * 2013-10-17 2015-04-23 株式会社豊田中央研究所 Engine supercharger

Similar Documents

Publication Publication Date Title
JPS6134344A (en) Intake device for internal-combustion engine
JPS6114345B2 (en)
JPS6232224A (en) Engine fuel supply device
JPH10339225A (en) Intake device for on vehicle internal combustion engine
JP2005180309A (en) Intake device for internal combustion engine
JPS5990720A (en) Intake device for engine
JPS58152123A (en) Suction valve for internal-combustion engine
JPH02199265A (en) Suction structure for engine
JPS61116022A (en) Engine intake-air device
JPH066178Y2 (en) Blow-by gas treatment device for dual intake valve engine
JPS57105520A (en) Internal combustion engine with supercharger
JPH0772504B2 (en) Control device for engine with supercharger
JPS59226264A (en) Suction device for engine
JPH04194318A (en) Suction device for engine
JPS60222523A (en) Suction device of engine
JPS60222524A (en) Suction device of engine
JPS6128714A (en) Intake device of internal-combustion engine
JPH0320495Y2 (en)
JPH0154546B2 (en)
JPH0559249B2 (en)
JPS58206815A (en) Controlling of opening and closing of intake ports for double-intake type internal-combustion engine
JPH0587023A (en) Air intake device of internal combustion engine
JPS61244825A (en) Intake device of multi cylinder engine
JPS61232326A (en) Intake device for rotary piston engine
JPS59200017A (en) Engine with supercharger