JPS62297611A - Liquid fuel burning device - Google Patents

Liquid fuel burning device

Info

Publication number
JPS62297611A
JPS62297611A JP14199486A JP14199486A JPS62297611A JP S62297611 A JPS62297611 A JP S62297611A JP 14199486 A JP14199486 A JP 14199486A JP 14199486 A JP14199486 A JP 14199486A JP S62297611 A JPS62297611 A JP S62297611A
Authority
JP
Japan
Prior art keywords
flame
liquid fuel
plate
silica
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14199486A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kawasaki
良隆 川崎
Yoshizo Omukae
大迎 淑三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14199486A priority Critical patent/JPS62297611A/en
Publication of JPS62297611A publication Critical patent/JPS62297611A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a long-life premixing type burning device having no fuel impregnation and no tar adhesion and also excellent back-fire preventive and heat-resisting properties by a method wherein a flame port is constituted by open holes having small bores and being closely spaced and also the surfaces of the members of this flame hole port are wrapped in a heat-resisting membranes. CONSTITUTION:A flame hole port 9 is made in such a way that silica-sol is added as bonder to silica-alumina-made staple and they are moulded into plate shape and sintered to make a porous thin plate 9a to which a number of blow holes 8 with 1.5mm bore are pierced and then their surfaces are wrapped in a high purity silica membrane 9b having about 10mu thickness. Further, in addition to the both surfaces of the plate 9a, the circumferences of the holes 8 are converted by the membrane 9b and the membrane enters into a porous part and hence, the rigidity and strength of the plate are improved to be able to make the plate thin. Therefore, the back surface temp. of the part 9 can be kept at a temp. where liquid fuel can be effectively prevented from dewing and backfire.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は暖房、加熱、乾燥等に利用される予混合型の液
体燃料燃焼装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a premixed liquid fuel combustion device used for space heating, heating, drying, etc.

従来の技術 燃料と空気の予混合ガスを炎口部へ送って燃焼させるい
わゆる予混合型の燃焼装置は、ガスまたは石油燃焼器と
して広く用いられているが、ガス燃焼装置においては炎
口部にセラミックプレートを用いているものもあるが(
例えば、述正−「燃焼機器工学」、(昭和62年12月
20日)9日刊工業新聞社、P194)、液体燃料を用
いた燃焼装置においては、たとえば実公昭48−104
93号公報に示されるように、金網等の金属体が用いら
れていた。
Conventional technology So-called premix combustion devices, in which a premixed gas of fuel and air is sent to the flame nozzle for combustion, are widely used as gas or oil burners. Some use ceramic plates (
For example, in ``Combustion Equipment Engineering'' (December 20, 1986) 9 Nikkan Kogyo Shimbunsha, p. 194), in combustion equipment using liquid fuel, for example,
As shown in Japanese Patent No. 93, a metal body such as a wire mesh was used.

発明が解決しようとする問題点 上記従来の方式においては、ガス燃焼の場合には炎口部
にセラミックプレート(一般にはその素材が30〜80
%の気孔率を有する多孔体で、これに適宜径の小孔を多
数穿設している)を用いて3ベー/゛ も、このプレート内の多孔に燃料ガスが蓄積されて、消
火時に燃料を遮断してもなお燃料が浸出するようなこと
はない。しかし、液体燃料を加熱気化させ、これに空気
を混合して炎口部に送る場合には、セラミックプレート
の表面および多孔内に燃料が結露して含浸保持され、消
火時に燃料を遮断してもプレート内に保持されていた燃
料が徐々に気化して流出し、臭気や一酸化炭素を多量に
発生することになり、実際には使用不可能であった。
Problems to be Solved by the Invention In the above conventional system, in the case of gas combustion, a ceramic plate (generally the material is 30 to 80%
% porosity, with many small holes of appropriate diameter perforated in it), fuel gas accumulates in the pores in this plate, and when extinguishing a fire, the fuel gas is released. Even if the fuel is shut off, fuel will not leak out. However, when liquid fuel is heated to vaporize, mixed with air, and sent to the flame outlet, the fuel condenses and remains impregnated on the surface of the ceramic plate and in the pores, even when the fuel is shut off when extinguishing. The fuel held in the plates gradually vaporized and flowed out, producing a large amount of odor and carbon monoxide, making it practically unusable.

