JPS6230622A - Production of manganese dioxide - Google Patents

Production of manganese dioxide

Info

Publication number
JPS6230622A
JPS6230622A JP60170889A JP17088985A JPS6230622A JP S6230622 A JPS6230622 A JP S6230622A JP 60170889 A JP60170889 A JP 60170889A JP 17088985 A JP17088985 A JP 17088985A JP S6230622 A JPS6230622 A JP S6230622A
Authority
JP
Japan
Prior art keywords
manganese
manganese dioxide
solution
ammonia solution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60170889A
Other languages
Japanese (ja)
Other versions
JPH0611650B2 (en
Inventor
Kazuaki Yamamura
山村 和昭
Ryohei Ishikawa
石川 遼平
Yutaka Tsukuda
築田 裕
Hiroshi Ochiai
弘 落合
Masami Aimi
相見 政巳
Masanori Niiyama
正徳 新山
Takahiro Miyashita
孝洋 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP60170889A priority Critical patent/JPH0611650B2/en
Publication of JPS6230622A publication Critical patent/JPS6230622A/en
Publication of JPH0611650B2 publication Critical patent/JPH0611650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain manganese dioxide having high quality and purity and usable as the active material for dry cell, safely in a short time, by adding an oxidizing agent and a manganese salt solution to an ammonia solution. CONSTITUTION:An oxidizing agent and a manganese salt solution are added to an ammonia solution to effect the quick oxidization of the manganese salt to manganese dioxide. The concentration of the ammonia solution is preferably 0.5-15mol/l. The manganese salt is manganese sulfate, chloride or nitrate or their mixture and the concentration of the solution is preferably 0.2-4mol/l in terms of manganese. The molar ratio of ammonia solution to manganese is preferably 2-10. The oxidizing agent is e.g. O2, H2O2, O3, O2-enriched air, air or their mixture and the oxidization reaction is carried out at about 0-80 deg.C (under atmospheric pressure).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は二酸化マンガンの製造方法に関し、更に詳述す
るならば、アンモニア溶液に酸化剤及びマンガン塩溶液
を添加することによって二酸化マンガンを製造する化学
的方法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing manganese dioxide, and more specifically to a chemical method for producing manganese dioxide by adding an oxidizing agent and a manganese salt solution to an ammonia solution. It is related to the method.

従来の技術 乾電池の陽極活物質などに用いられる二酸化マンガンは
高い純度と活性を有していなければならず、従来より、
このような要求を満たすものとして電解法による二酸化
マンガンが用いられてきた。
Conventional technology Manganese dioxide, which is used as an anode active material in dry cell batteries, must have high purity and activity.
Manganese dioxide produced by an electrolytic method has been used as a material that satisfies such requirements.

しかしながら、電解二酸化マンガンは高純度ではあるが
、その製造の際に多量の電力を消費するためコストの点
から好ましくない。
However, although electrolytic manganese dioxide has high purity, it consumes a large amount of electricity during its production, so it is not preferable from a cost standpoint.

そこで、化成二酸化マンガン、即ち、化学的処理により
、電解二酸化マンガンに匹敵する二酸化マンガンを得る
方法が提案されてふり、そのような方法の一つとして、
マンガン塩溶液中にアルカリを添加してMn (DH)
2とし、更に02その他の酸化剤で酸化して二酸化マン
ガンを製造する方法が知られている。
Therefore, a method of obtaining chemical manganese dioxide, that is, chemically processed manganese dioxide comparable to electrolytic manganese dioxide, has been proposed, and as one such method,
Mn (DH) by adding alkali to manganese salt solution
A method is known in which manganese dioxide is produced by further oxidizing 02 and other oxidizing agents.

