JPS6229866B2 - - Google Patents

Info

Publication number
JPS6229866B2
JPS6229866B2 JP57059715A JP5971582A JPS6229866B2 JP S6229866 B2 JPS6229866 B2 JP S6229866B2 JP 57059715 A JP57059715 A JP 57059715A JP 5971582 A JP5971582 A JP 5971582A JP S6229866 B2 JPS6229866 B2 JP S6229866B2
Authority
JP
Japan
Prior art keywords
liquid
tank
battery
electrolyte
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57059715A
Other languages
Japanese (ja)
Other versions
JPS58176880A (en
Inventor
Takeshi Nozaki
Takeo Ozawa
Hidetaka Oomichi
Yoshinori Takada
Osamu Hamamoto
Hidetaka Izawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Mitsui Zosen KK
Original Assignee
Agency of Industrial Science and Technology
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsui Zosen KK filed Critical Agency of Industrial Science and Technology
Priority to JP57059715A priority Critical patent/JPS58176880A/en
Publication of JPS58176880A publication Critical patent/JPS58176880A/en
Publication of JPS6229866B2 publication Critical patent/JPS6229866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明はレドツクス・フロー型電池の運転方法
に関し、さらに詳しくは電解液流通型電池の効率
的な二次電池の運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a redox flow type battery, and more particularly to an efficient method of operating a secondary battery of an electrolyte flow type battery.

電解液流通型電池とは、電解液が電池に流入
し、流出する間に充電または放電の電池反応が行
なわれる電池であり、電解液によりアノーデイツ
クな電池反応を起こす正極液と、よりカソーデイ
ツクな電池反応を起こす負極液とに分けられる。
この正、負極液に酸化、還元性、すなわち酸化反
応と還元反応とが可逆的に起こり得る物質を用い
ると、この電池は二次電池として用いることが可
能になる。
An electrolyte flow type battery is a battery in which charging or discharging reactions occur while the electrolyte flows into and out of the battery. It is divided into the negative electrode liquid that causes the reaction.
If the positive and negative electrode liquids are made of oxidizing and reducing substances, that is, substances in which oxidation and reduction reactions can occur reversibly, this battery can be used as a secondary battery.

従来から提案されている電解液流通型の二次電
池システムには、正極液に塩酸酸性塩化鉄水溶
液、負極液に塩酸酸性塩化クロム水溶液が用いら
れている。この場合、電解液流通型電池の電極に
は、主に炭素等の不活性電極が使用され、その理
論充電電圧、理論放電電圧は、次のネルンスト
(Nernst)式で表わされる。
Conventionally proposed electrolyte flow type secondary battery systems use a hydrochloric acid acidic iron chloride aqueous solution as the positive electrode liquid, and a hydrochloric acid acidic chromium chloride aqueous solution as the negative electrode liquid. In this case, an inert electrode such as carbon is mainly used as the electrode of the electrolyte flow type battery, and its theoretical charging voltage and theoretical discharging voltage are expressed by the following Nernst equation.

ここでEは理論電圧を示し、〔Cr3+〕は三価ク
ロム、〔Fe2+〕は二価鉄、〔Cr2+〕は二価クロム、
〔Fe3+〕は三価鉄の濃度をそれぞれ示す。充電時
は三価クロムと二価鉄の濃度が大きいほど、小さ
な充電電圧で電池を充電することができ、逆に放
電時は二価クロムの三価鉄の濃度が大きいほど、
大きな放電電圧をとり出すことができ、電池の充
放電における電圧効率は高くなる。
Here, E indicates the theoretical voltage, [Cr 3+ ] is trivalent chromium, [Fe 2+ ] is divalent iron, [Cr 2+ ] is divalent chromium,
[Fe 3+ ] indicates the concentration of trivalent iron. The higher the concentration of trivalent chromium and divalent iron during charging, the smaller the charging voltage can charge the battery, and conversely, the higher the concentration of trivalent iron in divalent chromium during discharging,
A large discharge voltage can be extracted, and the voltage efficiency in charging and discharging the battery is increased.

