JPS62298798A - Method of operating fast breeder reactor plant - Google Patents

Method of operating fast breeder reactor plant

Info

Publication number
JPS62298798A
JPS62298798A JP61141632A JP14163286A JPS62298798A JP S62298798 A JPS62298798 A JP S62298798A JP 61141632 A JP61141632 A JP 61141632A JP 14163286 A JP14163286 A JP 14163286A JP S62298798 A JPS62298798 A JP S62298798A
Authority
JP
Japan
Prior art keywords
main
steam
steam generator
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61141632A
Other languages
Japanese (ja)
Inventor
洋 中島
桜木 正範
小木曽 善一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP61141632A priority Critical patent/JPS62298798A/en
Publication of JPS62298798A publication Critical patent/JPS62298798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は、原子力発電等に利用される高速増916炉プ
ラン1〜の運転方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a method of operating a high-speed increase 916 reactor plan 1 to be used for nuclear power generation or the like.

(従来の技術) 一般に高速増殖炉プラントでは、燃料である核***性物
質の核***によって生じる熱エネルキーを取り出すとと
もに、核***にと・しなって放出される中性子によって
、ブランケット燃料等から有用な核***性物質を生成さ
せる。
(Prior art) In general, in a fast breeder reactor plant, the thermal energy generated by fission of fissile material, which is the fuel, is extracted, and the neutrons released as a result of nuclear fission are used to convert useful fissile material from blanket fuel, etc. to generate.

このような高速増殖炉プラントは、に1次系と、主2次
系と、水蒸気系とから構成され”Cおり、主1次系では
、主1次系ポンプにより原子炉と、中間熱交換器の1次
側との間を循環される液体ナトリウム等の冷却材の流れ
か形成され、原子炉で発生する熱エネルギーを中間熱交
換器の2次側へ循環される主2次系へ伝える。
Such a fast breeder reactor plant consists of a primary system, a main secondary system, and a steam system. A flow of coolant such as liquid sodium is formed that is circulated between the primary side of the reactor and the main secondary system that circulates the thermal energy generated in the reactor to the secondary side of the intermediate heat exchanger. .

主2次系では、主2次系ポンプによって中間熱交換器の
2次側と、蒸気発生器のす1ヘリウム側との間を液体ナ
トリウム等の冷却材か循環され、中間熱交換器で受は取
った熱エネルギーを蒸気発生器の水蒸気側を循環される
水蒸気系l\伝える。
In the main secondary system, a coolant such as liquid sodium is circulated between the secondary side of the intermediate heat exchanger and the helium side of the steam generator by the main secondary system pump, and is received by the intermediate heat exchanger. transfers the heat energy taken up to the steam system, which is circulated through the steam side of the steam generator.

蒸気発生器の水蒸気側を循環される水蒸気系は、ここで
発生した蒸気によりタービンを回転さu1タービンを回
転させた後の蒸気を復水器(水にもどし給水加熱器で加
熱して、再び給水ポンプによって蒸気発生器へ給水する
In the steam system that circulates on the steam side of the steam generator, the steam generated here rotates a turbine. After rotating the U1 turbine, the steam is returned to water, heated by a feed water heater, and then sent again. A water pump supplies water to the steam generator.

上記構成の高速増殖炉プラン1〜では、例えば外部電源
喪失賞か生じ、原子炉がスクラムされ、この後水蒸気系
による蒸気発生器の水蒸気側への給水による崩壊熱除去
運転が行えない場合には、補助冷却系による炉心の冷却
を行う。そして蒸気発生器入口給水隔離弁を急閉し、蒸
気発生器出口ブロー弁を急開し、主2次系ポンプをポニ
ーモータによって駆動し、蒸気発生器内部保有水を減圧
沸騰させてブロー除熱を行うという方法で高速増殖炉プ
ラントの運転を行い、崩壊熱の除去が行われる。   
(発明が解決しようとする問題点)しかしながら上記説
明の従来の高速増殖炉プラントの運転方法では、縦軸を
温度、横軸を時間とした第4図のグラフに示すように、
実線aで示す主2次系の蒸気発生器入口液体ナトリウム
温度に対して、点線すで示す蒸気発生器出口液体ナトリ
ウム温度か、蒸気発生器内の保有水の減少に伴い急上昇
する。
In fast breeder reactor plans 1~ with the above configuration, for example, if a loss of external power occurs, the reactor is scrammed, and then decay heat removal operation cannot be performed by supplying water to the steam side of the steam generator by the steam system. , the core is cooled by the auxiliary cooling system. Then, the steam generator inlet water supply isolation valve is suddenly closed, the steam generator outlet blow valve is suddenly opened, the main and secondary system pump is driven by the pony motor, and the water held inside the steam generator is boiled under reduced pressure to remove heat by blowing. A fast breeder reactor plant is operated by performing this method, and decay heat is removed.
(Problems to be Solved by the Invention) However, in the conventional fast breeder reactor plant operating method described above, as shown in the graph of FIG. 4, where the vertical axis is temperature and the horizontal axis is time,
With respect to the liquid sodium temperature at the steam generator inlet of the main and secondary system shown by the solid line a, the liquid sodium temperature at the steam generator outlet shown by the dotted line increases rapidly as the water retained in the steam generator decreases.