しかしながら、このようにいったん固体のMn(OH)
zを生成させ、該Mn(OHLをアルカリ溶液中で酸化
する反応は、固体と液体の反応であり、かつ常に低アル
カリ側で反応を行っているため、反応速度が遅く、二酸
化マンガンの製造に多くの時間を要することとなる。
However, once solid Mn(OH)
The reaction of producing z and oxidizing the Mn(OHL in an alkaline solution) is a reaction between solid and liquid, and the reaction is always carried out on the low alkaline side, so the reaction rate is slow and it is difficult to produce manganese dioxide. This will require a lot of time.

逆に、高アルカリ条件下で酸化反応を行う方法として、
例えばタンク中に水酸化ナトリウム溶液を入れ、該水酸
化ナトリウム溶液を攪拌しつつ、硫酸マンガン溶液と空
気を添°加してδ型二酸化マンガンを得る方法が知られ
ている〔トランスエレクトロケミカルソサエティー(T
rans、 Blectrochem。
Conversely, as a method for carrying out oxidation reactions under highly alkaline conditions,
For example, a method is known in which δ-type manganese dioxide is obtained by placing a sodium hydroxide solution in a tank and adding a manganese sulfate solution and air while stirring the sodium hydroxide solution [Trans Electrochemical Society (T
rans, Blectrochem.

Sac、 )第92巻、第12号、第7頁(1947年
)〕。コの方法では得られる二酸化マンガンを水酸化ナ
トリウ゛ム過剰のまま乾燥し、含有率90.5%の二酸
化マンガンを得ている。
Sac, Volume 92, No. 12, Page 7 (1947)]. In this method, the manganese dioxide obtained is dried in an excess of sodium hydroxide to obtain manganese dioxide with a content of 90.5%.

この方法においてもNaOHとMnとの錯イオンが出来
に< < 、!Jn(DH) 2が生成するために、M
n0zの製造に多くの時間を要する。
Even in this method, a complex ion of NaOH and Mn can be created. In order to generate Jn(DH)2, M
It takes a lot of time to manufacture n0z.

また、特公昭31−6722号明細書は、硫酸マンガン
溶液、若しくは酸化マンガン鉱を硫酸(またはSO9ガ
スの回収により製造された硫酸)に溶解して得られる硫
酸マンガン溶液に、アンモニアと酸素の混合ガスを吹込
むことによってマンガンを酸化して二酸化マンガンを得
る方法を開示している。
In addition, Japanese Patent Publication No. 31-6722 discloses that ammonia and oxygen are mixed in a manganese sulfate solution or a manganese sulfate solution obtained by dissolving manganese oxide ore in sulfuric acid (or sulfuric acid produced by recovering SO9 gas). A method of oxidizing manganese to obtain manganese dioxide by blowing gas is disclosed.

しかしながら、この方法ではアンモニアと酸素の混合ガ
スを吹き込むため、引火性のアンモニアガスと酸素とを
混合することとなり、爆発の危険性を伴う。また、アン
モニアによる大気汚染も深刻な問題である。
However, since this method injects a mixed gas of ammonia and oxygen, the flammable ammonia gas and oxygen are mixed, which poses a risk of explosion. Air pollution caused by ammonia is also a serious problem.

発明が解決しようとする問題点 そこで、本発明は、このような従来法の状況に鑑みて、
乾電池活物質として使用することのできる高品位、高純
度の二酸化マンガンを新規な化学的処理によって短時間
で且つ安全に製造することのできる方法を提供せんとす
るものである。
Problems to be Solved by the Invention Therefore, in view of the situation of the conventional method, the present invention solves the following problems:
It is an object of the present invention to provide a method for producing high-grade, high-purity manganese dioxide, which can be used as a dry battery active material, in a short time and safely by a novel chemical treatment.

