JPS62297203A - Method for synthesizing high-quality single crystal of cubic boron nitride - Google Patents

Method for synthesizing high-quality single crystal of cubic boron nitride

Info

Publication number
JPS62297203A
JPS62297203A JP14225686A JP14225686A JPS62297203A JP S62297203 A JPS62297203 A JP S62297203A JP 14225686 A JP14225686 A JP 14225686A JP 14225686 A JP14225686 A JP 14225686A JP S62297203 A JPS62297203 A JP S62297203A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
cbn
solvent
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14225686A
Other languages
Japanese (ja)
Other versions
JPH0691955B2 (en
Inventor
Junji Degawa
出川 純司
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14225686A priority Critical patent/JPH0691955B2/en
Priority to DE8686112787T priority patent/DE3674329D1/en
Priority to EP86112787A priority patent/EP0220462B1/en
Priority to US06/909,263 priority patent/US4699687A/en
Publication of JPS62297203A publication Critical patent/JPS62297203A/en
Publication of JPH0691955B2 publication Critical patent/JPH0691955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Abstract

PURPOSE:To obtain the titled large-sized single crystal of mm size in high reproducibility, by pressurizing and heating raw material BN and a specific solvent substance in the presence of cubic BN seed crystal. CONSTITUTION:An alkaline (earth) metal borate is blended with 1-10wt% Li3N and/or Li3BN2 and 5-30wt% one more selected from Sr3N2, Ba3N2, Sr3B2N4 and Ba3B2O4 to give a solvent substance. Then raw material BN and the solvent substance are heated and pressurized in the presence of cubic BN seed crystal under stable temperature and temperature conditions at >=the melting point of the solvent substance.

Description

【発明の詳細な説明】 & 発明の詳細な説明 産業上の利用分野 立方晶型窒化硼素(以下CBNと記す)はダイヤモンド
に次ぐ硬度を有し、鉄系材料の研削加工用砥粒として人
工合成されたものが広く用いられている。最近合成技術
が進歩し20/30USメツシユサイズの単結晶粉末が
合成されるようになった。
[Detailed Description of the Invention] & Detailed Description of the Invention Industrial Application Field Cubic boron nitride (hereinafter referred to as CBN) has a hardness second only to diamond, and can be artificially synthesized as an abrasive grain for grinding iron-based materials. The developed ones are widely used. Recently, synthesis technology has advanced and single crystal powders of 20/30 US mesh size can now be synthesized.

CBNのダイヤに対する有利な点は、鉄族金属との反応
性が少ない点である。ダイヤモンドは既に1カラツトを
越える直径6mm以上の単結晶が超高圧下での合成に成
功している。近年超精密加工技術への要求が強まり、ダ
イヤモンドの単結晶を用いたバイトが広く用いられてい
るが、前述した如く鉄系材料との反応性の為にこれ等の
超精密加工を行なうことが出来ず、ダイヤモンドに替る
工具材の開発が望まれていた。
The advantage of CBN over diamond is that it is less reactive with iron group metals. Single crystal diamonds weighing more than 1 carat and having a diameter of 6 mm or more have already been successfully synthesized under ultra-high pressure. In recent years, the demand for ultra-precision machining technology has increased, and tools using diamond single crystals are widely used, but as mentioned above, these ultra-precision machining tools cannot be performed due to their reactivity with iron-based materials. However, there was a desire to develop a tool material to replace diamond.

本発明はこのような用途にも使用できる大型のCBN単
結晶を再現性良く合成する方法に関するものである。
The present invention relates to a method for synthesizing large CBN single crystals with good reproducibility, which can also be used for such applications.

従来の技術とその問題点 CBNの合或は通常、六方晶型窒化硼素(以下hBNと
記す)を原料とし、アルカリ金属、アルカリ土類金属、
またはこれ等の窒化物、硼窒化物を触媒とし、超高圧高
温下で行なわれる。良く用いられる触媒としてはL r
 * M g * Ca + L r s N s I
J g a N * +CaJt、 t、1311L、
 MgaBJ4. Ca5BzN4等である。合成に当
ってhBNとこれ等の触媒物質との混合物を容器に充填
し、これを超高圧装置に入れ、第1図に示したCBNの
安定領域に加圧、加熱する。
Conventional technology and its problems CBN is generally made from hexagonal boron nitride (hereinafter referred to as hBN), and is made from alkali metals, alkaline earth metals,
Alternatively, the nitride or boronitride may be used as a catalyst under ultra-high pressure and high temperature. A commonly used catalyst is L r
* M g * Ca + L r s N s I
J g a N * + Ca Jt, t, 1311L,
MgaBJ4. Ca5BzN4 etc. During synthesis, a mixture of hBN and these catalyst materials is filled into a container, placed in an ultra-high pressure device, and heated and pressurized to the stable region of CBN shown in FIG.

