JPS62297420A - Noncalcined briquetted ore excellent in strength at high temperature - Google Patents

Noncalcined briquetted ore excellent in strength at high temperature

Info

Publication number
JPS62297420A
JPS62297420A JP14116486A JP14116486A JPS62297420A JP S62297420 A JPS62297420 A JP S62297420A JP 14116486 A JP14116486 A JP 14116486A JP 14116486 A JP14116486 A JP 14116486A JP S62297420 A JPS62297420 A JP S62297420A
Authority
JP
Japan
Prior art keywords
strength
reduction
furnace
ore
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14116486A
Other languages
Japanese (ja)
Other versions
JPH0781169B2 (en
Inventor
Kiyoshi Kojima
清 小島
Junsuke Haruna
春名 淳介
Hajime Yamada
肇 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61141164A priority Critical patent/JPH0781169B2/en
Publication of JPS62297420A publication Critical patent/JPS62297420A/en
Publication of JPH0781169B2 publication Critical patent/JPH0781169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a briquetted or excellent in strength at high temp. and reduced in the amount of binding material, by limiting the proportion of the pores of prescribed dimension or over in a briquette prepared by adding a binding material to ore fines as principal component to a specific value or below. CONSTITUTION:The briquette is prepared by using one fines as principal component and by adding a binding material such as cement, etc. At this time, the proportion of the pores of >=10mu in the prepared briquette is regulated to <=3.0% based on the volume of the briquette. Since deterioration in strength in the course of reduction in a blast furnace can be reduced by forming such a pore structure, the shape is maintained in the furnace and stable permeability conditions in the furnace can be secured. Moreover, the effect of preventing the drop in temp. in the furnace, etc., due to the reduction in the respective quantities of gangue and binding material can be produced simultaneously, so that blending proportion of noncalcined briquetted ore can be increased.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) この発明は、セメントなどの結合剤により塊成化した鉄
鉱石(非焼成塊成鉱)の改良に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) This invention relates to the improvement of iron ore agglomerated with a binder such as cement (non-calcined agglomerate). .

(従来の技術) 粉状鉄鉱石を塊成化して高炉用原料とする方法として、
粒鉱と燃料(粉コークス)にセメント、水などを添加し
て混合・造粒する方法が採用されている。
(Conventional technology) As a method of agglomerating powdered iron ore and using it as raw material for blast furnaces,
The method used is to add cement, water, etc. to grain ore and fuel (coke breeze), and then mix and granulate the mixture.

この方法により製造された非焼成塊成鉱は、焼成工程を
とらないためNOx、SOxの発生がな(、しかも微粉
コークス、無煙炭などの炭材を内装して還元性状を改善
することが可能であるという特徴を持っている。しかし
ながら、次のような欠点を有しているため高炉用原料と
して広く一般的に用いられるに至っていないのが実情で
ある。
The uncalcined agglomerate produced by this method does not require a calcination process, so it does not generate NOx or SOx (in addition, it is possible to improve its reducing properties by incorporating carbonaceous materials such as fine coke and anthracite). However, the reality is that it has not been widely used as a raw material for blast furnaces due to the following drawbacks.

(発明が解決しようとする問題点) その欠点としては、第1に、焼成していないためにパイ
ングー結合水、鉄鉱石中結晶水、自由水などの水分を含
み、還元炉内で分解・蒸発する際に多量の吸熱反応を起
して炉内温度を低下させ、結果として還元遅れ、高炉の
操業変動、燃料比増加を引き起す、自由水については、
工場内で発生する低温排風により乾燥させる方法が提案
されており、それにより蒸発させることができるが、パ
イングー結合水、鉄鉱石中結晶水については分解温度が
高いために除去することは非常に困難である。
(Problems to be Solved by the Invention) First, because it is not fired, it contains water such as pine goo bound water, crystalline water in iron ore, and free water, which decomposes and evaporates in the reduction furnace. Regarding free water, which causes a large amount of endothermic reaction during blasting and lowers the temperature inside the furnace, resulting in a reduction delay, fluctuations in blast furnace operation, and an increase in the fuel ratio,
A method of drying using low-temperature exhaust air generated within the factory has been proposed, and it is possible to evaporate it, but it is extremely difficult to remove Paingu bound water and crystalline water in iron ore due to their high decomposition temperatures. Have difficulty.