またセラミックプレートの裏面側(気化室側)では充分
温度が上昇せず、結露して含浸された液体燃料が部分酸
化反応あるいは重合反応を受けてタール状物質が生成付
着し、気孔を閉塞したり混合気の流れに偏りを生ぜしめ
る等の欠点があった。
In addition, the temperature on the back side of the ceramic plate (vaporization chamber side) does not rise sufficiently, and the liquid fuel that is impregnated with condensation undergoes a partial oxidation reaction or polymerization reaction, and tar-like substances are formed and adhered, clogging the pores. This had drawbacks such as causing imbalance in the flow of the air-fuel mixture.

上記の欠点の改善策としてセラミックプレートを薄板に
設計し、裏面の温度を上昇し易くすることが考えられる
が、セラミックプレートの強度不足のため不可能であっ
た。さらに、炎口部に金網等の金属体を使用した従来例
も提案されているが、この場合には金属体の良熱伝導性
のために全体の温度が上昇し、炎口部の上流側において
結露を防止し、タール状物質の生成も防止できるが、金
属体にステンレス等の耐熱材料を用いたとしても常用温
度はSOO℃前後であり、短期使用には耐えるが長期間
赤熱させて使用した場合には劣化し、著しくは一部が破
損して落下することにもなり、正常な燃焼を維持できな
くなるという欠点があった。また金属の炎口部の場合、
炎口部裏面側の温度が過度に上昇し、上流側(気化室側
)の混合気に逆火する恐れがあり、特に外部の風の影響
を受けた時あるいは低燃焼量で燃焼せしめ時に生ずる逆
火を防止し得なかった。
A possible solution to the above drawbacks is to design the ceramic plate to be a thin plate so that the temperature on the back side can easily rise, but this was not possible due to the lack of strength of the ceramic plate. Furthermore, conventional examples have been proposed in which a metal body such as a wire mesh is used for the flame mouth, but in this case, the overall temperature rises due to the good thermal conductivity of the metal body, and the upstream side of the flame mouth It can prevent dew condensation and the generation of tar-like substances, but even if heat-resistant materials such as stainless steel are used for the metal body, the normal operating temperature is around SOO℃, and although it can withstand short-term use, it can be used for long periods of time at red-hot temperatures. If this occurs, the fuel will deteriorate, and in some cases, a portion of the fuel will break and fall, making it impossible to maintain normal combustion. In addition, in the case of a metal flame opening,
There is a risk that the temperature on the back side of the flame opening will rise excessively, causing backfire to the air-fuel mixture on the upstream side (vaporization chamber side), especially when affected by external wind or when burning at a low combustion rate. Could not prevent backfire.

本発明は上記従来の欠点を解消し、液体燃料を用いた場
合においても燃料の含浸およびタールの付着がなく、し
かも逆火防止性と耐熱性に優れた長寿命の炎口部を有す
る予混合型の燃焼装置を提供するものである。
The present invention solves the above-mentioned conventional drawbacks, and even when using liquid fuel, there is no impregnation of fuel or adhesion of tar, and the present invention provides a premixed mixture having a long-life flame port with excellent flashback prevention properties and heat resistance. The present invention provides a type of combustion device.

問題点を解決するだめの手段 上記従来の問題点を解決するために本発明で用いる技術
的手段は、液体燃料と空気の予混合ガス6ベーノ を噴出して火炎を形成する炎口部を、小径の開孔を密設
して構成すると共に、この炎口郡部材表面を耐熱性セラ
ミック膜で包蔵するものである。
Means for Solving the Problems The technical means used in the present invention to solve the above-mentioned conventional problems is to use a flame port that spouts premixed gas of liquid fuel and air to form a flame. It is constructed by closely disposing small-diameter openings, and the surface of this flame port grouping member is enclosed in a heat-resistant ceramic membrane.