このような方法ではCBNの自然核生成が生じ多数の微
粒CBN単結晶が得られる。このような粉末状CBNと
しては20/ 300 Sメツシュサイズ。
In such a method, natural nucleation of CBN occurs and a large number of fine CBN single crystals are obtained. Such powdered CBN is 20/300 S mesh size.

即ち約0.7mmまでの単結晶が工業的に製造されてい
る。しかし、例えば超精密加工用の単結晶バイトとして
利用するためには、ミリメートルサイズの大型単結晶の
合成が不可欠である。
That is, single crystals up to about 0.7 mm are industrially produced. However, in order to use it as a single-crystal cutting tool for ultra-precision machining, for example, it is essential to synthesize large single crystals of millimeter size.

発明の構成 超高圧下の単結晶育成の例はダイヤモンドについて既に
広く知られている。(例えばU S P 3.297゜
407) CB Nの場合も窒化硼素を原料とし、これ
を適度に溶解する溶媒があれば、温度差による溶解度の
変化を利用する、いわゆる温度差法により大型単結晶の
育成が可能なはずである。
Structure of the Invention An example of single crystal growth under ultra-high pressure is already widely known for diamond. (For example, USP 3.297゜407) In the case of CBN, boron nitride is used as a raw material, and if there is a solvent that can dissolve it appropriately, it can be made into a large unit using the so-called temperature difference method, which takes advantage of changes in solubility due to temperature differences. It should be possible to grow crystals.

発明者らはこの考えに基づき第2図に示す試料構成で前
述のアルカリ金属、アルカリ土類金属、又はこれ等の窒
化物、硼窒化物等の触媒を用いて、温度差法による大型
単結晶の合成を試みたが満足な結果は得られなかった。
Based on this idea, the inventors used the above-mentioned catalysts such as alkali metals, alkaline earth metals, nitrides of these metals, boronitrides, etc. with the sample configuration shown in FIG. Attempts were made to synthesize this, but no satisfactory results were obtained.

更に詳細な実験を行なった結果、これ等の触媒は温度差
法を行なう充分な窒化硼素の溶解能を有していないこと
がわかった。但し、Li糸触媒のみは充分な窒化硼素溶
解能を有していたが、1972年のジャーナル、オブ、
クリスタル、グロースhA13.14巻88〜92頁に
デブリーズ等はLi糸触媒では温度の関数としての窒化
硼素の溶解度にあまり差がなく、温度差法の適用は無理
であると述べている。本研究でも同様のことが観測され
た。
Further detailed experiments revealed that these catalysts did not have sufficient ability to dissolve boron nitride for the temperature difference method. However, only the Li thread catalyst had sufficient ability to dissolve boron nitride, but in 1972, Journal of
In Crystal, Growth hA Vol. 13.14, pp. 88-92, DeVries et al. state that with Li thread catalysts, there is not much difference in the solubility of boron nitride as a function of temperature, making it impossible to apply the temperature difference method. The same thing was observed in this study.

そこで本発明者らが鋭意研究を重ねた結果、アルカリ金
属の硼酸塩、アルカリ土類金属のm酸塩の1種以上(以
下A成分とする) LiaN、 Li5BN*の1秤以
上(以下B成分とする) SrsNz、口a*L、 S
rs8zN<。
Therefore, as a result of intensive research by the present inventors, we found that one or more of alkali metal borates and alkaline earth metal m-acid salts (hereinafter referred to as component A), one or more of LiaN, Li5BN* (hereinafter referred to as component B), ) SrsNz, 口 a*L, S
rs8zN<.

8a3QJnの1種以上(以下C成分とする)の混合物
が窒化硼素の溶解能に優れ、温度差法によるCBN単結
晶の合成用溶媒に最適であることを見い出した。これに
よりミリメートルサイズの高品質大型CBN単結晶の合
成が可能になった。
It has been discovered that a mixture of one or more types of 8a3QJn (hereinafter referred to as component C) has excellent ability to dissolve boron nitride and is optimal as a solvent for synthesizing CBN single crystals by the temperature difference method. This has made it possible to synthesize large, high-quality, millimeter-sized CBN single crystals.