第1図は、充放電時の電圧効率の最も高い、理
想的な電池システムを示したもので、充電後およ
び放電後の電解液を分離してタンクに貯蔵するた
め四タンク法とよばれている。図において、装置
系統は、正極液タンク1A,1Bと、負極液タン
ク2A,2Bと、循環ポンプ3A,3Bと、電池
本体4と、電解液の切換バルブ5A,5Bと、直
交インバータ6と、変電設備7とからなり、変電
所7は発電所8および需要側9に接続されてい
る。上記系統において、四タンク法を効率よく実
施するためには、充電後の電解液を貯蔵するタン
ク1Aおよび2Aには、100%近く充電された電
解液(上述の場合、正極液のタンク1Aではほぼ
三価鉄、負極液のタンク2Aではほぼ二価クロム
となつている)を、また放電後の電解液を貯蔵す
るタンク1Bおよび2Bには、100%近く放電さ
れた電解液(タンク1Bでは二価鉄、タンク2B
では三価クロム)を貯えることが望ましい。その
ためには電池本体においては反応物質(上述の例
の充電時では三価クロムおよび二価鉄)の100%
近くを電極通過の際に反応させなければならな
い。すなわち、電池の反応物質捕捉率を100%近
くにしようとするものであるが、電極の形状(長
さなどのサイズ)および電極内の電解液透過時の
圧力損失を実用上、好ましい範囲内に抑えるため
には、反応物質捕捉率を多くても数十パーセント
にまで下げなければならない。したがつて、電池
に対して電解液一過式で充放電反応を行うことは
好ましくなく、四タンク法は、原理的に充放電の
電圧効率が大きいという利点があるにかかわら
ず、上記例の電池システムには向いていないとい
う問題がある。
Figure 1 shows an ideal battery system with the highest voltage efficiency during charging and discharging.It is called the four-tank method because the electrolyte after charging and discharging is separated and stored in tanks. There is. In the figure, the device system includes positive electrode liquid tanks 1A, 1B, negative electrode liquid tanks 2A, 2B, circulation pumps 3A, 3B, battery main body 4, electrolyte switching valves 5A, 5B, orthogonal inverter 6, The substation 7 is connected to a power plant 8 and a demand side 9. In the above system, in order to efficiently implement the four-tank method, tanks 1A and 2A that store electrolyte after charging must be filled with electrolyte that is nearly 100% charged (in the above case, tank 1A for catholyte is In tanks 1B and 2B, which store the electrolyte after discharge, the electrolyte (in tank 1B, almost 100% discharged electrolyte) is stored. Divalent iron, tank 2B
Therefore, it is desirable to store trivalent chromium). For this purpose, 100% of the reactants (trivalent chromium and divalent iron during charging in the above example) must be
It is necessary to react when the electrode passes through the vicinity. In other words, the aim is to make the reactant capture rate of the battery close to 100%, but the shape of the electrode (size such as length) and the pressure loss when the electrolyte permeates through the electrode must be kept within a practically preferable range. In order to suppress this, the reaction material capture rate must be reduced to several tens of percent at most. Therefore, it is not preferable to perform charge/discharge reactions on batteries using a one-time electrolyte method, and although the four-tank method has the advantage of high charging/discharging voltage efficiency in principle, it is not suitable for the above example. The problem is that it is not suitable for battery systems.

一方、二タンク法を称される電池活物質貯蔵方
法があるが、これは第2図に示すように、タンク
1,2から抜き出した電解液を電池4内で反応さ
せた後、ポンプ3により再びもとのタンクに戻す
ものである。このとき、電池反応前後の電解液は
混合され、電解液内の充電または放電反応物質の
濃度は低下するが、電池への電解液送液量を大き
くし、必要な電流密度を維持するとともに、電池
に対し電解液リサイクル方式をとつて反応物質捕
捉率を好ましい程度に維持することができる。
On the other hand, there is a battery active material storage method called the two-tank method, as shown in FIG. This will return it to its original tank. At this time, the electrolyte before and after the battery reaction is mixed, and the concentration of the charging or discharging reactant in the electrolyte decreases, but the amount of electrolyte sent to the battery is increased and the necessary current density is maintained. An electrolyte recycling scheme can be used for the battery to maintain the reactant capture rate at a desirable level.

