JPS6231445B2 - - Google Patents

Info

Publication number
JPS6231445B2
JPS6231445B2 JP57205790A JP20579082A JPS6231445B2 JP S6231445 B2 JPS6231445 B2 JP S6231445B2 JP 57205790 A JP57205790 A JP 57205790A JP 20579082 A JP20579082 A JP 20579082A JP S6231445 B2 JPS6231445 B2 JP S6231445B2
Authority
JP
Japan
Prior art keywords
conductor
wire
semiconducting layer
dislocation
strands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57205790A
Other languages
Japanese (ja)
Other versions
JPS5996604A (en
Inventor
Shotaro Yoshida
Michio Takaoka
Katsuhiko Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP20579082A priority Critical patent/JPS5996604A/en
Publication of JPS5996604A publication Critical patent/JPS5996604A/en
Publication of JPS6231445B2 publication Critical patent/JPS6231445B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Insulated Conductors (AREA)
  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、油入り変圧器、回転機などの電気
機器に使用する、転位複合絶縁電線に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transposed composite insulated wire used in electrical equipment such as oil-filled transformers and rotating machines.

[従来の技術とその問題点] 「第1図」は従来の転位複合絶縁電線である。
10は素線で、平角の導体12の上に、層間絶縁
のために素線絶縁としてたとえば、50μm程度の
厚さのホルマールエナメル皮膜14を設けたもの
である。そのような素線10を複数本、転位させ
ながらより合わせ、その上にたとえば紙やプラス
チツクのテープを巻いて、共通の絶縁層20とし
ている。
[Prior art and its problems] "Fig. 1" shows a conventional transposed composite insulated wire.
Reference numeral 10 denotes a wire having a formal enamel coating 14 of about 50 .mu.m thick on top of a rectangular conductor 12 for interlayer insulation. A plurality of such strands 10 are twisted together while being transposed, and a paper or plastic tape, for example, is wrapped thereon to form a common insulating layer 20.

素線10の転位するわけは(周知のものである
が改めて述べると)、次のとおりである。
The reason why the wire 10 is dislocated (although it is well known, it will be stated again) is as follows.

すなわち変圧器などの電気機器において交番漏
れ磁束によつて、巻線の中にうず電流が誘導され
る。そのうず電流による損失を減少させ、かつ工
作を容易にするために、複数の導体素線を並列に
使用する。
That is, in electrical equipment such as transformers, alternating leakage flux induces eddy currents in the windings. In order to reduce losses due to eddy currents and to facilitate machining, multiple conductor strands are used in parallel.

そのとき各導体素線と交わる漏れ磁束数が違う
ので、各導体間に電位が発生し、各導体素線間に
循環電流が流れる。
At this time, since the number of leakage magnetic fluxes that intersect with each conductor wire is different, a potential is generated between each conductor, and a circulating current flows between each conductor wire.

そこで、転位をおこなつて、各導体の全長にわ
たる漏れ磁束の交わり数を平均させようというわ
けである。
Therefore, the idea is to average the number of intersections of leakage flux over the entire length of each conductor by performing transposition.

転位は、通常、巻線の円周長さよりも短かいピ
ツチで行なつている。そこでもし、転位のピツチ
の整数倍の長さが、ちようど巻線の円周長さと等
しくなるようであれば、導体素線間の電位はゼロ
になる。しかし、実際には、作業上必ずしも転位
ピツチを整数倍した長さと巻線の円周長さとは等
しくならず、そのために各導体素線間に電位が発
生する。
Transposition is usually performed at pitches shorter than the circumferential length of the winding. Therefore, if the length of an integer multiple of the pitch of the dislocation becomes equal to the circumferential length of the winding, the potential between the conductor strands becomes zero. However, in actual work, the length obtained by multiplying the dislocation pitch by an integer is not necessarily equal to the circumferential length of the winding, and therefore a potential is generated between each conductor strand.

素線10のエナメル皮膜14は、この電圧を絶
縁するために設けられる。したがつてもしもこの
エナメル皮膜14が一箇所でも絶縁破壊を起こ
し、素線10間に短路が生ずると、その部分に大
きなリーク電流が流れて、火花放電を起こす。そ
してそれがもとになつて変圧器などの絶縁破壊に
まで発展する現象も起つている。
The enamel coating 14 on the wire 10 is provided to insulate this voltage. Therefore, if this enamel film 14 causes dielectric breakdown even in one place and a short circuit is created between the strands 10, a large leakage current will flow in that part, causing a spark discharge. This has led to phenomena that even lead to insulation breakdown in transformers.