本発明により得られたCBN単結晶は黄色透明であり、
従来の温度差法によらない合成法によるCBN粉末や、
特開昭57−156399号公報、又は特開昭60−1
31811号公報で開示されているアルカリ金属又はア
ルカリ土類金属の硼窒化物のみを溶媒として用いた温度
差法によるCBN単結晶と比較しても著しく不純物や、
欠陥の少ない高品質単結晶である。
The CBN single crystal obtained by the present invention is yellow and transparent,
CBN powder produced by a synthesis method that does not rely on the conventional temperature difference method,
JP-A-57-156399 or JP-A-60-1
Compared to the CBN single crystal produced by the temperature difference method using only an alkali metal or alkaline earth metal boronitride as a solvent as disclosed in Publication No. 31811, impurities and
High quality single crystal with few defects.

本発明において使用する溶媒が有効に働く組成は、日成
分が1〜10重量%、C成分が5〜30重量%の範囲で
ある。望ましくはBli、分1〜5重量%、C成分5〜
20重量%がよい。各成分について2種以上の混合物を
用いる場合にはその合計重量が上記の範囲である。又、
この溶媒の構成成分のうちA成分としてはM2[+40
.、 M、B、0.、  (M :アルカリ金属’) 
 M’ sR,Oa、 M’ B、04.  (M ’
 :アルカリ土類金属)等秤々のものを用いることがで
きる。
The composition in which the solvent used in the present invention works effectively is in a range of 1 to 10% by weight of the component and 5 to 30% by weight of the C component. Desirably Bli, 1 to 5% by weight, and C component, 5 to 5% by weight.
20% by weight is good. When using a mixture of two or more types of each component, the total weight is within the above range. or,
Among the constituent components of this solvent, the A component is M2[+40
.. , M, B, 0. , (M: alkali metal')
M' sR, Oa, M' B, 04. (M'
: alkaline earth metals), etc. can be used.

BtL分としては、LI+INを含むことが望ましい。It is desirable that the BtL portion includes LI+IN.

L+sNを含むことにより生成するCBNは高純度のも
のとなる。これは特開昭56−140013号公報で触
れられているようにL+3Nが不純物を選択的に捕集す
るためであると思われる。C成分としてはsrs[IJ
4及び/又はBa5BJ4を用いたときに特に好結果が
得られた。
The CBN produced by including L+sN has high purity. This seems to be because L+3N selectively collects impurities, as mentioned in Japanese Patent Application Laid-open No. 140013/1983. As the C component, srs[IJ
Particularly good results were obtained when using 4 and/or Ba5BJ4.

本発明において用いる原料窒化硼素としては、hBN、
CBN、WBN、(ウルツ鉱型窒化l1lIl!素)、
aBN (アモルファス状窒化硼素)等、特に結晶形は
問わない。但し、できる限り高純度のものを選択する実
験ではCBNとhBNの混合物を用いたときに最もよい
結果が得られた。
The raw material boron nitride used in the present invention includes hBN,
CBN, WBN, (wurtzite type nitride l1lIl! element),
The crystal form does not matter, such as aBN (amorphous boron nitride). However, in experiments to select the highest possible purity, the best results were obtained when a mixture of CBN and hBN was used.

本発明を行なう場合の圧力、温度条件は第1図のA域で
且つ溶媒物質の融点以上の温度である。
The pressure and temperature conditions for carrying out the present invention are in region A of FIG. 1 and at a temperature higher than the melting point of the solvent substance.

溶媒の融点は、A成分として用いる物質及びその混合比
率、又A、B、C,3成分の混合比率等により適宜変え
ることができるので一概には言えない。特に前者による
効果は大であるので、A成分を適当に選択することによ
り、特願昭60−211848号に示されているような
多投合成も可能である。
The melting point of the solvent cannot be generalized because it can be changed as appropriate depending on the substance used as component A, the mixing ratio thereof, the mixing ratio of the three components A, B, and C, and the like. In particular, the effect of the former is great, so by appropriately selecting the A component, multi-dose synthesis as shown in Japanese Patent Application No. 60-211848 is also possible.