しかし、この二タンク法の電池システムにも以
下に述べる欠点がある。すなわち、充電後の電解
液と放電後の電解液との比重に差があるとき、二
者はタンク内で通常混合せずに、二層に分離して
しまう。このとき、タンクからの電解液抜出し孔
が1箇所しかない場合、この二層に分離した液の
一方のみを抜き出すことになり、充電時または放
電時のいずれかにおいて電池の反応物質の濃度に
著しい不足をきたすことになる。この現象を上記
例の正極液について説明すれば、塩酸酸性塩化鉄
水溶液は三価鉄の方が二価鉄よりも比重が大き
く、二タンク法において、充電後の電解液は放電
後の電解液から分離し、タンク1の底部に貯る。
タンク1の電解液抜出し孔はタンク1底面にある
ため、電池4の放電反応は好ましく進行するもの
の、充電反応の場合は著しい二価鉄の不足によ
り、極めて進行しにくくなる。従来、このような
問題は、タンク内の電解液撹拌という方法で対処
されてきたが、充電液と放電液との混合による電
圧効率の低下、撹拌のための動力源を必要とする
ことなどの欠点がある。特に電池というエネルギ
ー貯蔵設備において、余分な動力源を必要とする
ことはエネルギー貯蔵効率の低下に直結してしま
う。
However, this two-tank battery system also has the following drawbacks. That is, when there is a difference in specific gravity between the electrolytic solution after charging and the electrolytic solution after discharging, the two usually do not mix in the tank and separate into two layers. At this time, if there is only one electrolyte extraction hole from the tank, only one of the two layers of liquid will be extracted, and the concentration of reactants in the battery will significantly increase during either charging or discharging. There will be a shortage. To explain this phenomenon for the positive electrode solution in the above example, in the hydrochloric acid acidic iron chloride aqueous solution, trivalent iron has a higher specific gravity than divalent iron, and in the two-tank method, the electrolytic solution after charging is the same as the electrolytic solution after discharging. It is separated from the water and stored at the bottom of tank 1.
Since the electrolyte extraction hole of the tank 1 is located at the bottom of the tank 1, the discharging reaction of the battery 4 progresses favorably, but the charging reaction becomes extremely difficult to proceed due to the significant lack of divalent iron. Conventionally, such problems have been dealt with by stirring the electrolyte in the tank, but there are problems such as a drop in voltage efficiency due to mixing of the charging and discharging liquids, and the need for a power source for stirring. There are drawbacks. Especially in energy storage equipment such as batteries, the need for an extra power source directly leads to a decrease in energy storage efficiency.

本発明の目的は、前述した二タンク法の問題を
解決し、しかも電解液二層分離という現象を逆に
利用し、高い電圧効率で電解反応を行なうことが
できる電池の運転方法を提供することにある。
An object of the present invention is to provide a method of operating a battery that solves the problems of the two-tank method described above, and that also makes use of the phenomenon of two-layer electrolyte separation to perform an electrolytic reaction with high voltage efficiency. It is in.

本発明は、電解液流通型電池本体に正極液タン
クおよび負極液タンクからそれぞれ電解液を流通
させて充電または放電反応を行なう電池の運転方
法において、電解液として、充電状態の液(充電
液)と放電状態の液(放電液)の比重が異なるも
のを用い、前記タンク内で充電液および放電液を
二層分離させ、電池の充電時または放電時にそれ
ぞれ放電液または充電液を抜き出して前記電池本
体に送液することを特徴とする。
The present invention relates to a method of operating a battery in which charging or discharging reactions are carried out by flowing electrolyte from a positive electrode tank and a negative electrode tank through an electrolyte flow type battery body. The charging liquid and the discharging liquid are separated into two layers in the tank, and the discharging liquid and the charging liquid are extracted respectively when charging or discharging the battery. It is characterized by sending liquid to the main body.