作  用 上記手段により耐熱性セラミック膜で包まれた炎口部の
部材は、素材が粉体を焼結した多孔質セラミックなどの
割れ易い材料であっても、セラミック膜で包むことによ
り薄板として使用可能となり、燃料流における上流部を
高温に維持できるので液体燃料が結露して含浸すること
なく、燃料供給の停止と同時に速やかに燃焼が停止し、
かつ臭気や一酸化炭素等の放出も回避でき、また炎口部
がタールにより閉塞される恐れもない。さらに素材がス
テンレス等の耐熱性不十分な材料による場合も、セラミ
ック膜の耐熱性、化学的安定性により、炎口部の寿命劣
化が防止できる。またセラミック膜は金属に比較して熱
伝導性が極めて小さいので、炎口部上流側表面温度を逆
火を充分防止し得る温度に低減し得るため、風あるいは
低燃焼量等の影響下でも逆火を生ずることなく長時間に
わ6 /、 ま たって安定した燃焼性能を維持できるものである。
Effect: Even if the material of the burner port wrapped with the heat-resistant ceramic film by the above method is easily broken, such as porous ceramic made by sintering powder, it can be used as a thin plate by wrapping it with the ceramic film. This allows the upstream part of the fuel flow to be maintained at a high temperature, preventing condensation and impregnation of the liquid fuel, and immediately stopping combustion as soon as the fuel supply is stopped.
Moreover, the release of odors, carbon monoxide, etc. can be avoided, and there is no fear that the flame opening will be clogged with tar. Furthermore, even if the material is a material with insufficient heat resistance such as stainless steel, the heat resistance and chemical stability of the ceramic film can prevent deterioration of the lifespan of the flame opening. Furthermore, since ceramic membranes have extremely low thermal conductivity compared to metals, they can reduce the surface temperature on the upstream side of the burner to a temperature that sufficiently prevents flashbacks, so even under the influence of wind or low combustion rates, flashbacks can occur. It is capable of maintaining stable combustion performance for a long time without causing a fire.

実施例 以下本発明の一実施例について、添付図面に基づいて説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第2図において、1は気化室で底部に電気ヒータ2が添
装され、また燃料ポンプ3から連設する送油管4と送風
ファン6から連接する送風管6が開口している。7は気
化室1に連続する燃焼室で、中央部には多数の気孔8を
穿設した平板状の炎口部9を直立させて備え、この炎口
部9と対向する前面には耐熱ガラスよりなる熱線透過体
1oを配設している。11は排ガス口である。ここで炎
口部9は第1図に示すように、シリカ−アルミナ(組成
は重量比で約60:50)の短繊維にシリカゾルを結合
剤として加え、板状に成型して焼結させた多孔質の薄板
9aに、直径約1.6閣の多数の気孔8を穿設し、さら
にその表面を厚さ約10ミクロンの高純度(90チ以上
)のシリカ膜9bで包蔵している。
In FIG. 2, reference numeral 1 denotes a vaporization chamber, which is equipped with an electric heater 2 at its bottom, and has an oil feed pipe 4 connected to a fuel pump 3 and a blower pipe 6 connected to a blower fan 6 open therein. Reference numeral 7 denotes a combustion chamber that is continuous with the vaporization chamber 1, and has a flat plate-shaped flame port 9 with a large number of air holes 8 erected in the center thereof, and a heat-resistant glass on the front facing the flame port 9. A heat ray transmitting body 1o made of the following is disposed. 11 is an exhaust gas port. As shown in Fig. 1, the flame port 9 is made by adding silica sol as a binder to short fibers of silica-alumina (composition is approximately 60:50 by weight), forming the mixture into a plate shape, and sintering it. A large number of pores 8 with a diameter of approximately 1.6 mm are bored in a porous thin plate 9a, and the surface thereof is further enclosed in a highly pure (90 mm or more) silica membrane 9b with a thickness of approximately 10 microns.

上記構成において、次にその作用を説明する。The operation of the above configuration will be explained next.