問題点を解決するための手段 そこで、本発明者等は前記目的を達成すべく種々検討、
研究した結果、従来の化成二酸化マンガンの製法におい
ては固体のMn(OH)2を経由するために反応速度が
遅くなるのであり、またアンモニアと酸素の混合ガスを
使用するために安全性に欠けると考えられるが、このよ
うな問題は錯イオンを形成しやすいアンモニア溶液を使
用することにより解決でき、これが上記目的を達成する
うえで極めて有効であることを見出した。本発明はかか
る新規知見に基づき完成されたものである。
Means for Solving the Problems Therefore, the present inventors conducted various studies to achieve the above object.
As a result of research, it was found that in the conventional manufacturing method of chemical manganese dioxide, the reaction rate is slow because it goes through solid Mn(OH)2, and it is not safe because it uses a mixed gas of ammonia and oxygen. However, it has been found that such a problem can be solved by using an ammonia solution that tends to form complex ions, and that this is extremely effective in achieving the above object. The present invention has been completed based on this new knowledge.

即ち、本発明の二酸化マンガンの製造方法は、アンモニ
ア溶液に酸化剤およびマンガン塩溶液を添加することに
よってマンガン塩を速やかに二酸化マンガンに酸化する
ことを特徴とする。
That is, the method for producing manganese dioxide of the present invention is characterized in that the manganese salt is rapidly oxidized to manganese dioxide by adding an oxidizing agent and a manganese salt solution to an ammonia solution.

本発明による二酸化マンガンの製造方法は、通常法のよ
うな一連の製造工程に従って行われる。
The method for producing manganese dioxide according to the present invention is carried out according to a series of production steps similar to conventional methods.

即ち、アンモニア溶液を密閉容器に入れ、0゜ガスを必
要量だけ吹き込みながらスターシーで攪拌する。しかる
後、マンガン塩溶液を徐々に添加して、アンモニアとマ
ンガンの錯イオンを作らせつつ、マンガンを酸化して速
やかに二酸化マンガンとする。1尋られる二酸化マンガ
ンを濾過して分取し、水洗後、乾燥する。
That is, an ammonia solution is placed in a closed container, and stirred with a star sea while blowing in the required amount of 0° gas. Thereafter, a manganese salt solution is gradually added to form complex ions of ammonia and manganese, while oxidizing manganese to quickly convert it into manganese dioxide. 1. Manganese dioxide is separated by filtration, washed with water, and dried.

本発明の方法において使用するアンモニア溶液の濃度は
高い方が錯イオンの生成には好ましく、0.5〜15モ
ル/lの範囲で可能であり、更に好ましくは2.5〜1
5モル/flの範囲である。アンモニア溶液の濃度が低
い場合には反応溶液量が大きくなるので経済的でなく、
また15モル/lよりも高くなるとアンモニア溶液を作
製することが困難となる。
The higher the concentration of the ammonia solution used in the method of the present invention is, the better for the generation of complex ions.
It is in the range of 5 mol/fl. If the concentration of ammonia solution is low, the amount of reaction solution will be large, which is not economical.
Moreover, when it is higher than 15 mol/l, it becomes difficult to prepare an ammonia solution.

また、アンモニア溶液に添加するマンガン塩の種類は、
マンガンの硫酸塩、塩酸塩若しくは硝酸塩であり、また
はこれらの塩の混合物であってもよい。
Also, the type of manganese salt added to the ammonia solution is
It may be a sulfate, hydrochloride or nitrate of manganese, or a mixture of these salts.

これらのマンガン塩の濃度は0.2〜4モル/lのもの
を使用することができ、好ましくは0.5〜2モル/I
!の濃度である。マンガン塩濃度が高くなると、溶液中
にMn(OH)zの生成が多くなり、Mn0z生成速度
が遅くなるからであり、逆に低い場合には反応液量が大
になって経済的でないからである。
The concentration of these manganese salts can be 0.2 to 4 mol/l, preferably 0.5 to 2 mol/l.
! The concentration is This is because when the manganese salt concentration becomes high, more Mn(OH)z is produced in the solution and the Mn0z production rate becomes slow, whereas when it is low, the reaction solution volume becomes large and it is not economical. be.