本発明において、二層に分離した電解液のいず
れか一方を電池本体に送液するには、(1)前記タン
クの底部付近および該タンク内の液面直下にそれ
ぞれ電解液流入出孔を配置し、充電時と放電時と
で該電解液流入出孔への電解液の流れの方向を切
換えるか、(2)前記タンク内の液面直下およびタン
ク底部付近にそれぞれ電解液の流出専用孔を配置
し、充電時と放電時に該流出専用孔のいずれ一方
から電解液を抜き出して電池本体に送液するか、
または(3)二層に分離した放電液または充電液を、
浮子を有するフレキシブルパイプを介して抜き出
し、電池本体に送液すればよい。
In the present invention, in order to send one of the electrolytes separated into two layers to the battery body, (1) arrange electrolyte inflow and outflow holes near the bottom of the tank and directly below the liquid level in the tank; Either change the flow direction of the electrolyte to the electrolyte inflow and outflow holes during charging and discharging, or (2) provide holes dedicated to the electrolyte flow directly below the liquid level in the tank and near the bottom of the tank. The electrolyte is placed in the battery, and the electrolyte is extracted from either of the outflow holes during charging and discharging, and the electrolyte is sent to the battery body, or
or (3) discharging liquid or charging liquid separated into two layers,
It is sufficient to extract the liquid through a flexible pipe having a float and send it to the battery body.

以下、本発明を図面によりさらに詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第3図は、本発明を原理的に説明するための電
解液タンクの断面図である。図において、タンク
10内では電解液が上層液11と下層液12の二
層に分離している。これは前述したように、充電
状態の電解液と放電状態の電解液との間で比重が
異なるためであり、従来のようにタンク内で両者
を均一に混合して使用するには撹拌操作が必要で
ある。本発明では、この分離した電解液を逆に利
用するために、タンクの上下にそれぞれ液抜き出
し孔13および14を設け、上下に分離した放電
状態の液(放電液)と、充電状態の液(充電液)
をそれぞれ抜き出して電池本体に送り、高濃度の
充電または放電反応物質として利用するものであ
る。
FIG. 3 is a sectional view of an electrolyte tank for explaining the principle of the present invention. In the figure, the electrolytic solution is separated into two layers, an upper layer liquid 11 and a lower layer liquid 12, in a tank 10. As mentioned above, this is due to the difference in specific gravity between the electrolyte in a charged state and the electrolyte in a discharged state, and in order to mix them uniformly in a tank as in the past, a stirring operation is required. is necessary. In the present invention, in order to reversely utilize this separated electrolyte, liquid extraction holes 13 and 14 are provided at the top and bottom of the tank, respectively, so that the liquid in a discharged state (discharge liquid) and the liquid in a charged state (discharged liquid) are separated into the upper and lower parts. charging liquid)
Each is extracted and sent to the battery body, where it is used as a highly concentrated charging or discharging reaction material.

次に第4図は、充電状態および放電状態の電解
液の分離を助けるため、タンク内で上下運動が可
能な半浮遊式の仕切板15を用いた場合を示す。
この仕切板は、充電状態の電解液と放電状態の電
解液の中間の比重を持つように作られている。
Next, FIG. 4 shows a case where a semi-floating type partition plate 15 that can be moved up and down in the tank is used to help separate the electrolyte in the charged state and the discharged state.
This partition plate is made to have a specific gravity intermediate between that of the electrolytic solution in a charged state and that in a discharged state.