ポンプ3により圧送されて送油管4から気化室1に滴下
されだ液体燃料は、電気ヒータ2により所定温度に昇温
された気化室1の内壁に触れて気化し、送風71ン6か
ら送風管6を介して供給された空気と予混合され、燃焼
室7へと送られる。燃焼室7においては、炎口部9に穿
設された多数の気孔らより予混合ガスが噴出され、炎口
部9の後流側に火炎が形成される。この火炎によって赤
熱された炎口部9の後流側表面からは熱線が放射され、
前面の熱線透過体1oを経て燃焼室7の前方へと放射熱
が供給される。燃焼排ガスは排ガス口11から上部へと
排出される。また燃焼量の調節は送風ファン6からの供
給空気量および燃料ポンプ3からの送油量を同時に、か
つ略同率変化させることによって行なわれる。
The liquid fuel that is pressure-fed by the pump 3 and dripped into the vaporization chamber 1 from the oil supply pipe 4 is vaporized by contacting the inner wall of the vaporization chamber 1, which has been heated to a predetermined temperature by the electric heater 2, and is then transferred from the air supply pipe 71 to the air supply pipe 6. It is premixed with the air supplied via 6 and sent to the combustion chamber 7. In the combustion chamber 7, premixed gas is ejected from a large number of holes formed in the flame port 9, and a flame is formed on the downstream side of the flame port 9. Heat rays are radiated from the downstream surface of the flame port 9 which is heated red by this flame.
Radiant heat is supplied to the front of the combustion chamber 7 via the front heat ray transmitting body 1o. The combustion exhaust gas is discharged from the exhaust gas port 11 to the upper part. Further, the combustion amount is adjusted by simultaneously changing the amount of air supplied from the blower fan 6 and the amount of oil fed from the fuel pump 3 by approximately the same rate.

ここで炎口部9は耐熱性に優れるシリカ−アルミナ系の
セラミック素材で構成されており、しかも第1図のよう
に薄板9aの両面は勿論、気孔8の周囲までも全てシリ
カ膜9bで覆われ、さらに多孔部に入り込んでいるため
、剛性と強度が改善されて薄板化が可能である。従って
、炎口部9の裏面温度は液体燃料の結露と逆火を効果的
に防止しうる温度(約200℃〜4oo℃)に維持せし
めることが可能である。これによって従来のような燃料
ポンプ4の停止後にもなおセラミック薄板9aに含浸さ
れていた燃料が気化し、不完全燃焼を生じて臭気や一酸
化炭素等の不快・有害な物質を排出する現象は回避でき
、燃料ポンプ3の停止と同時に瞬時に完全消火させるこ
とができる。また高純度のシリカ膜9bは石英ガラスに
相当する耐熱性をも有し、しかも基材であるシリカ−ア
ルミナ系繊維との密着性にも富み、かつ熱膨張率も近似
しているから剥離の心配もない、極めて安定。
Here, the flame port 9 is made of a silica-alumina ceramic material with excellent heat resistance, and as shown in FIG. Since it penetrates into the porous parts, the rigidity and strength are improved and the plate can be made thinner. Therefore, the temperature of the back surface of the flame port 9 can be maintained at a temperature (approximately 200° C. to 40° C.) that can effectively prevent condensation of the liquid fuel and backfire. As a result, even after the fuel pump 4 is stopped, the fuel impregnated in the ceramic thin plate 9a vaporizes, causing incomplete combustion and emitting unpleasant and harmful substances such as odor and carbon monoxide, as in the conventional case. This can be avoided and the fire can be completely extinguished at the same time as the fuel pump 3 is stopped. In addition, the high-purity silica film 9b has heat resistance comparable to that of quartz glass, has excellent adhesion to the silica-alumina fiber base material, and has a similar coefficient of thermal expansion, making it difficult to peel off. No worries, extremely stable.

長寿命の材料となし得るものである。It can be used as a long-life material.

また炎口部9は、セラミック薄板9aを成型。Moreover, the flame opening part 9 is molded from a ceramic thin plate 9a.