このため、縦軸を温度、横軸を時間とした第5図のグラ
フに実線Cで示すように主2次系の中間熱交換器入口液
体ナトリウム温度か急上昇し、これによって点線dで示
すように主1次系の中間熱交換器出口液体ナトリウム温
度も上譬し、一点鎖線eて示すように主1次系の燃料出
口液体ナトリウム温度が上昇する。
For this reason, the temperature of the liquid sodium at the inlet of the intermediate heat exchanger in the main secondary system rises rapidly, as shown by the solid line C in the graph of Figure 5, where the vertical axis is temperature and the horizontal axis is time, and this causes a sudden rise in the temperature of the liquid sodium at the inlet of the intermediate heat exchanger in the main secondary system, as shown by the dotted line d. Similarly, the liquid sodium temperature at the intermediate heat exchanger outlet of the main primary system increases, as shown by the dashed line e, the liquid sodium temperature at the fuel outlet of the main primary system increases.

このように従来の高速増殖炉プラン1〜の運転り法では
、主2次系における急激で大幅な部層上昇が中間熱交換
器から主1次系へ伝えられ、原子炉等の主1次系を構成
する機器に熱衝撃が加わり、健全性が損われるという問
題か住じる。
In this way, in the conventional fast breeder reactor plan 1~ operation method, a sudden and large rise in the temperature in the main secondary system is transmitted from the intermediate heat exchanger to the main primary system, and the main primary system of the reactor, etc. There is a problem in that thermal shock is applied to the equipment that makes up the system, impairing its integrity.

本発明は、かかる従来の事情に対処してなされたもので
、外部電源喪失等が生じた場合のブロー除熱運転時でも
、主1次系を構成する機器に熱衝撃が加わることを防止
することができ、健仝′14を維持し安全性の向上を図
ることのでさる高速増殖炉プラントの運転方法を提供し
ようとするものである。
The present invention has been made in response to such conventional circumstances, and is intended to prevent thermal shock from being applied to equipment constituting the main primary system even during blow heat removal operation in the event of external power loss, etc. The present invention aims to provide a method of operating a fast breeder reactor plant that can maintain health and improve safety.

[発明の構成] (問題点を解決するための手段) すなわら本発明方法は、原子炉と中間熱交換器の1次側
との間に冷却材を循環する主1次系と、前記中間熱交換
器の2次側と蒸気発生器のナトリウム側との間に主2次
系ポンプにより冷却材を循環する主2次系と、前記蒸気
発生器の水蒸気側に16環される水蒸気系とを備えた高
速増殖炉プラントの運転方法において、ブロー除熱運転
時に、前記主2次系ポンプを停止させる。
[Structure of the Invention] (Means for Solving the Problems) In other words, the method of the present invention includes a main primary system that circulates a coolant between a nuclear reactor and the primary side of an intermediate heat exchanger; A main secondary system in which coolant is circulated between the secondary side of the intermediate heat exchanger and the sodium side of the steam generator by a main secondary system pump, and a steam system arranged in 16 rings on the steam side of the steam generator. In the method of operating a fast breeder reactor plant, the main and secondary system pump is stopped during blow heat removal operation.