第2に、通常水硬性結合剤としてはセメントをはじめと
するCaO・5in2系のものが使用されるが、これが
脈石量の増加を引き起す。
Secondly, as a hydraulic binder, CaO.5in2 type materials such as cement are usually used, but this causes an increase in the amount of gangue.

第3に、一般的に水硬性結合剤の価格は高く、非焼成塊
成鉱の製造コスFを高(している。
Third, the price of hydraulic binders is generally high, making the manufacturing cost F of uncalcined agglomerates high.

以上のような欠点は、いずれも非焼成塊成鉱にはパイン
グーを加えなければならないという宿命に白米するもの
であり、これら欠点を少しでも緩和し、非焼成塊成鉱の
メリットを最大限に引き出すためには、パイングー使用
量を極力減らすことが要請される。
All of the above disadvantages are due to the fact that uncalcined agglomerate ore must be added with pine nuts, so it is necessary to alleviate these disadvantages even a little and maximize the benefits of non-calcined agglomerate ore. In order to extract it, it is necessary to reduce the amount of Pine Goo used as much as possible.

これらを改善する品質設計としては、たとえば特開昭5
8−52445号公報に示されるように、鉱石原料に添
加するバインダー量、加圧力、加圧時間を調整して成品
の間隙率を制御し、還元時の粉化を少なくするものがあ
る。
For example, as a quality design to improve these,
As shown in Japanese Patent No. 8-52445, there is a method in which the porosity of the product is controlled by adjusting the amount of binder added to the ore raw material, the pressing force, and the pressing time to reduce powdering during reduction.

本発明者らは、前記の事情から製造コストの低減を目的
として成品の気孔に着目し、気孔と熱間強度の関係につ
いて鋭意研究を重ねた結果、熱間強度に優れ、結果的に
セメントなどのバインダー量を低減させた非焼成塊成鉱
を完成させた。
Based on the above circumstances, the present inventors focused on the pores of finished products with the aim of reducing manufacturing costs, and as a result of intensive research on the relationship between pores and hot strength, they found that they had excellent hot strength, and as a result, cement, etc. We have completed a non-calcined agglomerate with a reduced amount of binder.

(問題点を解決するための手段) 本発明の要旨は、粉鉱石を主体に結合材を添加して製造
した塊成物内の10μ輪以上の気孔が塊成物体積に対し
3.0 %以下であることを特徴とする熱間強度に優れ
た非焼!&諷成鉱である。
(Means for Solving the Problems) The gist of the present invention is that the pores of 10μ or more in the agglomerate produced by adding a binder mainly to fine ore are 3.0% of the volume of the agglomerate. Non-fired with excellent hot strength, characterized by: & It is a rich ore.

(作用) このような気孔構造を造り込むことによって高炉内での
還元途中の強度低下を低く抑えることができる。したが
って、従来パイングー量は5〜15%とするのが一般的
であったが、本発明によればパインンー量を5%以下に
しても炉内で十分に形状を保持するので、炉内における
吸熱量が少なく、製造コストお上り脈石量の低い優れた
非焼成塊成鉱となる。
(Function) By creating such a pore structure, it is possible to suppress the decrease in strength during reduction in the blast furnace. Therefore, conventionally, the amount of pine goo was generally set at 5 to 15%, but according to the present invention, even if the amount of pine goo is reduced to 5% or less, the shape is sufficiently maintained in the furnace. It is an excellent non-calcined agglomerate with low calorific value, low manufacturing cost and low gangue amount.

本発明の非焼成塊成鉱は、次に詳述するように鉱石銘柄
の選択お上り造粒条件(添加水分等)の適正化により製
造できる。
The non-calcined agglomerated ore of the present invention can be produced by selecting the ore brand and optimizing the granulation conditions (added moisture, etc.) as detailed below.

本発明者らが非焼成塊成鉱の還元後強度の低下メカニズ
ムについて鋭意調査、研究を重ねた結果、還元後の強度
低下原因は、大別して■バインダーの熱分解によるもの
、■へマタイトからマグネタイトへの還元膨張によるも
の、の三者に分れ、このうち強度低下に対しては後者■
の作用が大きいことが実験的に明らかになった。
As a result of intensive investigation and research by the present inventors on the mechanism of strength reduction after reduction of non-calcined agglomerate ore, the causes of strength decrease after reduction can be roughly divided into: (1) thermal decomposition of binder, (2) change from hematite to magnetite. It is divided into three types: due to reduction and expansion to
It has been experimentally revealed that the effect of