更に、アンモニア溶液とマンガンとのモル比(N H,
OH/Mn)は2.0〜10の範囲とすることができ、
2.4〜4とすることが好ましい。NH,OHの比率が
小さいと、二酸化マンガンの生成反応が遅くなり、また
大きいと過剰のNH,OHが残ることとなって経済的で
ない。
Furthermore, the molar ratio of ammonia solution to manganese (NH,
OH/Mn) can range from 2.0 to 10,
It is preferable to set it as 2.4-4. If the ratio of NH and OH is small, the production reaction of manganese dioxide will be slow, and if it is large, excess NH and OH will remain, which is not economical.

次に、本発明の方法において使用する酸化剤としては0
2、H20□、03.02添加空気、空気などを利用す
ることができ、これらの酸化剤を組み合せて使用するこ
ともできる。特に、02や空気を溶液中に吹き込んで酸
化することは、安価で且つ簡単な方法である。
Next, the oxidizing agent used in the method of the present invention is 0
2, H20□, 03.02 added air, air, etc. can be used, and these oxidizing agents can also be used in combination. In particular, oxidizing by blowing O2 or air into the solution is an inexpensive and simple method.

反応温度に関しては、一般に溶液の温度が高い程、反応
速度は大となる。しかし逆に溶液中における02の溶解
度は低下するので、高温で反応を行うためには加圧が必
要となる。従って、常圧で本発明の方法を行うには、0
〜80℃の範囲の温度が利用でき、特に5〜20℃の範
囲とすることが好ましく、オートクレーブ等の密閉容器
内で加圧状態で反応を行う場合には、250℃まで反応
温度を上げることが可能で11反反応度は著しく促進さ
れる。
Regarding the reaction temperature, generally speaking, the higher the temperature of the solution, the higher the reaction rate. However, since the solubility of 02 in the solution decreases, pressurization is required to carry out the reaction at high temperature. Therefore, in order to carry out the method of the present invention at normal pressure, 0
Temperatures in the range of ~80°C can be used, preferably in the range of 5 to 20°C, and when the reaction is carried out under pressure in a closed container such as an autoclave, the reaction temperature can be raised to 250°C. is possible, and the 11 reaction rate is significantly promoted.

また、本発明の方法はυ〜5(1気圧の反応圧で行うこ
とが可能である。
Further, the method of the present invention can be carried out at a reaction pressure of υ~5 (1 atm).

詐月 本発明の方法によると、溶液中に多量に存在するN H
40i−1にマンガン塩溶液を添加するため、NH,O
Hと4口の可溶性錯イオンが生成し、該錯イオンは酸化
剤によって速やかに活性な二酸化マンガンに酸化される
。従って本発明の方法は液体−液体反応であり、従来の
Mn(OH)2を経由する固体−液体反応に比べて反応
速度が著しく速くなる。
According to the method of the present invention, N H present in a large amount in the solution
In order to add manganese salt solution to 40i-1, NH, O
H and four soluble complex ions are generated, and the complex ions are rapidly oxidized to active manganese dioxide by an oxidizing agent. Therefore, the method of the present invention is a liquid-liquid reaction, and the reaction rate is significantly faster than the conventional solid-liquid reaction via Mn(OH)2.

特に反応初期においては高濃度のアンモニア溶液中にマ
ンガン塩を添加するので錯イオンを形成しやすい。本発
明の方法を用いて常圧で二酸化マンガンを製造する場合
には、従来のi、4n(OH)2を経由する反応に比べ
て反応時間を115〜1/10に短縮することが可能で
ある。
Particularly in the early stage of the reaction, complex ions are likely to be formed because manganese salt is added to a highly concentrated ammonia solution. When manganese dioxide is produced at normal pressure using the method of the present invention, the reaction time can be shortened to 115 to 1/10 compared to the conventional reaction via i,4n(OH)2. be.