加工後に、テトラエトキシシランとエタノールと水と少
量の塩酸の混合溶液に浸漬し、テトラエトキシシランの
加水分解反応を生せしめてシリカの薄い層を形成させる
という操作を数回繰り返し、これを加熱して形成させて
おり、第1図に示すより へ−ン うにシリカ膜9bはセラミック薄板9aの表面を覆うと
ともに、セラミック薄板9aの多孔部に含浸されて極め
て強固な結合状態を示す。
After processing, the material is immersed in a mixed solution of tetraethoxysilane, ethanol, water, and a small amount of hydrochloric acid, and the process of hydrolyzing the tetraethoxysilane to form a thin layer of silica is repeated several times, followed by heating. As shown in FIG. 1, the silica film 9b covers the surface of the ceramic thin plate 9a and is impregnated into the pores of the ceramic thin plate 9a, thereby exhibiting an extremely strong bond.

なお炎口部9は本実施例のような縦型平板状でも、第3
図のような円筒状でも、あるいは第4図のような開放式
の横型でも良く、同様に上記効果を発揮できる。またセ
ラミック薄板9aは、本実施例ではシリカ−アルミナの
短繊維を結着させたものを用いているが、シリカあるい
はアルミナ単独、もしくはその1つを主成分とした他の
無機材料との混合物でも良く、さらに繊維以外に微粒子
状の材料を混練して抑圧成型したものであっても良い。
Incidentally, even if the flame port 9 has a vertical flat plate shape as in this embodiment, the third
It may be a cylindrical shape as shown in the figure or an open horizontal type as shown in FIG. 4, and the above effects can be similarly achieved. Furthermore, although the ceramic thin plate 9a is made of bound silica-alumina short fibers in this embodiment, it may also be made of silica or alumina alone, or a mixture of silica or alumina as a main component, or a mixture of silica or alumina as a main component with other inorganic materials. It is also possible to knead and press-mold fine particulate materials other than fibers.

ただ繊維状のものは気孔率が大きくでき、軽くして断熱
性能に優れると共に、機械的強度も大きく、衝撃に強い
炎口部9を構成することができる。
However, the fibrous material can have a large porosity, is lightweight, has excellent heat insulation performance, and has high mechanical strength, making it possible to construct the flame port 9 that is resistant to impact.

さらに炎口部9に穿設された気孔8の開口率は、流路抵
抗を小さくするために大きくする方が好ましいが、第1
図のような平板状のセラミック薄板9aに気孔8を後加
工により穿設する方法以外に、1oへ− 第6図に示すように、波型に成型した薄板を重ねて接着
した構造としても大きな開口率が確保でき、素材の種類
や形態に応じて選択することができる。
Furthermore, it is preferable to increase the aperture ratio of the pores 8 formed in the flame port 9 in order to reduce the flow path resistance.
In addition to the method of drilling pores 8 in the flat ceramic thin plate 9a as shown in the figure through post-processing, a structure in which corrugated thin plates are layered and bonded together as shown in Figure 6 can also be used. The aperture ratio can be secured and can be selected according to the type and form of the material.

本発明においては、炎口部9の素材にステンレスなどの
耐熱性金属の金網、パンチング板を使用することも可能
である。この場合は素材金属に予めショツトブラストな
どの表面処理を施し、上記のテトラエトキシシランを主
成分とする混合溶液に、素材の熱膨張率を考慮した粉体
あるいは他の有機金属化合物を加えるほうが良い。金属
表面に形成されたセラミック膜は、素材金属を酸素と炭
素を含む雰囲気から隔離するので耐熱性が飛躍的に向上
し、例えば、1ooo℃においても長期使用に耐える。
In the present invention, it is also possible to use a wire mesh or a punched plate made of a heat-resistant metal such as stainless steel as the material of the flame port 9. In this case, it is better to subject the raw metal to a surface treatment such as shot blasting in advance, and then add powder or other organometallic compounds that take into account the coefficient of thermal expansion of the material to the above-mentioned mixed solution mainly composed of tetraethoxysilane. . The ceramic film formed on the metal surface isolates the raw material metal from an atmosphere containing oxygen and carbon, so its heat resistance is dramatically improved, and it can withstand long-term use even at temperatures of 100° C., for example.