したがつて素線絶縁のエナメル皮膜14の役割
は大変重要である。そのため、電線メーカーが転
位複合絶縁電線を出荷するとき、それから変圧器
メーカーなどがそれを入荷するとき、さらに変圧
器メーカーなどにおいて巻線作業が終つたとき
に、それぞれ100V、1分間の耐圧試験をしてい
る。それだけ手間をかけても、素線絶縁の性能を
確認する必要がいるわけである。
Therefore, the role of the enamel coating 14 for insulating the wire is very important. Therefore, when wire manufacturers ship transposed composite insulated wires, when transformer manufacturers receive them, and when winding work is completed at transformer manufacturers, they are subjected to a 100V, 1-minute withstand voltage test. are doing. Even if it takes a lot of effort, it is necessary to check the performance of the wire insulation.

従来のホルマールエナメル皮膜14は、ホルマ
ール塗料の塗布、焼付けによつて形成している。
ところが一回の処置で形成する皮膜は薄いので、
所定の厚さにするには数回〜10数回の処置を繰り
返す必要がある。そのため製造コストが非常に高
くなつている。
The conventional formal enamel film 14 is formed by applying formal paint and baking.
However, the film formed in one treatment is thin, so
It is necessary to repeat the treatment several to 10 times to achieve the desired thickness. Therefore, manufacturing costs are extremely high.

[問題点を解決するための手段] ●その原理: ところで、この発明の発明者は、次の点に着目
した。
[Means for solving the problem] ●Principle: By the way, the inventor of this invention paid attention to the following points.

すなわち、従来の各素線10は、エナメル皮膜
14(体積抵抗率は2×1014Ω−cm程度)によつ
て完全に絶縁しているために、各素線10間の電
圧が維持され、まんいちエナメル皮膜14が絶縁
破壊を起したとき、上記のように変圧器などの事
故まで進展する可能性があるわけである。
That is, since each conventional wire 10 is completely insulated by the enamel film 14 (volume resistivity is about 2×10 14 Ω-cm), the voltage between each wire 10 is maintained. When dielectric breakdown occurs in all the enamel films 14, there is a possibility that it will progress to the point of causing an accident in the transformer, etc., as described above.

しかし、もし各素線10間を、体積抵抗率が
105Ω−cm程度の半導電層で不完全に絶縁してお
けば、上記のように、転位ピツチを整数倍した長
さとコイル円周長さとの間に差があつても、各素
線間には、微小電流が長さ方向に等分布に流れ、
電位はほとんど発生しない。
However, if the volume resistivity between each strand 10 is
If it is incompletely insulated with a semiconducting layer of about 10 5 Ω-cm, each strand will be In between, a minute current flows evenly distributed in the length direction,
Almost no potential is generated.

このように各素線間を流れる循環電流が無視で
きる程度に小さくなるように、素線絶縁を施した
のがこの着眼であり、そうすることによつて素線
絶縁の事故をなくし、その結果変圧器事故にまで
進展する恐れをなくしたものである。
The idea was to insulate the wires so that the circulating current flowing between each wire becomes negligible.By doing so, accidents with wire insulation can be eliminated, and as a result, This eliminates the risk of the problem progressing to a transformer accident.

●発明の構成 第2図のように、導体12上に、体積抵抗率が
105Ω−cm程度の半導体層16からなる不完全な
絶縁層を設けたものによつて、素線10を構成す
ることを特徴とする。
●Structure of the invention As shown in Figure 2, the volume resistivity is on the conductor 12.
The wire 10 is characterized by having an incomplete insulating layer made of a semiconductor layer 16 of about 10 5 Ω-cm.

[その説明] この場合の半導電層16は、半導電性の塗料の
コーテイングによつて形成することができる。
[Description] The semiconductive layer 16 in this case can be formed by coating with a semiconductive paint.

ただし、そうすると1本ごとに加工しなければ
ならないので工程数が多くなる。
However, in this case, the number of steps increases because each piece must be processed.

従来公知の酸化第二銅(以下、酸化銅という)
は、十分に上記の半導電層の役割を果たすことの
できる性能を持つている。
Conventionally known cupric oxide (hereinafter referred to as copper oxide)
has sufficient performance to play the role of the above-mentioned semiconducting layer.