また、本発明の方法は、アンモニア溶液中に02ガスを
吹き込むので、アンモニアと酸素の混合ガスを吹き込む
従来法のような爆発の危険性もなく、安全である。
Furthermore, since the method of the present invention blows 02 gas into the ammonia solution, it is safe without the danger of explosion unlike the conventional method of blowing a mixed gas of ammonia and oxygen.

更に、密閉容器で反応を行う場合には、必要里の02の
みを吹き込み、過剰な02を供給しないので、アンモニ
アによる大気汚染の心配もない。
Furthermore, when the reaction is carried out in a closed container, only the necessary amount of 02 is blown in and no excess 02 is supplied, so there is no concern about air pollution due to ammonia.

実施例 以下に本発明の方法を実施例に基づき更に具体的に説明
するが、本発明の範囲はこれら実施例により河等制限さ
れない。
EXAMPLES The method of the present invention will be explained in more detail based on Examples below, but the scope of the present invention is not limited by these Examples.

実施例1 アンモニア溶液とマンガンとのモル比(NH,○H/M
n)と得られる二酸化マンガンの含有率との関係を調べ
るため以下の実験を行った。即ち、51の密閉容器に1
4モル/1の濃度のアンモニア溶液を適量入れ、攪拌し
なから02ガスを0.05気圧で吹き込み、1.5モル
/lの濃度の硫酸マンガン溶液を3R/6hrの速度で
添加した。反応温度は20℃であった。NH4OH/M
nモル比を2.0〜10の間の各種の値となるように設
定して行った実験の結果を第1図に示す。図から明らか
なように、N H40H/Mnモル比が3以上で含有率
84%以上の二酸化マンガンが得られた。
Example 1 Molar ratio of ammonia solution and manganese (NH,○H/M
The following experiment was conducted to investigate the relationship between n) and the content of manganese dioxide obtained. That is, 1 in 51 sealed containers.
An appropriate amount of ammonia solution with a concentration of 4 mol/l was added, and while stirring, 02 gas was blown in at 0.05 atm, and a manganese sulfate solution with a concentration of 1.5 mol/l was added at a rate of 3R/6 hr. The reaction temperature was 20°C. NH4OH/M
FIG. 1 shows the results of experiments conducted by setting the n molar ratio to various values between 2.0 and 10. As is clear from the figure, manganese dioxide with a N H40H/Mn molar ratio of 3 or more and a content of 84% or more was obtained.

実施例2 硫酸マンガン溶液の濃度と得られる二酸化マンガンの含
有率との関係を調べるために以下の実験を行った。即ち
、マンガンとして0.1〜4モル/lの各種濃度の硫酸
マンガン溶液を使用して、NH4OH/Mnモル比を3
.0とし、その他の条件は実施例1と同様の条件および
方法で二酸化マンガンを製造した。その結果を第2図に
示すが、硫酸マンガン濃度を2モル/l以下にすること
によって、84%以上の高含有率の二酸化マンガンが得
られた。
Example 2 The following experiment was conducted to investigate the relationship between the concentration of a manganese sulfate solution and the content of manganese dioxide obtained. That is, using manganese sulfate solutions with various concentrations of manganese from 0.1 to 4 mol/l, the NH4OH/Mn molar ratio was adjusted to 3.
.. 0, and other conditions were the same as in Example 1 to produce manganese dioxide. The results are shown in FIG. 2, and by reducing the manganese sulfate concentration to 2 mol/l or less, a high content of manganese dioxide of 84% or more was obtained.

実施例3 常圧における反応温度と二酸化マンガンの含有率との関
係を調べるために以下の実験を行った。
Example 3 The following experiment was conducted to investigate the relationship between reaction temperature and manganese dioxide content at normal pressure.

即ち、N Ha OH/ Mnモル比を3.0に固定し
、その他の条件は実施例1と同じとし、0〜80℃の間
の各種温度で二酸化マンガンを製造した。その結果を第
3図に示すが、図から明らかなように、5〜20℃の間
で含有率84%以上の二酸化マンガンが得られた。
That is, the N Ha OH/Mn molar ratio was fixed at 3.0, the other conditions were the same as in Example 1, and manganese dioxide was produced at various temperatures between 0 and 80°C. The results are shown in FIG. 3, and as is clear from the figure, manganese dioxide with a content of 84% or more was obtained between 5 and 20°C.