第5図は、本発明を実施するための装置系統の
一例を示したもので、電解液タンク10側壁の上
下にそれぞれ電解液の流入専用孔(バルブ)13
Aと流出専用孔(バルブ)13Bとを設け、同じ
くタンク下部にも流入と流出の専用孔14A,1
4Bを設けたものである。なお、この図では、電
解液タンク10と電池本体4とを結ぶ正極側の電
解液ライン16,17のみを表わしており、負極
側はこれと同様に表示されるものとして省略され
ている。
FIG. 5 shows an example of an apparatus system for carrying out the present invention, in which holes (valves) 13 for electrolyte inflow are provided at the upper and lower sides of the side wall of the electrolyte tank 10, respectively.
A and an outflow dedicated hole (valve) 13B are provided, and dedicated inflow and outflow holes 14A and 1 are also provided at the bottom of the tank.
4B is provided. In this figure, only the electrolyte lines 16 and 17 on the positive electrode side connecting the electrolyte tank 10 and the battery body 4 are shown, and the negative electrode side is omitted as it is shown similarly.

上記装置系統において、電池本体4の電解液は
ライン16からバルブ13A,14Aを通つて正
極液タンク10に導入され、ここで上下二層に分
離する。正極液として塩化鉄水溶液を用いた場合
は下層に三価鉄、上層に二価鉄の液が分離し、電
池本体の充電時には上層の放電状態の液(二価
鉄)が、および放電時には下層の充電状態の液
(三価鉄)がそれぞれバルブ13Bまたは14B
を介して抜き出され、電池本体4に供給される。
なお、タンクに接続する二つの電解液流入専用孔
13A,14Aは一つにまとめても電解液の二層
分離は可能であり、実際には流入孔を一つにまと
めた方が装置を簡略化することができるので好ま
しい。
In the above device system, the electrolytic solution in the battery main body 4 is introduced from the line 16 through the valves 13A and 14A into the catholyte tank 10, where it is separated into two layers, upper and lower. When an aqueous iron chloride solution is used as the positive electrode liquid, trivalent iron is separated into the lower layer and divalent iron is separated into the upper layer.When the battery is being charged, the liquid in the upper layer is in a discharged state (divalent iron), and when discharging, the lower layer is the divalent iron. The charged liquid (trivalent iron) is connected to valve 13B or 14B, respectively.
The battery is extracted through the battery and supplied to the battery main body 4.
Note that it is possible to separate the electrolyte into two layers even if the two electrolyte inflow holes 13A and 14A connected to the tank are combined into one, and in reality, it is easier to simplify the device by combining the inflow holes into one. This is preferable because it can be converted into

また第6図は、本発明のさらに他の実施例を示
すもので、タンク10の上下に電解液の流入用と
排出用を兼ねた流入出孔13および14を設け、
流入出の切換を四方バルブ18で行なうようにし
たものである。図のバルブ位置は下層部の液(三
価鉄)をタンクから抜き出し、ポンプ3Aにより
電池本体4に供給する放電時の状態を示している
が、四方コツクの切換によりタンク10の上層部
の液(二価鉄)をタンクから抜き出し、電池本体
4に供給し、充電用に使用することができる。
FIG. 6 shows still another embodiment of the present invention, in which inflow and outflow holes 13 and 14 are provided at the top and bottom of the tank 10 for both inflow and discharge of the electrolyte, and
A four-way valve 18 is used to switch inflow and outflow. The valve position in the figure shows the state during discharge when the liquid (trivalent iron) in the lower layer is extracted from the tank and supplied to the battery body 4 by the pump 3A. (Divalent iron) can be extracted from the tank, supplied to the battery main body 4, and used for charging.

本発明において、電解液流入出孔のタンク取付
位置は、上層および下層の電解液を分離して抜き
出すことができれば、特に限定されず、例えば、
第7図に示すように、浮子19とフレキシブル管
20を用いて第5図および第6図に示したタンク
上部の電解液流入出孔13の機能をもたせること
ができる。上記の構成によれば、タンク内の全電
解液面レベルが変動してもそれに追随して、充電
時および放電時の電解液を充分な分離性をもつて
電池本体に供給することができる。
In the present invention, the tank mounting position of the electrolyte inflow and outflow holes is not particularly limited as long as the upper and lower electrolytes can be separated and extracted, for example,
As shown in FIG. 7, a float 19 and a flexible tube 20 can be used to provide the function of the electrolyte inlet/outlet hole 13 in the upper part of the tank shown in FIGS. 5 and 6. According to the above configuration, even if the total electrolyte level in the tank fluctuates, the electrolyte during charging and discharging can be supplied to the battery main body with sufficient separability.