(作用) 本発明の高速増殖炉プラントの運転方法では、外部電源
喪失発生時等ブロー除熱運転を実施する場合には、主2
次系ポンプを停止させて主2次系の冷却材の流れをほぼ
停止さける。従って、水蒸気系の蒸気発生器内の保有水
減少にともなって発生する熱衝撃か、中間熱交換器から
主1次系へ伝わることがなく、健全性を維持することか
できる。
(Function) In the fast breeder reactor plant operating method of the present invention, when performing blow heat removal operation such as when external power supply is lost, the main
Stop the secondary system pump to almost stop the flow of coolant in the main secondary system. Therefore, the thermal shock that occurs as the water content in the steam generator of the steam system decreases is not transmitted from the intermediate heat exchanger to the main primary system, and the integrity can be maintained.

(実施例) 以下本発明の一実施例方法を図面を参照して説明する。(Example) A method according to an embodiment of the present invention will be described below with reference to the drawings.

第1図は高速増殖炉プラントの一例としてタンク型高速
増殖炉プラントを示すもので、図において符号1はタン
ク型原子炉容器を示している。
FIG. 1 shows a tank-type fast breeder reactor plant as an example of a fast breeder reactor plant, and in the figure, reference numeral 1 indicates a tank-type reactor vessel.

原子炉容器1内には原子炉2、中間熱交換器3、主1次
系ポンプ4等が液体ナトリウム5等の冷却材中に浸漬さ
れて配置されている。そして、主1次系ポンプ4により
原子炉2下方から上方l\向tプて流れ、中間熱交換器
3の1次側へ循環される液体ナトリウム5の流れが形成
され、原子炉2で発生する熱エネルギーを中間熱交換器
3の2次側を循環される主2次系へ伝える。
Inside the reactor vessel 1, a nuclear reactor 2, an intermediate heat exchanger 3, a main primary system pump 4, etc. are placed immersed in a coolant such as liquid sodium 5. Then, a flow of liquid sodium 5 is formed which flows upward from below the reactor 2 by the main primary system pump 4 and is circulated to the primary side of the intermediate heat exchanger 3. The thermal energy is transmitted to the main secondary system where it is circulated on the secondary side of the intermediate heat exchanger 3.

なお、原子炉容器1内には、熱交換器6か配置されてお
り、この熱交換器6と、熱交換器6に接続されたポンプ
7、空気冷却器8によって補助冷却系が構成されている
A heat exchanger 6 is disposed inside the reactor vessel 1, and an auxiliary cooling system is constituted by this heat exchanger 6, a pump 7 connected to the heat exchanger 6, and an air cooler 8. There is.

主2次系では、主2次系ポンプ9によって中間熱交換器
3の2次側と、蒸気発生器10のノー1〜リウム側との
間を液体ナトリウム等の冷却材が循環され、中間熱交換
器3で主1次系から受は取った熱エネルキーを蒸気発生
器10の水蒸気側を循環される水蒸気系l\伝える。
In the main secondary system, the main secondary system pump 9 circulates a coolant such as liquid sodium between the secondary side of the intermediate heat exchanger 3 and the NO 1 to RI sides of the steam generator 10, and The heat energy key received from the main primary system by the exchanger 3 is transferred to the steam system l\ which is circulated on the steam side of the steam generator 10.

蒸気発生器10の水蒸気側を循環される水蒸気系は、こ
こで発生した蒸気によりウービン11を回転させ、この
蒸気を復水器12で水に戻し、給水加熱器13.14等
で一加熱して、給水ポンプ15によって再び蒸気発生器
10へ供給する。
The steam system circulated on the steam side of the steam generator 10 uses the steam generated here to rotate the woobin 11, returns this steam to water in the condenser 12, and heats it in the feed water heaters 13, 14, etc. Then, the water is supplied to the steam generator 10 again by the water supply pump 15.

そしてこの実施例方法では、上記構成の高速増殖炉プラ
ン1〜において外部電源喪失等が生じた時のブロー除熱
運転時には、ただIうに補助冷却系のポンプ7を起動し
、原子炉2の冷j、11を行うとともに、蒸気発生器出
1」隔離弁16を急閉じ、蒸気発生器出口ブロー弁を急
閉し、主2次系ポンプ9を停止させる。
In this embodiment method, during the blow heat removal operation when external power supply loss occurs in the fast breeder reactor plans 1 to 1 with the above configuration, the pump 7 of the auxiliary cooling system is simply started, and the reactor 2 is cooled. At the same time, the steam generator outlet 1'' isolation valve 16 is suddenly closed, the steam generator outlet blow valve is suddenly closed, and the main and secondary system pump 9 is stopped.