したがって、ベレットの還元後強度低下を抑えるために
は還元のされ方をコントロールすればよく、その一手段
として気孔構造を特定条件に造り込むことによって、そ
れが可能となるのである。
Therefore, in order to suppress the decrease in strength of pellets after reduction, it is only necessary to control the method of reduction, and one way to do this is to create a pore structure under specific conditions.

mi図は、気孔構造が異なる種々のコールドベレットを
同一還元条件(Co:Na=30ニア 0゜温度700
℃)で還元した後、圧潰強度を測定したもので、横軸に
同図(A)は10μ−以上の気孔のベレット体積に対す
る含有割合、同図(B)は8μ論以上の気孔の同じくベ
レット体積に対する含有割合である。第1図から明らか
な如(,10μ輪以上の気孔割合を指標にとれば還元後
強度との相関が明確であり、その割合が3%を境に、そ
れ以下では強度は高いが、3%超では強度は急激に低下
している。また、8μ−以上の場合は還元後強度との相
関が明確でない。
The mi diagram shows various cold pellets with different pore structures under the same reduction conditions (Co:Na = 30 near 0° temperature 700°C).
The crushing strength was measured after reduction at ℃), and the horizontal axis shows (A) the content ratio of pores of 10μ or more to the pellet volume, and (B) of the same pellet with pores of 8μ or more. This is the content ratio relative to volume. As is clear from Figure 1, if the percentage of pores with a diameter of 10μ or more is taken as an index, there is a clear correlation with the strength after reduction. When the strength exceeds 8μ, the strength decreases rapidly.When the strength exceeds 8μ, the correlation with the strength after reduction is not clear.

この実験結果により、非焼成塊成鉱の還元後強度は全気
孔割合にはあまり影響されず、10μ一以上の気孔割合
により決まることがわかる。
The experimental results show that the strength after reduction of uncalcined agglomerate ore is not significantly influenced by the total pore ratio, but is determined by the pore ratio of 10μ or more.

尚、好ましい範囲としては、10μ−以上の気孔割合を
2.5 %以下にする。
In addition, as a preferable range, the proportion of pores of 10 μm or more is set to 2.5% or less.

これを楳弐図によりさらに具体的に説明する。This will be explained more specifically using Umeji.

第2図は第1図の実験データのうち、気孔構造が異なる
2種類のベレットを同一還元条件(CO:N、=30ニ
ア0.温度700℃)で還元した後の断面を示したもの
である。
Figure 2 shows cross sections of the experimental data shown in Figure 1 after two types of pellets with different pore structures were reduced under the same reducing conditions (CO:N, = 30 near 0, temperature 700°C). be.

初期気孔量のうち大きな気孔の気孔率の低い(A)では
マグネタイト生成量が少なく、しかも比較的外殻に近い
箇所に生成しているのに対し、初期気孔量のうち大きな
気孔の気孔率の高い(B)ではマグネタイト生成量が多
く、かつ内部まで生成している。
In (A), where the porosity of the large pores among the initial pores is low, the amount of magnetite produced is small and is generated relatively close to the outer shell, whereas the porosity of the large pores among the initial pores is small. At high (B), the amount of magnetite produced is large and is produced even inside.

これらの強度は、初期強度は(B)の方が高いにもかか
わらず、還元後強度は(B)の方がはるかに低い結果と
なった。また、還元後体積膨張率をみると、(A)が約
0゜5%であるのに対し、(B)は約3.0% と^い
結果となった。すなわち、(B)のベレットは比較的大
きな気孔が多いため、還元ガスが内部まで拡散し易く、
それによってヘマタイトからマグネタイトへの還元がベ
レット全体に均一に起り、還元膨張・強度低下に至ると
考えられる。これに対し、(A)のベレットでは天外な
気孔が少ないため、還元ガスが内部まで浸透しにくく、
外殻付近でヘマタイト→マグネタイト→ウスタイト→鉄
と順次還元が進行するためマグネタイF生成量が少なく
、還元膨張・強度低下が抑えられるものと考えられる。
Regarding these strengths, although the initial strength of (B) was higher, the strength after reduction was much lower for (B). Also, looking at the volumetric expansion coefficient after reduction, (A) was about 0.5%, while (B) was about 3.0%. In other words, since the pellet (B) has many relatively large pores, the reducing gas easily diffuses into the inside.
It is thought that this causes the reduction of hematite to magnetite to occur uniformly throughout the pellet, leading to reduction expansion and a decrease in strength. On the other hand, the pellet of (A) has fewer pores, so it is difficult for the reducing gas to penetrate inside.
It is thought that because the reduction progresses in the order of hematite → magnetite → wustite → iron near the outer shell, the amount of magnetite F generated is small, and reduction expansion and strength reduction are suppressed.