以上、本発明によれば、撹拌のために新たな動
力源を必要にしたり、電池システムを複雑化する
ことなく、電解液二層分離という現象を利用し、
充電時には高濃度の充電反応物質を、および放電
時には高濃度の放電反応物質を電池本体に送り、
高い電圧効率で電解反応を行なうことができる。
As described above, according to the present invention, the phenomenon of electrolyte two-layer separation is utilized without requiring a new power source for stirring or complicating the battery system.
Sends high-concentration charge reactants to the battery body during charging and high-concentration discharge reactants during discharge,
Electrolytic reactions can be performed with high voltage efficiency.

実施例 正極液に塩酸酸性塩化鉄水溶液、負極液に塩酸
酸性塩化クロム水溶液を使用し、正極液側を第5
図に示す電解液フローラインとし、負極液側を負
極液タンクにそれぞれ一個づつの電解液流入孔と
流出孔とを設けたラインとした。負極液タンク内
には窒素ガスを導入して電解液を撹拌するととも
に、タンク内を窒素ガスで充てんし、充電状態の
負極液、すなわち、塩化第一クロムの空気による
酸化を防止した。タンク10内の正極液は、三価
鉄が下層および二価鉄が上層と、二層に分離した
ので、充電時には上層の液を抜き出し、逆に放電
時には下層の液を抜き出した。多孔質炭素を電極
とし、隔膜に陽イオン交換膜を使用する電池本体
4に電解液を導き、20mAcm-2、40mAcm-2、およ
び60mAcm-2の電流密度で定電流充放電実験を行
つた。比較のために、タンク内の正極液に窒素ガ
スを導入し、正極液を撹拌した条件での定電流充
放電実験も行なつた。
Example A hydrochloric acid acidic iron chloride aqueous solution was used as the positive electrode liquid, a hydrochloric acid acidic chromium chloride aqueous solution was used as the negative electrode liquid, and the positive electrode liquid side was
The electrolyte flow line shown in the figure was constructed, and the negative electrode liquid side was provided with one electrolyte inflow hole and one outflow hole in the negative electrode liquid tank. Nitrogen gas was introduced into the negative electrode liquid tank to stir the electrolytic solution, and the tank was also filled with nitrogen gas to prevent the charged negative electrode liquid, that is, chromium chloride, from being oxidized by air. The positive electrode solution in the tank 10 was separated into two layers, a lower layer of trivalent iron and an upper layer of divalent iron, so the upper layer liquid was extracted during charging, and conversely, the lower layer liquid was extracted during discharging. The electrolytic solution was introduced into the battery body 4 using porous carbon as an electrode and a cation exchange membrane as a diaphragm, and constant current charging and discharging experiments were conducted at current densities of 20 mAcm -2 , 40 mAcm -2 and 60 mAcm -2 . For comparison, a constant current charge/discharge experiment was also conducted under conditions in which nitrogen gas was introduced into the cathode solution in the tank and the cathode solution was stirred.

上記実験結果(充電深度50%の場合の充放電特
性曲線)を第8図に示す。図中、21は本発明
(実施例)の場合、22は比較例の場合を示す。
図から明らかなように、本発明の方が二次電池の
充放電時の電圧効率の改善に大きく寄与すること
が分る。
The above experimental results (charging/discharging characteristic curve at a charging depth of 50%) are shown in FIG. In the figure, 21 shows the case of the present invention (example), and 22 shows the case of the comparative example.
As is clear from the figure, it can be seen that the present invention greatly contributes to improving the voltage efficiency during charging and discharging of the secondary battery.