上記説明のこの実施例方法で1;紅、原子炉2スクラム
後ただちに主2次系ポンプ9か停止され、主2次系内の
液体ナトリウムの流れがほぼ停止されるので、主2次系
の中間熱交換器入口液体ナトリウム温度および主1次系
の中間熱交換器出口液体−ノー1〜リウム温度は、縦軸
を温度、横軸を時間とした第2図のグラフにそれぞれ実
線f1点線qで示寸ように変化する。リ−なわち、前述
の1!’j E1図のグラフに示づ従来方法における蒸
気弁う1器10内の保イj水減少に伴う主2次系の中間
熱交換器3[」液体ナトリウム温度および主1次系の中
間熱交換器出口液体ナトリウム温度の上昇に比べて、ぞ
の温度上昇を大幅に低減することかできる。
In this embodiment method described above, the main secondary system pump 9 is immediately stopped after the reactor 2 scram, and the flow of liquid sodium in the main secondary system is almost stopped. The temperature of liquid sodium at the inlet of the intermediate heat exchanger and the liquid temperature at the outlet of the intermediate heat exchanger of the main primary system are shown in the graph of FIG. It changes as shown in the figure. In other words, the above-mentioned 1! 'j The temperature of liquid sodium and the intermediate heat of the main primary system due to the decrease in the retained water in the steam valve 1 and the intermediate heat exchanger 3 of the main secondary system in the conventional method shown in the graph of E1. Compared to the increase in temperature of liquid sodium at the outlet of the exchanger, the temperature increase can be significantly reduced.

従って、縦軸温度、横軸を時間とした第3図のグラフに
実線[)て示すように燃料出口液体すトリウム温度は、
点線iて示J従来方V:に一1メ()る燃料用1」液体
ナトリウム温度のにうに十hトすることかなく、原子炉
容器1、原子炉2、中間熱交換器3等の主1次系を構成
する機器に熱征1撃が加わることを防止することができ
、健全性を紺1)することかできる。
Therefore, as shown by the solid line [ ) in the graph of Fig. 3, where the vertical axis is temperature and the horizontal axis is time, the fuel outlet liquid strium temperature is:
Conventional method V: Shown by dotted line i. It is possible to prevent heat attack from being applied to the equipment that makes up the main primary system, and its health can be improved.

[発明の効果] ト述のように本発明の高速増Jll′i炉ノ゛ラントの
運転方法では、原子炉か停止された後、蒸気発生器の水
蒸気側へ水蒸気系から給水でさない場合等のブロー除熱
運転時には、主2次系ボンj゛を停止さけるので、蒸気
発生器内の保石水の減少に伴う急激で大幅な温度上昇か
主1次系l\伝えられ、主1次系を構成りる機器に熱衝
撃が加わることを防止することか一′Cさ、健全性を組
積し、゛ム仝性の向」ニを図ることかできる。
[Effects of the Invention] As mentioned above, in the method of operating a high-speed increase reactor reactor of the present invention, after the reactor is shut down, if water is not supplied from the steam system to the steam side of the steam generator, During blow heat removal operations, such as in blow heat removal operations, the main secondary system is avoided, so a sudden and significant temperature rise due to the decrease in stone retaining water in the steam generator is transmitted to the main primary system, and the main secondary system is By preventing thermal shock from being applied to the equipment that makes up the next system, it is possible to improve the integrity of the masonry and improve overall safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1「11速増η<、炉プラン1〜の構成を示す
配管系統図、第2図は本発明の一実施例方法に1J3L
ノる十2次系の中間熱交換器入口液体−J−1〜リウム
温度および主1次系の中間熱交換型出[]液体ナトリウ
ム温度の時間変化を示すグラフ、第3図は本発明の一実
施例方法および従来方法(J8;I=jる液体ノー1〜
リウムの燃料用[1温度の時間変化を示すグラフ、第4
図は従来方法におりる蒸気発生器入口液体ナトリウム温
度J3よび蒸気発生器出し一1液体ノトリウム温度の時
間変化を示すグラフ、第5図は従来方法における主2次
系の中間熱交換器入口液体ナトリウム温度および主1次
系の中間熱交換蒸出1]液体ナトリウム温度の時間変化
を示すグラフである。 2・・・・・・・・・原子炉
Figure 1 is a piping system diagram showing the configuration of 1"11 speed increase η<, furnace plan 1 ~, Figure 2 is a 1J3L
Figure 3 is a graph showing the temporal changes in the intermediate heat exchanger inlet liquid-J-1 to sodium temperature of the 12th order system and the liquid sodium temperature at the intermediate heat exchanger outlet of the main primary system. One example method and conventional method (J8; I=j liquid No. 1~
For fuel [1] Graph showing temporal change in temperature, 4th
The figure is a graph showing the temporal changes in the steam generator inlet liquid sodium temperature J3 and the steam generator outlet liquid sodium temperature J3 in the conventional method. Figure 5 is a graph showing the temporal changes in the liquid sodium temperature J3 at the steam generator inlet and the temperature at the inlet of the intermediate heat exchanger in the main and secondary system in the conventional method. Sodium temperature and main primary system intermediate heat exchange distillation 1] It is a graph showing the time change of liquid sodium temperature. 2・・・・・・・・・Nuclear reactor