以上の考察と実験結果より、還元後強度低下を抑えるた
めには、10μ曽以上の気孔率を一定値以下にすること
により第2図(A)のような還元形態をとらせることが
有効な手段になるといえる。
From the above considerations and experimental results, in order to suppress the decrease in strength after reduction, it is effective to reduce the porosity of 10μ or more to a certain value or less to achieve the reduction form shown in Figure 2 (A). It can be said to be a means.

これらペレットの気孔構造は原料配合によって決まり、
たとえば豪州系鉱石(ハマスレイ)を高配合した場合、
ベントナイトを添加したときに粗大気孔の気孔率が小さ
くなる傾向にあり、これらを適宜フントロールして本発
明の非焼成塊成鉱を製造することができる。
The pore structure of these pellets is determined by the raw material composition,
For example, if a high content of Australian ore (Hamasley) is used,
When bentonite is added, the porosity of the coarse pores tends to become smaller, and the non-calcined agglomerate of the present invention can be produced by appropriately funneling these.

尚、気孔径および気孔率の測定方法は、水以圧入法によ
り気孔径分布を測定する一方、A成鉱を水銀に浸漬し、
その比体積を求めることにより次式により産出できる。
The pore size and porosity were measured by measuring the pore size distribution by the water injection method, and by immersing the A-forming ore in mercury.
By determining its specific volume, it can be produced using the following formula.

10μ膳以上の気孔率(%) xi o。Porosity (%) of 10μ or more xi o.

(実施例) 原料配合およびセメント系パイングー配合割合を変えた
各種類の粒度14〜18mmのベレットを製造し、これ
を10日間養生した後、シャフト還元炉においてCO:
N2=30ニア 0の混合ガスで還元したときの強度変
化を表11二比較例と共シこ示した。
(Example) Various types of pellets with a particle size of 14 to 18 mm were produced with different raw material compositions and cementitious paint ratios, and after curing for 10 days, CO:
Table 11 shows the change in strength when reduced with a mixed gas of N2=30N2 and the two comparative examples.

尚、添加水分は鉱石銘柄固有の吸水性に応じて増減させ
、生ベレット落下強度が最大になる水分値を予め決定し
、養生・還元に供した。
The added moisture was increased or decreased depending on the water absorption characteristic of the ore brand, and the moisture value at which the raw pellet drop strength was maximized was determined in advance and used for curing and reduction.

表1からも明らかな如く、10μ−以上の気孔割合が3
.0%をこえると還元後強度が着しく低下しており、1
0μ−以上の気孔率を3%以下に制御することにより、
ベレットの還元後強度を高く維持することが可能となっ
た。また、パイングー量は従来通常5〜15%であった
が、5%以下に減らしても、本発明によれば還元後強度
をかなり高く維持することが可能となった。
As is clear from Table 1, the proportion of pores larger than 10μ is 3.
.. If it exceeds 0%, the strength after reduction decreases considerably, and 1
By controlling the porosity of 0μ or more to 3% or less,
It became possible to maintain high strength of the pellet after reduction. Further, the amount of pine goo was conventionally usually 5 to 15%, but even if it is reduced to 5% or less, according to the present invention, it has become possible to maintain a considerably high strength after reduction.

(発明の効果) 以上詳述した如ぐ、本発明によれば還元後強度低下を抑
えることができるので、高炉などシャフト炉の還元炉内
で形状を保持させ、安定した炉内通気状態を確保するこ
とができる。また、同時に脈石量の低下、バインダーの
低減による炉内温度低下の防止、製造コストの低下など
の効果も得られるので、従来よりも高炉などの還元炉に
おける非焼成塊成鉱の配合率を増すことが可能となり、
銑鉄原単位低減に役立つ。
(Effects of the Invention) As detailed above, according to the present invention, it is possible to suppress a decrease in strength after reduction, so that the shape can be maintained in the reduction furnace of a shaft furnace such as a blast furnace, and a stable ventilation condition inside the furnace can be ensured. can do. At the same time, it also reduces the amount of gangue, prevents temperature drops in the furnace by reducing the amount of binder, and lowers production costs, so the blending ratio of uncalcined agglomerate in reduction furnaces such as blast furnaces is lower than in the past. It becomes possible to increase
Helps reduce pig iron consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(B)は非焼成塊成鉱の気孔と還元後強
度の関係図、tIIJ2図(A)、(B)は非焼成塊成
鉱の還元状況の説明図である。 1・・・ヘマタイト、2・・・マグネタイト、3・・・
ウスタイト。
FIGS. 1(A) and (B) are diagrams showing the relationship between the pores of uncalcined agglomerate ore and the strength after reduction, and tIIJ2 diagrams (A) and (B) are explanatory diagrams of the state of reduction of uncalcined agglomerate ore. 1... Hematite, 2... Magnetite, 3...
Uestite.