実施例4 加圧状態における反応温度と二酸化マンガンの含有率と
の関係を調べるために以下の実験を行った。即ち、密閉
容器内に0゜ガスを導入して、該容器内における圧力を
、その温度における自戒圧力とし、他は実施例3と同条
件で40〜250℃の各種温度で二酸化マンガンを製造
した。得られた結果を第4図に示す。図から明らかなよ
うに、加圧状態では100℃以上で二酸化マンガンの品
位が上がり、高含有率のものが得られた。
Example 4 The following experiment was conducted to investigate the relationship between the reaction temperature and the content of manganese dioxide in a pressurized state. That is, manganese dioxide was produced at various temperatures from 40 to 250°C under the same conditions as in Example 3, except that 0° gas was introduced into a closed container and the pressure in the container was set as the self-control pressure at that temperature. . The results obtained are shown in FIG. As is clear from the figure, in a pressurized state, the quality of manganese dioxide increased at temperatures above 100°C, and a product with a high content was obtained.

実施例5 アンモニア溶液濃度と二酸化マンガンの含有率との、関
係を調べるために以下の実験を行った。即ち、NH4O
H/Mnモル比を3.0に固定し、0.1〜15モル/
1の各種濃度のアンモニア溶液を用いて、その他の条件
は実施例1と同じにして二酸化マンガンの製造を行った
。その結果を第5図に示すが、2モル/I1以上の濃度
で良好な結果を得た。
Example 5 The following experiment was conducted to investigate the relationship between ammonia solution concentration and manganese dioxide content. That is, NH4O
The H/Mn molar ratio was fixed at 3.0, and the H/Mn molar ratio was 0.1 to 15 mol/
Manganese dioxide was produced using ammonia solutions of various concentrations in Example 1 and under the same conditions as in Example 1 except for the following conditions. The results are shown in FIG. 5, and good results were obtained at a concentration of 2 mol/I1 or more.

発明の効果 以上、詳しく説明したように、本発明の二酸化マンガン
の製造方法によると、高品位、高純度の二酸化マンガン
を短時間で且つ安全に製造することができ、従って乾電
池用二酸化マンガンの製造コストを低減することが可能
となった。
Effects of the Invention As explained in detail above, according to the method for producing manganese dioxide of the present invention, high-grade, high-purity manganese dioxide can be produced safely in a short time, and therefore, manganese dioxide for dry batteries can be produced. It has become possible to reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1rgJは、本発明の方法によって二酸化マンガンを
製造する際のアンモニア溶液とマンガンとのモル比と、
得られる二酸化マンガン含有率との関係を示す図、 第2図は、硫酸マンガン溶液の濃度と得られる二酸化マ
ンガン含有率との関係を示す図、第3図は、常圧におけ
る反応温度と得られる二酸化マンガン含有率との関係を
示す図、第4図は、加圧状態における反応温度と得られ
る二酸化マンガン含有率との関係を示す図、第5図は、
アンモニア溶液濃度と得られる二酸化マンガン含有率と
の関係を示す図である。 第1図 第?図 第3図 第4図 反民・唱1度(’C)(7JO尺) 第5図
The first rgJ is the molar ratio of ammonia solution to manganese when manufacturing manganese dioxide by the method of the present invention,
Figure 2 shows the relationship between the concentration of manganese sulfate solution and the manganese dioxide content obtained. Figure 3 shows the relationship between the reaction temperature at normal pressure and the manganese dioxide content obtained. Figure 4 shows the relationship between the manganese dioxide content and the reaction temperature under pressure, and Figure 5 shows the relationship between the manganese dioxide content and the manganese dioxide content.
FIG. 3 is a diagram showing the relationship between the ammonia solution concentration and the obtained manganese dioxide content. Figure 1 No.? Figure 3 Figure 4 Anti-people chant 1 degree ('C) (7JO shaku) Figure 5