また、酸化銅により半導電層16を構成する
と、後記のように、導体12を転位複合した後
に、全体の導体12に同時に半導電層16を形成
することができるから、工程数が少なくなり、製
造コストが安くなる。
Furthermore, when the semiconducting layer 16 is made of copper oxide, the semiconducting layer 16 can be formed on the entire conductor 12 at the same time after the conductor 12 has been subjected to dislocation compounding, as described later, so the number of steps is reduced. Manufacturing costs are lower.

酸化銅皮膜からなる半導電層16は、たとえば
次のようにして作る。
The semiconducting layer 16 made of a copper oxide film is made, for example, as follows.

すなわち、まず平角の裸の銅または銅合金の導
体12を必要本数だけ転位複合する。それから表
面を洗浄し、たとえば亜鉛素酸ナトリウムとカセ
イソーダの各5%水溶液(90〜100℃)などの酸
化処理液の中に浸せきする。
That is, first, a required number of rectangular bare copper or copper alloy conductors 12 are subjected to dislocation compounding. The surface is then cleaned and immersed in an oxidizing solution such as a 5% aqueous solution of sodium zincate and caustic soda (90-100°C).

すると各導体12の表面に一様に酸化銅皮膜か
らなる半導電層16が形成される。浸せき時間を
長くすると酸化銅皮膜16の厚みが大になる。
Then, a semiconducting layer 16 made of a copper oxide film is uniformly formed on the surface of each conductor 12. The longer the immersion time, the greater the thickness of the copper oxide film 16.

20は絶縁層であつて、以上の酸化銅皮膜16
を設ける点以外は、従来の第1図の場合と同じで
ある。
20 is an insulating layer, and the above copper oxide film 16
This is the same as the conventional case shown in FIG. 1 except that .

[実施例] 本発明品は、24×8mmの銅の導体12上に1μ
mの厚さの酸化銅皮膜からなる半導電層16を形
成した素線10を15本転位複合し、その上に厚さ
0.075mm×10枚で合金0.75mmの絶縁層20を設け
たもの。
[Example] The product of the present invention has a conductor of 1 μm on a 24×8 mm copper conductor 12.
15 strands 10 on which a semiconducting layer 16 made of a copper oxide film with a thickness of
10 sheets of 0.075mm with an insulating layer 20 of 0.75mm alloy.

また従来品は、導体12上に60μmの厚さのホ
ルマールエナメル皮膜14も設け、そのほかは本
発明品と同じもの。
The conventional product also has a formal enamel film 14 with a thickness of 60 μm on the conductor 12, and is otherwise the same as the product of the present invention.

それらのインパルス破壊電圧試験の結果を「第
3図」に示す。両方ともほぼ同じ値を示している
ことがわかる。
The results of those impulse breakdown voltage tests are shown in "Figure 3". It can be seen that both show almost the same values.

また、交流抵抗と直流抵抗との比は、 本発明が1.25で、従来品も1.25であつた。 Also, the ratio of AC resistance to DC resistance is The value of the present invention was 1.25, and the value of the conventional product was also 1.25.

[発明の効果] 導体12上に、体積抵抗率が105Ω−cm程度の
半導電層16からなる不完全な絶縁層を設けたも
ので、転位複合電線の素線10を構成したので、 (1) 上記のように、転位ピツチを整数倍した長さ
とコイル円周長との間に差があつても、各素線
10間には微小電流が長さ方向に等分布に流
れ、電位はほとんど発生しない。
[Effects of the Invention] Since the wire 10 of the dislocation composite electric wire is formed by providing an incomplete insulating layer consisting of a semiconducting layer 16 having a volume resistivity of about 10 5 Ω-cm on the conductor 12, (1) As mentioned above, even if there is a difference between the length obtained by multiplying the dislocation pitch by an integer and the coil circumference length, a minute current flows between each strand 10 with equal distribution in the length direction, and the potential rarely occurs.

(2) したがつて、たとえ一部分で絶縁破壊が生じ
たとしても、変圧器などの全体の絶縁破壊にま
で進展する心配はまつたくない。
(2) Therefore, even if dielectric breakdown occurs in one part, there is no need to worry about it progressing to dielectric breakdown in the entire transformer, etc.