なお、正極タンク、およびフローラインの構成
を第6図および第7図に示すようにした充放電実
験も、第8図の場合と同様の結果を示した。
Incidentally, a charge/discharge experiment using the positive electrode tank and flow line configuration as shown in FIGS. 6 and 7 also showed the same results as in the case of FIG. 8.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ従来の二次電
池の運転方法を示す装置系統図、第3図および第
4図は、本発明の原理を説明する電解液タンクの
二層分離の状態を示す概念図、第5図、第6図お
よび第7図は、それぞれ本発明の実施例を説明す
るための装置系統図、第8図は、本発明の実施例
の結果を示す図である。 1,10……電解液タンク、3A……循環ポン
プ、11……上層液、12……下層液、13……
上層流抜出し孔、13A,13B……同バルブ、
14……下層液抜出し孔、14A,14B……同
バルブ、18……四方バルブ、19……浮子、2
0……フレキシブルパイプ。
Figures 1 and 2 are system diagrams showing a conventional method of operating a secondary battery, respectively, and Figures 3 and 4 illustrate the state of two-layer separation of an electrolyte tank to explain the principle of the present invention. The conceptual diagram shown in FIG. 5, FIG. 6, and FIG. 7 are apparatus system diagrams for explaining the embodiments of the present invention, and FIG. 8 is a diagram showing the results of the embodiments of the present invention. 1, 10... Electrolyte tank, 3A... Circulation pump, 11... Upper layer liquid, 12... Lower layer liquid, 13...
Upper flow extraction hole, 13A, 13B...the same valve,
14...Lower liquid extraction hole, 14A, 14B...Same valve, 18...Four-way valve, 19...Float, 2
0...Flexible pipe.

Claims (1)

【特許請求の範囲】 1 電解液流通型電池本体に正極液タンクおよび
負極液タンクからそれぞれ電解液を流通させて充
電または放電反応を行なう電池の運転方法におい
て、電解液として、充電状態の液(充電液)と放
電状態の液(放電液)の比重が異なるものを用
い、前記タンク内で充電液および放電液を二層分
離させ、電池本体の充電時または放電時にそれぞ
れ放電液または充電液を抜き出して前記電池本体
に送液することを特徴とするレドツクス・フロー
型電池の運転方法。 2 特許請求の範囲第1項において、前記タンク
の底部付近および該タンク内の液面直下にそれぞ
れ電解液流入出孔を配置し、充電時と放電時とで
該電解液流入出孔への電解液の流れの方向を切換
えることを特徴とするレドツクス・フロー型電池
の運転方法。 3 特許請求の範囲第1項において、前記タンク
内の液面直下およびタンク底部付近にそれぞれ電
解液の流出専用孔を配置し、充電時と放電時に該
流出専用孔のいずれか一方から電解液を抜き出し
て電池本体に送液することを特徴とするレドツク
ス・フロー型電池の運転方法。 4 特許請求の範囲第1項において、二層に分離
した放電液または充電液を、浮子を有するフレキ
シブルパイプを介して抜き出し、電池本体に送液
することを特徴とするレドツクス・フロー型電池
の運転方法。
[Scope of Claims] 1. In a method of operating a battery in which a charging or discharging reaction is carried out by flowing electrolyte from a positive electrode tank and a negative electrode tank through an electrolyte flow type battery body, the electrolyte is a charged state liquid ( Using a liquid with different specific gravities, the charging liquid and the discharging liquid are separated into two layers in the tank, and the discharging liquid and the charging liquid are used respectively when charging or discharging the battery body. A method of operating a redox flow type battery, characterized in that the liquid is extracted and sent to the battery main body. 2. In claim 1, electrolytic solution inflow and outflow holes are arranged near the bottom of the tank and directly below the liquid level in the tank, and electrolytic solution flows into the electrolytic solution inflow and outflow holes during charging and discharging. A method of operating a redox flow type battery characterized by switching the direction of liquid flow. 3. In claim 1, holes dedicated to the outflow of the electrolytic solution are arranged directly below the liquid level in the tank and near the bottom of the tank, and the electrolytic solution is allowed to flow out from either of the holes dedicated to the outflow during charging and discharging. A method of operating a redox flow type battery characterized by extracting liquid and sending it to the battery body. 4. Operation of a redox flow type battery according to claim 1, characterized in that a discharge liquid or a charging liquid separated into two layers is extracted through a flexible pipe having a float and sent to the battery main body. Method.
JP57059715A 1982-04-12 1982-04-12 Operation control method of redox-flow type battery Granted JPS58176880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57059715A JPS58176880A (en) 1982-04-12 1982-04-12 Operation control method of redox-flow type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57059715A JPS58176880A (en) 1982-04-12 1982-04-12 Operation control method of redox-flow type battery