また、金属表面に形成されたセラミック膜は、金属に比
較して熱伝導率が極めて小さく、裏面の表面温度は金属
単独使用の場合に比較し大幅に低温を維持することが可
能であり、余裕のある逆火防止機能を発揮するものであ
る。
In addition, the ceramic film formed on the metal surface has extremely low thermal conductivity compared to metal, and the surface temperature on the back side can be maintained much lower than when using metal alone, making it possible to maintain a much lower temperature than when using metal alone. It exhibits a certain backfire prevention function.

また炎口部9表面のシリカ薄膜9bは、上記のように有
機ケイ素化合物の混合溶液を用いる方法11 ベーン が、耐熱性を上昇させる要因である純度の確保と固体素
材の表面あるいは多孔部内部表面へのなじみの性質上極
めて有用である。また、ケイ素以外にアルミニウム、ジ
ルコニウム、チタンなどの極めて豊富な金属アルコキシ
ドが供給されており、選択使用することができる。
Furthermore, the silica thin film 9b on the surface of the flame opening 9 can be formed by using a mixed solution of organosilicon compounds as described above. This is extremely useful due to its familiar nature. In addition to silicon, extremely abundant metal alkoxides such as aluminum, zirconium, and titanium are supplied and can be selectively used.

発明の効果 以上のように本発明は、液体燃料と空気の予混合ガスを
噴出して火炎を形成する炎口部を、小径の開孔を密設し
て構成すると共に、この炎口郡部材表面を耐熱性セラミ
ック膜で包蔵することにより、炎口部に液体燃料が結露
して含浸することなく、燃料供給の停止と同時に速やか
に燃焼が停止し、かつ臭気や一酸化炭素等の放出も回避
できると共に、素材がステンレス等の耐熱性不十分な材
料による場合も、セラミック膜の耐熱性、化学的安定性
により、炎口部の寿命劣化が防止でき、さらにセラミッ
ク膜の長所熱性により、低燃焼量(低流速域)において
も逆火が生じ難く、広い範囲の燃焼量変化が可能となる
もので、長期間にわたって安定した燃焼性能を維持でき
る液体燃料燃焼装置を提供し得るものである。また、炎
口部表面に形成せしめたセラミック膜は、0.9程度の
高輻射効率を備え、良好な放熱性を発揮して火炎温度を
低下せしめるので、燃焼によって生成するNOxを低減
する効果を発揮する。
Effects of the Invention As described above, the present invention has a flame port for ejecting a premixed gas of liquid fuel and air to form a flame, in which small-diameter openings are tightly arranged, and a flame port group member for forming a flame. By enclosing the surface with a heat-resistant ceramic membrane, the flame port is not impregnated with condensation of liquid fuel, and combustion stops immediately upon stopping the fuel supply, while also preventing the release of odors and carbon monoxide. In addition, even if the material is made of a material with insufficient heat resistance such as stainless steel, the heat resistance and chemical stability of the ceramic membrane can prevent the lifespan of the flame mouth from deteriorating. This makes it possible to provide a liquid fuel combustion device that is less likely to cause flashback even in the combustion amount (low flow rate region) and can vary the combustion amount over a wide range, and can maintain stable combustion performance over a long period of time. In addition, the ceramic film formed on the surface of the flame port has a high radiation efficiency of about 0.9, exhibits good heat dissipation, and lowers the flame temperature, so it has the effect of reducing NOx generated by combustion. Demonstrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である液体燃料燃焼装置の炎
口部の要部断面図、第2図は同装置の側断面図、第3図
、第4図および第6図は本発明の液体燃料燃焼装置の他
の実施例の要部断面図または要部斜視図である。 1・・・・・・気化室、7・・・・・・燃焼室、8・川
・・気孔、9・・・・・・炎口部、9a・・・・・・セ
ラミック薄板。 代理人の氏名 弁理士 中 尾 敏 男 はが1名8−
−一気活し 9−炎口部 た−m−でラミラグ薄板 9b−シワカ膜 第1図 第2図 第3図 第4図 q 第5図
Fig. 1 is a cross-sectional view of the main part of the flame port of a liquid fuel combustion device which is an embodiment of the present invention, Fig. 2 is a side sectional view of the same device, and Figs. FIG. 7 is a sectional view or a perspective view of a main part of another embodiment of the liquid fuel combustion device of the invention. DESCRIPTION OF SYMBOLS 1... Vaporization chamber, 7... Combustion chamber, 8... River... Pore, 9... Flame mouth part, 9a... Ceramic thin plate. Name of agent: Patent attorney Toshio Nakao, 1 person, 8-
-Immediate activation 9-flame mouth part -m-Lamirag thin plate 9b-wrinkled film Fig. 1 Fig. 2 Fig. 3 Fig. 4 q Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)供給された液体燃料を加熱気化させる気化室と、
前記気化室に燃焼用空気の一部または全部を供給する空
気流路と、前記気化室から流出する燃料と空気の混合ガ
スを噴出して火災を形成する炎口部とを有し、前記炎口
部は小径の開孔を密設して構成すると共に、前記炎口部
の部材を耐熱性セラミック膜で包蔵した液体燃料燃焼装
置。
(1) A vaporization chamber that heats and vaporizes the supplied liquid fuel;
It has an air flow path that supplies part or all of the combustion air to the vaporization chamber, and a flame port that blows out a mixed gas of fuel and air flowing out of the vaporization chamber to form a fire, and A liquid fuel combustion device in which a mouth part is configured with small-diameter openings tightly arranged, and a member of the flame mouth part is enclosed in a heat-resistant ceramic membrane.
(2)炎口部部材を、耐熱性金属部材あるいはシリカま
たはアルミナもしくはシリカ−アルミナ等のセラミック
材料で構成すると共に、前記セラミック膜で包蔵した特
許請求の範囲第1項記載の液体燃料燃焼装置。
(2) The liquid fuel combustion device according to claim 1, wherein the flame port member is made of a heat-resistant metal member or a ceramic material such as silica, alumina, or silica-alumina, and is enclosed in the ceramic membrane.
(3)セラミック膜を、少なくとも一部に金属アルコキ
シドを含有する流動性処理剤から形成させた特許請求の
範囲第1項または第2項記載の液体燃料燃焼装置。
(3) The liquid fuel combustion device according to claim 1 or 2, wherein the ceramic membrane is formed from a fluidity treatment agent containing at least a portion of a metal alkoxide.
JP14199486A 1986-06-18 1986-06-18 Liquid fuel burning device Pending JPS62297611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14199486A JPS62297611A (en) 1986-06-18 1986-06-18 Liquid fuel burning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14199486A JPS62297611A (en) 1986-06-18 1986-06-18 Liquid fuel burning device