(3) 従来のように、転位複合電線の試験を厳重に
する必要がなくなる。
(3) There is no longer a need for strict testing of transposed composite wires as in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の説明図、第2図は本発明の
実施例の説明図、第3図はインパルス破壊電圧試
験の結果を示す。 10:素線、12:導体、16:半導電層、2
0:絶縁層。
FIG. 1 is an explanatory diagram of the prior art, FIG. 2 is an explanatory diagram of an embodiment of the present invention, and FIG. 3 is a diagram showing the results of an impulse breakdown voltage test. 10: Element wire, 12: Conductor, 16: Semiconducting layer, 2
0: Insulating layer.

Claims (1)

【特許請求の範囲】 1 複数本の平角導体の素線10を転位複合して
なる転位複合絶縁電線において、 前記素線10が、導体12上に半導電層16か
らなる不完全な絶縁層を設けたものであり、かつ
前記半導電層16の体積抵抗率が、105Ω−cm程
度であることを特徴とする、転位複合絶縁電線。 2 半導電層16が、厚さ0.2〜3.0μmの酸化銅
皮膜からなることを特徴とする、特許請求の範囲
第1項に記載の転位複合絶縁電線。
[Scope of Claims] 1. A transposed composite insulated wire formed by transposing a plurality of rectangular conductor strands 10, in which the strands 10 have an incomplete insulating layer consisting of a semiconducting layer 16 on the conductor 12. A dislocation composite insulated wire, characterized in that the semiconducting layer 16 has a volume resistivity of about 10 5 Ω-cm. 2. The dislocation composite insulated wire according to claim 1, wherein the semiconducting layer 16 is made of a copper oxide film having a thickness of 0.2 to 3.0 μm.
JP20579082A 1982-11-24 1982-11-24 Dislocation composite insulated wire and method of producingsame Granted JPS5996604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20579082A JPS5996604A (en) 1982-11-24 1982-11-24 Dislocation composite insulated wire and method of producingsame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20579082A JPS5996604A (en) 1982-11-24 1982-11-24 Dislocation composite insulated wire and method of producingsame

Publications (2)

Publication Number Publication Date
JPS5996604A JPS5996604A (en) 1984-06-04
JPS6231445B2 true JPS6231445B2 (en) 1987-07-08

Family

ID=16512714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20579082A Granted JPS5996604A (en) 1982-11-24 1982-11-24 Dislocation composite insulated wire and method of producingsame

Country Status (1)

Country Link
JP (1) JPS5996604A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3527216B2 (en) * 2001-05-29 2004-05-17 シャープ株式会社 DC stabilized power supply circuit
JP4878002B2 (en) * 2006-07-06 2012-02-15 株式会社日本自動車部品総合研究所 Electromagnetic equipment
JP2008097533A (en) * 2006-10-16 2008-04-24 Toyota Motor Corp Power supply circuit and on-vehicle electronic control device using it
JP5292155B2 (en) 2009-03-27 2013-09-18 Tdkラムダ株式会社 Power supply control device, power supply device, and power supply control method

Also Published As

Publication number Publication date
JPS5996604A (en) 1984-06-04

Similar Documents

Publication Publication Date Title
US3548355A (en) Foil coils with metallic back plates
EP0583521B2 (en) Multi-layered insulated wire for high frequency transformer winding
US3360754A (en) Transformer having reduced differential impedances between secondary portions
JPH033322B2 (en)
JPS6231445B2 (en)
US3747205A (en) Method of constructing a continuously transposed transformer coil
US1872247A (en) Winding for electrical apparatus
US3616389A (en) Process for producing electrophoretically insulated conductors and coils
US3686428A (en) Multiple strand conductor with increased contact resistance
CN114255909B (en) Manufacturing method of heat-resistant grade 140 transposed conductor for vegetable oil transformer
RU198445U1 (en) Combined winding of an induction device
WO2023216757A9 (en) Shielding apparatus and electrical device
JP2001223125A (en) Electrostatic shielding body and electrostatic shielding device of induction equipment
JPH047571B2 (en)
JPS58218845A (en) Armature coil for rotary electric machine
JPS6151711A (en) Insulated wire for electric device
JP2673760B2 (en) Litz wire and its manufacturing method
JPH0597018U (en) Multi-layer insulated wire for high frequency transformer winding
JP3247711B2 (en) Conductor connection device
KR20230078086A (en) Apparatus And Method For Peeling Insulating Coating Layer Of Litz Wire
JP2616103B2 (en) Manufacturing method of heat resistant coil
JPS6315732B2 (en)
JPS58197609A (en) Insulating conductor made of copper or copper alloy
JPS6193509A (en) Cable conductor
SU508810A1 (en) The method of winding high-voltage washing of the current ring induction apparatus