以下、実施例により具体的に説明する。Hereinafter, this will be explained in detail using examples.

実施例I CBN粉末とhBN粉末を重量で1=1の比に混合して
型押、成型し原料とした。溶媒はSrsB*Os。
Example I CBN powder and hBN powder were mixed in a ratio of 1=1 by weight, pressed and molded to obtain a raw material. The solvent is SrsB*Os.

LiJ、 SrsBJLを重量で80:5:15の比で
混合し型押、成型して調製した。これらを第2図に示し
た試料室に、径約0.711IIIIのCBN種結晶6
ケとともに配置した。これをベルト型超高圧装置に入れ
、53Kb、原料部の温度が1600℃になるように加
圧、加熱し24時間その条件を保持した后取り出した種
結晶は一部溶解しており、溶媒下部に黄色透明で径1.
5〜2.0mmのCBN単結晶が残った種結晶上に3ケ
、自発核発生により径0.5〜1mmの結晶が5ケ生成
していた。原料がすべてCBNの場合も同様な結果であ
った。
It was prepared by mixing LiJ and SrsBJL in a weight ratio of 80:5:15, pressing and molding. These were placed in the sample chamber shown in FIG.
It was placed with Ke. This was placed in a belt-type ultra-high pressure device, pressurized and heated to 53Kb and the temperature of the raw material part to 1600℃, and after maintaining the conditions for 24 hours, the seed crystals taken out were partially dissolved and It is yellow transparent and has a diameter of 1.
Three CBN single crystals with a diameter of 5 to 2.0 mm were formed on the remaining seed crystal, and five crystals with a diameter of 0.5 to 1 mm were formed due to spontaneous nucleation. Similar results were obtained when all the raw materials were CBN.

実施例2 実施例1におけるSr、tl、OsにかえてCa−13
J−とNaBOiの重量比で4:1の混合物を用いた。
Example 2 Ca-13 instead of Sr, tl, and Os in Example 1
A mixture of J- and NaBOi in a weight ratio of 4:1 was used.

これを51Kb原料部の温度1550℃で24時間保持
したところ、種結晶は溶解していたが、溶媒下部に径1
.0〜1.5ffia+の黄色透明なCBN単結晶が数
ケ自発核発生により生成していた。
When this was kept at a temperature of 1550°C in the 51Kb raw material part for 24 hours, the seed crystal was dissolved, but there was a diameter of 1
.. Several yellow transparent CBN single crystals of 0 to 1.5 ffia+ were produced by spontaneous nucleation.

実施例3 溶媒と種結晶の間に、厚さimmのSrsB*Os円板
を挿入した他は、実施例1と同様の試料構成にしたSr
sB*口、単独では、CBNを殆ど溶解しないので反応
初期、上部溶媒とこのSrsBaOsが均一に混じりあ
うまでの種結晶溶解防止効果が期待された。
Example 3 Sr with the same sample configuration as Example 1 except that an SrsB*Os disk with a thickness of imm was inserted between the solvent and the seed crystal.
Since sB* alone hardly dissolves CBN, it was expected to have the effect of preventing dissolution of the seed crystals at the initial stage of the reaction until the upper solvent and this SrsBaOs were uniformly mixed.

これを51Kb原料部の温度1600℃で72時間保持
したところ種結晶上にのみ径約4mmの黄色透明のCB
N単結晶が成長していた。
When this was kept at the temperature of the 51Kb raw material part at 1600℃ for 72 hours, a yellow transparent CB with a diameter of about 4mm appeared only on the seed crystal.
N single crystal was growing.

実施例4 実施例3におけるLiaNにかえて、LiJN*を用い
て51Kb原料部の温度1600℃で48時間保持した
径3.5開のCBN単結晶が得られた。但し、色はやや
黒みがかっていた。
Example 4 A CBN single crystal with a diameter of 3.5 was obtained by using LiJN* in place of LiaN in Example 3 and maintaining the temperature of the 51 Kb raw material portion at 1600° C. for 48 hours. However, the color was slightly blackish.