Claims (1)

【特許請求の範囲】[Claims] (1)粉鉱石を主体に結合材を添加して製造した塊成物
内の10μm以上の気孔が塊成物体積に対し3.0%以
下であることを特徴とする熱間強度に優れた非焼成塊成
鉱。
(1) Excellent hot strength characterized by the fact that the pores of 10 μm or more in the agglomerate produced by adding a binder mainly to fine ore are 3.0% or less of the volume of the agglomerate. Uncalcined agglomerate ore.
JP61141164A 1986-06-17 1986-06-17 Non-fired agglomerated ore with excellent hot strength Expired - Lifetime JPH0781169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141164A JPH0781169B2 (en) 1986-06-17 1986-06-17 Non-fired agglomerated ore with excellent hot strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141164A JPH0781169B2 (en) 1986-06-17 1986-06-17 Non-fired agglomerated ore with excellent hot strength

Publications (2)

Publication Number Publication Date
JPS62297420A true JPS62297420A (en) 1987-12-24
JPH0781169B2 JPH0781169B2 (en) 1995-08-30

Family

ID=15285623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141164A Expired - Lifetime JPH0781169B2 (en) 1986-06-17 1986-06-17 Non-fired agglomerated ore with excellent hot strength

Country Status (1)

Country Link
JP (1) JPH0781169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415920B1 (en) * 1996-12-18 2004-03-31 주식회사 포스코 Method for lumping preliminary hot compacted iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124529A (en) * 1982-01-19 1983-07-25 Sanyo Kokusaku Pulp Co Ltd Granulation of powdery ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124529A (en) * 1982-01-19 1983-07-25 Sanyo Kokusaku Pulp Co Ltd Granulation of powdery ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415920B1 (en) * 1996-12-18 2004-03-31 주식회사 포스코 Method for lumping preliminary hot compacted iron

Also Published As

Publication number Publication date
JPH0781169B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
CA2290131C (en) Pellets incorporated with carbonaceous material and method of producing reduced iron
US7438730B2 (en) Method of producing iron oxide pellets
JP2008095167A (en) Method for pelletizing powder using desulfurization slag
CN102482730A (en) Unfired carbon-containing agglomerate for blast furnaces and production method therefor
JP2006508251A (en) Cold briquetting and cold pelletization of mineral fines using a hydraulic binder containing iron.
JPS60255937A (en) Manufacture of cold-bound briquette
US4326887A (en) Basic process of producing basic fluxed pellets for iron-making
CN1022845C (en) Briquetting process
DE3307175C2 (en)
JP3144886B2 (en) Method for producing sintered ore or pellet ore as raw material for blast furnace using lime cake
US4518428A (en) Agglomerates containing olivine
JPS63196689A (en) Method of molding powdery coke
US4963185A (en) Agglomerates containing olivine for use in blast furnace
JPS62297420A (en) Noncalcined briquetted ore excellent in strength at high temperature
JPH0430442B2 (en)
JPS5926651B2 (en) Method for manufacturing non-calcined agglomerate ore
US4308055A (en) Process of briquetting sponge iron-containing material
JPH0430445B2 (en)
CN1718781A (en) Production method of iron ore agglomerate
JPH04165025A (en) Manufacture of reduced pellet
WO2003062477A2 (en) Iron ore macropellets and a process for producing them
JP2003027150A (en) Method for manufacturing nonfired agglomerated ore with excellent degradation resistance, and nonfired agglomerated ore
JP2627854B2 (en) Method for producing unfired agglomerate
CN116426748A (en) Production method for limonite pellet belt roasting
JPS62216948A (en) Manufacture of aggregate from coal ash