Claims (9)

【特許請求の範囲】[Claims] (1)アンモニア溶液中に酸化剤とマンガン塩溶液を添
加することによってマンガン塩を速やかに二酸化マンガ
ンに酸化することを特徴とする二酸化マンガンの製造方
法。
(1) A method for producing manganese dioxide, which comprises adding an oxidizing agent and a manganese salt solution to an ammonia solution to quickly oxidize manganese salt to manganese dioxide.
(2)前記アンモニア溶液の濃度が0.5〜15モル/
lであることを特徴とする特許請求の範囲第1項に記載
の方法。
(2) The concentration of the ammonia solution is 0.5 to 15 mol/
1. A method according to claim 1, characterized in that: l.
(3)前記マンガン塩がマンガンの硫酸塩、塩酸塩若し
くは硝酸塩、またはこれらの混合物であることを特徴と
する特許請求の範囲第1項または第2項に記載の方法。
(3) The method according to claim 1 or 2, wherein the manganese salt is manganese sulfate, hydrochloride, nitrate, or a mixture thereof.
(4)前記マンガン塩溶液の濃度が、マンガンとして0
.2〜4モル/lであることを特徴とする特許請求の範
囲第1項乃至第3項のいずれかに記載の方法。
(4) The concentration of the manganese salt solution is 0 as manganese.
.. The method according to any one of claims 1 to 3, characterized in that the amount is 2 to 4 mol/l.
(5)前記アンモニア溶液とマンガンとのモル比が2〜
10であることを特徴とする特許請求の範囲第1項乃至
第4項のいずれかに記載の方法。
(5) The molar ratio of the ammonia solution and manganese is 2 to
10. The method according to any one of claims 1 to 4, characterized in that:
(6)前記酸化剤がO_2、H_2O_2、O_3、O
_2添加空気若しくは空気またはこれらの混合物である
ことを特徴とする特許請求の範囲第1項乃至第5項のい
ずれかに記載の方法。
(6) The oxidizing agent is O_2, H_2O_2, O_3, O
_2 The method according to any one of claims 1 to 5, characterized in that the added air or air or a mixture thereof.
(7)前記酸化反応を0〜80℃の温度で行うことを特
徴する特許請求の範囲第1項乃至第6項のいずれかに記
載の方法。
(7) The method according to any one of claims 1 to 6, wherein the oxidation reaction is carried out at a temperature of 0 to 80°C.
(8)密閉容器内に入れた前記アンモニア溶液にO_2
ガスを吹き込みながら攪拌し、前記マンガン塩溶液を添
加することを特徴とする特許請求の範囲第1項乃至第6
項のいずれかに記載の方法。
(8) Add O_2 to the ammonia solution in a sealed container.
Claims 1 to 6, characterized in that the manganese salt solution is added while stirring while blowing gas.
The method described in any of the paragraphs.
(9)前記反応を0〜250℃の温度で行うことを特徴
とする特許請求の範囲第8項に記載の方法。
(9) The method according to claim 8, wherein the reaction is carried out at a temperature of 0 to 250°C.
JP60170889A 1985-08-02 1985-08-02 Manganese dioxide production method Expired - Lifetime JPH0611650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60170889A JPH0611650B2 (en) 1985-08-02 1985-08-02 Manganese dioxide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60170889A JPH0611650B2 (en) 1985-08-02 1985-08-02 Manganese dioxide production method

Publications (2)

Publication Number Publication Date
JPS6230622A true JPS6230622A (en) 1987-02-09
JPH0611650B2 JPH0611650B2 (en) 1994-02-16

Family

ID=15913195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60170889A Expired - Lifetime JPH0611650B2 (en) 1985-08-02 1985-08-02 Manganese dioxide production method