Publications (1)

Publication Number Publication Date
JPS62297611A true JPS62297611A (en) 1987-12-24

Family

ID=15304921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14199486A Pending JPS62297611A (en) 1986-06-18 1986-06-18 Liquid fuel burning device

Country Status (1)

Country Link
JP (1) JPS62297611A (en)

Similar Documents

Publication Publication Date Title
US3057400A (en) Glow burner for fuel-air mixture
US5249953A (en) Gas distributing and infrared radiating block assembly
CA2632209C (en) Advanced capillary force vaporizers
CA1303477C (en) Catalytic combustion device
EP1898153B1 (en) Gas burner for cooking appliances
EA001328B1 (en) Method and device for the combustion of liquid fuel
JPS62297611A (en) Liquid fuel burning device
EP0410569A1 (en) Gas-fired infrared burners
WO2007138962A1 (en) Combustor
JPS6053711A (en) Catalytic combustion apparatus
RU2094703C1 (en) Surface-combustion gas burner
CA1336258C (en) Gas distributing and infrared radiating block assembly
JPS6155420B2 (en)
JP3098382B2 (en) Surface burning burner
JP2515507Y2 (en) Catalytic combustion device
JPS58136905A (en) Burner
JP3092321B2 (en) Catalytic combustion device
JPS60207818A (en) Liquid fuel burner
JPH11218307A (en) Kerosene fuel combustion device
JP2003090515A (en) Gas combustion method by void combustion system and burner element
JP3153441B2 (en) Surface burning burner
WO2003006880A1 (en) Method and burner element for burning gas by void combustion system
JP2005226920A (en) Liquid fuel combustion equipment using porous element
JPH0828824A (en) Surface combustion burner
CN201273630Y (en) Catalysis combustor