実施例5 溶媒としてに、B、Ot、 Li5N、 Ba、BiN
、、 h B Nを85:3:10:2の重量比に混合
したものを用いた以外は、実施例1と同じ試料構成にし
た。2重量%のhBNは特開昭60−131811号公
報にあるように反応初期の種結晶溶解防止効果を期待し
たものである。これを55Kb原料部の温度1550t
:で36時間保持した種結晶上にのみ径約2.511I
mの黄色透明のCBN単結晶が成長していた。
Example 5 As a solvent, B, Ot, Li5N, Ba, BiN
,, h B The sample configuration was the same as in Example 1 except that a mixture of N at a weight ratio of 85:3:10:2 was used. 2% by weight of hBN is expected to have the effect of preventing dissolution of seed crystals at the initial stage of the reaction, as described in Japanese Patent Application Laid-Open No. 131811/1983. The temperature of the 55Kb raw material part is 1550t.
2.511I in diameter only on the seed crystal held for 36 hours at
A yellow transparent CBN single crystal of m was growing.

発明の効果 以上述べたように、本発明の方法によれば、ミリメート
ルサイズの大型CBN単結晶が再現性よく得られる。こ
れによって、従来は研削に頼っていた鉄系金属の超精密
切削加工ができるようになり、その効果ははかり知れな
いものがある。又、CBN単結晶のバンドギャップの高
さ、熱伝導の良さ等を利用した半導体材料への道も開け
てきた。
Effects of the Invention As described above, according to the method of the present invention, large millimeter-sized CBN single crystals can be obtained with good reproducibility. This has made it possible to perform ultra-precision cutting of ferrous metals, which previously relied on grinding, and the effects are immeasurable. In addition, a path has been opened to the development of semiconductor materials that take advantage of the high band gap and good thermal conductivity of CBN single crystals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のCBN単結晶合成条件を説明するため
の窒化硼素の温度、圧力相図である。 !2図は本発明を実施する合成試料室構成の例である。 第1図中Aは高圧相型窒化硼素安定域、Bは立方晶−六
方品型窒化硼素平衡線、Cは六方晶型窒化硼素安定域を
示す。 1:パイロフィライトスリーブ 2:黒鉛ヒーター 3:窒化硼素原料 4:溶媒 5 : CBN種結晶 6:白金製シードベッド 7 : hBN焼結体 8:Ta製容器
FIG. 1 is a temperature and pressure phase diagram of boron nitride for explaining the CBN single crystal synthesis conditions of the present invention. ! FIG. 2 is an example of a synthetic sample chamber configuration for implementing the present invention. In FIG. 1, A indicates the high-pressure phase boron nitride stability region, B indicates the cubic-hexagonal boron nitride equilibrium line, and C indicates the hexagonal boron nitride stability region. 1: Pyrophyllite sleeve 2: Graphite heater 3: Boron nitride raw material 4: Solvent 5: CBN seed crystal 6: Platinum seed bed 7: hBN sintered body 8: Ta container

Claims (2)

【特許請求の範囲】[Claims] (1)立方晶型窒化硼素種結晶の存在下、原料窒化硼素
と溶媒物質を併存させ立方晶型窒化硼素が安定な圧力、
温度条件下で且つ溶媒物質の融点以上の温度で、立方晶
型窒化硼素を合成するにあたり、前記溶媒物質としてア
ルカリ金属の硼酸塩、アルカリ土類金属の硼酸塩の1種
以上、Li_3N、Li_2BN_2の1種以上、Sr
_3N_2、Ba_3N_2、Sr_2B_2N_4、
Ba_3B_2N_4、の1種以上の混合物を用いるこ
とを特徴とする高品質立方晶型窺化硼素単結晶の合成方
法。
(1) In the presence of a cubic boron nitride seed crystal, the pressure at which the raw material boron nitride and solvent material coexist and the cubic boron nitride is stable;
In synthesizing cubic boron nitride under temperature conditions and at a temperature higher than the melting point of the solvent substance, one or more of alkali metal borates, alkaline earth metal borates, Li_3N, Li_2BN_2, etc. are used as the solvent substance. One or more types, Sr
_3N_2, Ba_3N_2, Sr_2B_2N_4,
A method for synthesizing high-quality cubic boron halide single crystals, characterized by using a mixture of one or more types of Ba_3B_2N_4.
(2)Li_3N、Li_3BN_2の1種以上が1〜
10重量%、Sr_3N_2、Ba_3N_2、Sr_
3B_3N_4、Ba_3B_2N_4の1種以上が5
〜30重量%残部がアルカリ金属の硼酸塩、アルカリ土
類金属の硼酸塩の1種以上である特許請求の範囲第1項
記載の高品質立方晶型窒化硼素単結晶の合成方法。
(2) One or more of Li_3N and Li_3BN_2 is 1~
10% by weight, Sr_3N_2, Ba_3N_2, Sr_
3B_3N_4, one or more of Ba_3B_2N_4 is 5
2. The method for synthesizing high quality cubic boron nitride single crystals according to claim 1, wherein the balance of ~30% by weight is one or more of alkali metal borates and alkaline earth metal borates.
JP14225686A 1985-09-24 1986-06-17 Method for synthesizing high quality cubic boron nitride single crystal Expired - Lifetime JPH0691955B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14225686A JPH0691955B2 (en) 1986-06-17 1986-06-17 Method for synthesizing high quality cubic boron nitride single crystal
DE8686112787T DE3674329D1 (en) 1985-09-24 1986-09-16 METHOD FOR SYNTHESISING BORNITRIDE OF THE CUBIC SYSTEM.
EP86112787A EP0220462B1 (en) 1985-09-24 1986-09-16 Method of synthesizing cubic system boron nitride
US06/909,263 US4699687A (en) 1985-09-24 1986-09-19 Method of synthesizing cubic system boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14225686A JPH0691955B2 (en) 1986-06-17 1986-06-17 Method for synthesizing high quality cubic boron nitride single crystal