Country Status (1)

Country Link
JP (1) JPH0611650B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386481U (en) * 1989-12-25 1991-09-02
JP2001261343A (en) * 2000-03-17 2001-09-26 Unitika Ltd Super fine particle of trimanganese tetraoxide and method of producing the same
CN1308245C (en) * 2005-03-30 2007-04-04 山东师范大学 Method for synthesizing nano material of manganese dioxide in dandelion and stick shape
KR101171961B1 (en) 2010-04-02 2012-08-08 주식회사 이엔드디 Process for preparing Mn3O4
JP2014504252A (en) * 2010-12-20 2014-02-20 ▲海▼洋王照明科技股▲ふん▼有限公司 Manufacturing method and application of manganese dioxide nanorods
CN116550320A (en) * 2023-05-12 2023-08-08 河北地质大学 Synthesis method of manganese dioxide nano material with neuron-like cell structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386481U (en) * 1989-12-25 1991-09-02
JP2001261343A (en) * 2000-03-17 2001-09-26 Unitika Ltd Super fine particle of trimanganese tetraoxide and method of producing the same
CN1308245C (en) * 2005-03-30 2007-04-04 山东师范大学 Method for synthesizing nano material of manganese dioxide in dandelion and stick shape
KR101171961B1 (en) 2010-04-02 2012-08-08 주식회사 이엔드디 Process for preparing Mn3O4
JP2014504252A (en) * 2010-12-20 2014-02-20 ▲海▼洋王照明科技股▲ふん▼有限公司 Manufacturing method and application of manganese dioxide nanorods
CN116550320A (en) * 2023-05-12 2023-08-08 河北地质大学 Synthesis method of manganese dioxide nano material with neuron-like cell structure
CN116550320B (en) * 2023-05-12 2024-02-02 河北地质大学 Synthesis method of manganese dioxide nano material with neuron-like cell structure

Also Published As

Publication number Publication date
JPH0611650B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
CA2354918C (en) Process for the preparation of vanadyl/vanadous sulphate crystal products or solutions
US3970738A (en) Process for producing iron oxide products from waste liquids containing ferrous salts
EP4269337A1 (en) Method for recovering lithium in lithium iron phosphate waste and application thereof
CN105417586A (en) Preparation method for manganic manganous oxide
CN113184928B (en) Preparation method of nickel sulfate solution
CN107200359A (en) A kind of iron oxide pigment and its production method
US20240055684A1 (en) Preparation method of heterosite iron phosphate and application thereof
EP4393874A1 (en) Method for preparing lithium iron phosphate from titanium dioxide by-product of ferrous sulfate
CN108511700A (en) Mostly metal-doped lithium iron phosphate/carbon composite material and preparation method
JPS6230622A (en) Production of manganese dioxide
KR20240097924A (en) Hydrothermal synthesis method of nano lithium iron manganese phosphate
CN104341008B (en) Preparation method of ferric nitrate solution with low NOx emission
US4485073A (en) Process of producing manganese sulfate solutions
CN111137869A (en) Preparation method of lithium iron phosphate
US4483828A (en) Method of producing manganese sulfate solutions of improved purity
CN107442158A (en) A kind of catalyst of cobalt doped MCM 48
JPH10125345A (en) Manufacture of vanadium electrolyte
US1330738A (en) Process of making conducting hydrated black manganese dioxid
CN106517345B (en) Method for preparing ultrafine manganese dioxide by using potassium permanganate and potassium manganate
US2122735A (en) Manufacture of manganese dioxide
CN107204456A (en) A kind of titanium wraps up the preparation method of tertiary cathode material
CN114408870B (en) Method for regenerating copper sulfide waste agent
CN106379943B (en) Method for preparing superfine manganese dioxide by using potassium manganate
CN115744994B (en) Preparation method of battery-grade manganous-manganic oxide
CN109133190A (en) The processing method of magnetic iron ore