Claims (1)

【特許請求の範囲】[Claims] (1)原子炉と中間熱交換器の1次側との間に冷却材を
循環する主1次系と、前記中間熱交換器の2次側と蒸気
発生器のナトリウム側との間に主2次系ポンプにより冷
却材を循環する主2次系と、前記蒸気発生器の水蒸気側
に循環される水蒸気系とを備え、かつ主2次系に蒸気発
生器隔離弁を設置していない高速増殖炉プラントの運転
方法において、ブロー除熱運転を実施する場合に、前記
主2次系ポンプを停止させることを特徴とする高速増殖
炉プラントの運転方法。
(1) A main primary system that circulates coolant between the reactor and the primary side of the intermediate heat exchanger, and a main system that circulates coolant between the secondary side of the intermediate heat exchanger and the sodium side of the steam generator. A high-speed system that is equipped with a main secondary system in which coolant is circulated by a secondary system pump and a steam system in which the coolant is circulated to the steam side of the steam generator, and in which a steam generator isolation valve is not installed in the main secondary system. A method for operating a fast breeder reactor plant, characterized in that the main and secondary system pump is stopped when performing blow heat removal operation.
JP61141632A 1986-06-18 1986-06-18 Method of operating fast breeder reactor plant Pending JPS62298798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141632A JPS62298798A (en) 1986-06-18 1986-06-18 Method of operating fast breeder reactor plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141632A JPS62298798A (en) 1986-06-18 1986-06-18 Method of operating fast breeder reactor plant

Publications (1)

Publication Number Publication Date
JPS62298798A true JPS62298798A (en) 1987-12-25

Family

ID=15296553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141632A Pending JPS62298798A (en) 1986-06-18 1986-06-18 Method of operating fast breeder reactor plant

Country Status (1)

Country Link
JP (1) JPS62298798A (en)

Similar Documents

Publication Publication Date Title
US8891723B2 (en) Stable startup system for a nuclear reactor
US4367194A (en) Emergency core cooling system
US10726961B2 (en) PWR decay heat removal system in which steam from the pressurizer drives a turbine which drives a pump to inject water into the reactor pressure vessel
EP2839480B1 (en) Defense in depth safety paradigm for nuclear reactor
CN102623072A (en) Compound accident residual heat removal system for accelerator-driven sub-critical reactor
US20160148709A1 (en) Stable startup system for nuclear reactor
US2928779A (en) Neutronic reactor construction and operation
US4382908A (en) After-heat removal system for a gas-cooled nuclear reactor
JP5687440B2 (en) Reactor containment heat removal apparatus and heat removal method
JP2899979B2 (en) High temperature gas furnace
JPS62298798A (en) Method of operating fast breeder reactor plant
JPS62298797A (en) Method of operating fast breeder reactor plant
JPH02210295A (en) Auxiliary reactor core cooling device
JPS6350793A (en) Decay heat removing system of fast breeder reactor
KR960011210B1 (en) A pressurized water reactor of a passive type
JPS59228193A (en) Nuclear power plant
JPS60113190A (en) Cooling system of boiling-water type reactor
JPS63165798A (en) Decay-heat removal system of fast breeder reactor
JP2002303691A (en) Solid-cooled reactor
JPH0298690A (en) Cooler for pressurized water reactor
GB2067822A (en) Nuclear reactor heat sink
JPS58189586A (en) Heating device for reactor isolation cooling system
JP2016194419A (en) Reactor safety system
JPS61145498A (en) Method of operating tank type fast breeder reactor
Dunn Consequences of pipe ruptures in metal fueled, liquid metal cooled reactors