Publications (2)

Publication Number Publication Date
JPS62297203A true JPS62297203A (en) 1987-12-24
JPH0691955B2 JPH0691955B2 (en) 1994-11-16

Family

ID=15311090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14225686A Expired - Lifetime JPH0691955B2 (en) 1985-09-24 1986-06-17 Method for synthesizing high quality cubic boron nitride single crystal

Country Status (1)

Country Link
JP (1) JPH0691955B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290005A (en) * 1999-04-08 2000-10-17 Showa Denko Kk Production of cubic boron nitride
JP2006016252A (en) * 2004-07-01 2006-01-19 Sumitomo Electric Ind Ltd Nitride single crystal and its producing method
JPWO2004061040A1 (en) * 2003-01-06 2006-05-11 昭和電工株式会社 Cubic boron nitride abrasive, method for producing the same, grindstone using the same, and abrasive cloth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290005A (en) * 1999-04-08 2000-10-17 Showa Denko Kk Production of cubic boron nitride
JPWO2004061040A1 (en) * 2003-01-06 2006-05-11 昭和電工株式会社 Cubic boron nitride abrasive, method for producing the same, grindstone using the same, and abrasive cloth
JP2006016252A (en) * 2004-07-01 2006-01-19 Sumitomo Electric Ind Ltd Nitride single crystal and its producing method
JP4608970B2 (en) * 2004-07-01 2011-01-12 住友電気工業株式会社 Method for producing nitride single crystal

Also Published As

Publication number Publication date
JPH0691955B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
Sumiya et al. Development of high-quality large-size synthetic diamond crystals
JPS5939362B2 (en) Boron nitride compound and its manufacturing method
EP0255327B1 (en) Cubic boron nitride manufacture
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPH06182184A (en) Synthesis of single crystal diamond
US5837214A (en) Method for producing cubic boron nitride
JPS62297203A (en) Method for synthesizing high-quality single crystal of cubic boron nitride
US6248303B1 (en) Method of producing cubic boron nitride
JPS60131811A (en) Method for synthesizing boron nitride
JP6192253B1 (en) Cubic boron nitride particle-containing single crystalline diamond particles and method for producing the same
US4406871A (en) Process for growing diamonds
KR100636415B1 (en) Manufacturing method of cubic boron nitride
JPS60145958A (en) Synthesis of boron nitride
US5869015A (en) Method for producing cubic boron nitride using melamine as a catalyst
JPS6253218B2 (en)
JPS6117405A (en) Production of cubic boron nitride
JP2767896B2 (en) Hard abrasive
JPH0595B2 (en)
Yan et al. Behaviour of graphite-diamond conversion using Ni-Cu and Ni-Zn alloys as catalyst-solvent
JPS6225601B2 (en)
JPS6225602B2 (en)
JPS5848483B2 (en) Synthesis method of cubic boron titanide
RU2097317C1 (en) Method for producing superhard materials
JPS5938165B2 (en) Manufacturing method of cubic boron nitride
JPS59199513A (en) Synthesis of boron nitride of cubic system