Publications (2)

Publication Number Publication Date
JPS58176880A JPS58176880A (en) 1983-10-17
JPS6229866B2 true JPS6229866B2 (en) 1987-06-29

Family

ID=13121175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57059715A Granted JPS58176880A (en) 1982-04-12 1982-04-12 Operation control method of redox-flow type battery

Country Status (1)

Country Link
JP (1) JPS58176880A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200668A (en) * 1986-02-27 1987-09-04 Agency Of Ind Science & Technol Battery device
ES2104179T3 (en) * 1992-10-14 1997-10-01 Nat Power Plc ELECTROCHEMICAL ENERGY STORAGE AND ENERGY SUPPLY PROCESS USING THE IRON-SULFUR PAIR.
US5545492A (en) * 1992-10-14 1996-08-13 National Power Plc Electrochemical apparatus for power delivery utilizing an air electrode
JP5769010B2 (en) * 2011-06-27 2015-08-26 住友電気工業株式会社 Redox flow battery
JP5769070B2 (en) * 2011-06-27 2015-08-26 住友電気工業株式会社 Redox flow battery
EP2725648B1 (en) * 2011-06-27 2018-06-13 Sumitomo Electric Industries, Ltd. Redox flow battery
US10069161B2 (en) * 2016-03-17 2018-09-04 Saudi Arabian Oil Company In-situ gravitational separation of electrolyte solutions in flow redox battery systems
US10483567B2 (en) * 2017-01-04 2019-11-19 Saudi Arabian Oil Company Mechanical energy storage in flow batteries to enhance energy storage

Also Published As

Publication number Publication date
JPS58176880A (en) 1983-10-17

Similar Documents

Publication Publication Date Title
CN110574200B (en) Methods and systems for rebalancing electrolytes of redox flow battery systems
EP3121928B1 (en) Zinc-air cell
US3322574A (en) Process and apparatus for removing reaction water from galvanic fuel cells
JP7121044B2 (en) Integrated hydrogen recycling system using pressurized multi-chamber tanks
EP2761689B1 (en) Flow battery with two-phase storage
KR20030034146A (en) Vanadium electrolyte preparation using asymmetric vanadium reduction cells and use of an asymmetric vanadium reduction cell for rebalancing the state of charge of the electrolytes of an operating vanadium redox battery
US6849356B2 (en) Separated flow liquid catholyte aluminum hydrogen peroxide seawater semi fuel cell
JP2003308859A (en) Water feeder in fuel cell power generation system and fuel cell power generation system using it
US20030198862A1 (en) Liquid gallium alkaline electrolyte fuel cell
JPS6229866B2 (en)
EP4128407A1 (en) Redox flow battery and battery system
CN115152065A (en) Method for iron pre-formation in redox flow batteries
US4510211A (en) Fuel cell electrolyte supply system and apparatus
CN117712436A (en) Electrolyte flow field for rebalancing cells of redox flow battery systems
CN115668562A (en) Electrode assembly for redox flow battery
AU2021319464A1 (en) Electrochemical systems and methods of use
CN113314733A (en) Rebalanceable system of iron-chromium flow battery
CN109075367A (en) Redox flow batteries
JP2001216995A (en) Electrolyte tank for redox flow battery
JPH10334938A (en) Power storage secondary battery
JPH0546063B2 (en)
US20240170696A1 (en) Radial mixing manifold
JPS61143948A (en) Battery active material storage tank
KR101762016B1 (en) Electrolysis and electrical generation system
JPS60124367A (en) Electrolyte circulation system of fuel cell