JPS62296490A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS62296490A
JPS62296490A JP14066686A JP14066686A JPS62296490A JP S62296490 A JPS62296490 A JP S62296490A JP 14066686 A JP14066686 A JP 14066686A JP 14066686 A JP14066686 A JP 14066686A JP S62296490 A JPS62296490 A JP S62296490A
Authority
JP
Japan
Prior art keywords
end plane
resonator
face
layer
ridges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14066686A
Other languages
Japanese (ja)
Inventor
Takao Shibuya
隆夫 渋谷
Kunio Ito
国雄 伊藤
Yuichi Shimizu
裕一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14066686A priority Critical patent/JPS62296490A/en
Publication of JPS62296490A publication Critical patent/JPS62296490A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the absorption of laser light at an end plane by coating with a small reflection factor protection film on the front end plane of a resonator and with a great reflection factor protection film in the rear end plane of the resonator. CONSTITUTION:On a substrate formed with a ridge wherein the width is made narrower only near the front end plane F of a resonator, each layer including an active layer is formed and on the front end plane F of the resonator, a protection film of reflection factor less than 32% is coated and on the rear end plane R of the resonator, a protection film of reflection factor more than 32% is coated. For example, a mesa is formed on the (100) plane of the p-type GaAs substrate 1 in the direction <011>, an n-type GaAs current constriction layer 2 is grown and two parallel ridges 2a, 2b are formed. The width of the ridges 2a, 2b is made 10mum within 15mum from the front end plane F and 50mum in the region except the above region. The first-the fourth layers 3-5 are formed, a wafer is cleft, an Al2O3 film 1/4 wavelength thick is coated on the front end plane F and the Al2O3 film 1/4 wavelength thick and an Si film 1/4 wavelength thick are alternately coated with four layers on the rear end plane R.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は半導体レーザ装置に関するものである。[Detailed description of the invention] 3. Detailed description of the invention Industrial applications The present invention relates to a semiconductor laser device.

従来の技術 近年、光デイスクファイルの書き込み用、あるいはレー
ザプリンターなどの広い分野での用途のために、基本横
モード発振をする高出力半導体レーザ装置の需要が高ま
っている。この要求に答えるべく、本発明者らはすでに
B T RS (BurriedTwin−Ridge
 5ubstrate)構造の半導体レーザ装置を提案
した。その断面を第8図に示す。p型G a A s基
板1上にメサ1aを形成し、その上へn型G a A 
s電流狭窄層2を成長させる。電流狭窄層2には2つの
平行なリッジ2a、2bを形成する。
BACKGROUND OF THE INVENTION In recent years, there has been an increasing demand for high-power semiconductor laser devices that emit fundamental transverse mode oscillation for use in a wide range of fields such as writing optical disk files and laser printers. In order to meet this demand, the present inventors have already developed BT RS (Burried Twin-Ridge).
We proposed a semiconductor laser device with a 5-substrate structure. The cross section is shown in FIG. A mesa 1a is formed on a p-type GaAs substrate 1, and an n-type GaAs is formed on it.
s current confinement layer 2 is grown. Two parallel ridges 2a and 2b are formed in the current confinement layer 2.

その上へpWGal−エAl工Asクラッド層3.ノン
ドープGa1−、AJ、Asi性層4.n型Ga 1−
xAl xAsクラッド層5.n型G a A sコン
タクト層6を液相エピタキシャル成長法により成長させ
、その後電極7,8を形成する。基板1から注入された
電流は、メサ1a上の2つのリッジ2a、2bの間だけ
を流れて、活性層4の発光領域にのみ効率的に注入され
る。一方、結晶成長の異方性にょシ、リッジ2 a 、
 2−b上の成長はりフジ2a、2b側面に比べて抑制
されるため、リッジ2a 、2b上では極めて薄い活性
層を形成することができる。この活性層の薄膜化の結果
、活性層内への光の閉じ込め係数が小さくなるために、
光はクラッド層へ大きくしみ出し、発光スポットサイズ
は大きくなシ、発光端面での光パワー密度を小さくする
ことができる。このように、電流注入の効率化、活性層
の薄膜化を行うことにより半導体レーザの高出力化が可
能となる。一方、第1クラッド層3内にしみ出した光は
溝部以外のりフジ2a、2b上では基板に吸収されるた
めに、リッジ2a、2b間の溝部に閉じ込められ、ここ
で安定な基本横モード発振が得られる。
3. On top of that is a pWGal-Air Aluminum As cladding layer. Non-doped Ga1-, AJ, Asi layer 4. n-type Ga 1-
xAl xAs cladding layer5. An n-type GaAs contact layer 6 is grown by liquid phase epitaxial growth, and then electrodes 7 and 8 are formed. The current injected from the substrate 1 flows only between the two ridges 2a and 2b on the mesa 1a, and is efficiently injected only into the light emitting region of the active layer 4. On the other hand, the anisotropy of crystal growth, Ridge 2a,
Since the growth on the ridges 2-b is suppressed compared to the sides of the ridges 2a and 2b, an extremely thin active layer can be formed on the ridges 2a and 2b. As a result of this thinning of the active layer, the light confinement coefficient within the active layer becomes smaller.
The light largely seeps into the cladding layer, the light emitting spot size is large, and the optical power density at the light emitting end face can be reduced. In this way, by increasing the efficiency of current injection and making the active layer thinner, it is possible to increase the output of the semiconductor laser. On the other hand, the light seeping into the first cladding layer 3 is absorbed by the substrate on the ridges 2a and 2b other than the groove, and is thus confined in the groove between the ridges 2a and 2b, where stable fundamental transverse mode oscillation occurs. is obtained.

発明が解決しようとする問題点 しかしながら、上記のような構成では、光出力を増して
いくに従って発光端面での光の吸収が増大し、ついには
破壊を生じさせてしまう。この破壊レベルが半導体レー
ザ装置の最大光出力を決める最も大きな要因となってい
た。
Problems to be Solved by the Invention However, with the above configuration, as the optical output increases, the absorption of light at the light emitting end surface increases, eventually causing destruction. This level of destruction was the most important factor in determining the maximum optical output of a semiconductor laser device.

本発明は、上記欠点に鑑み、BTR3構造の特性を生か
しつつ、従来のものに比べて端面近傍での光吸収を少な
くすることによって、より高出力を実現できる半導体レ
ーザ装置を提供しようとするものである。
In view of the above-mentioned drawbacks, the present invention aims to provide a semiconductor laser device that can realize higher output by reducing light absorption near the end facets compared to conventional devices while taking advantage of the characteristics of the BTR3 structure. It is.

問題点を解決するための手段 上記問題点を解決するために、本発明の半導体レーザ装
置は、共振器の前方端面近傍でのみ幅が狭くなっている
リッジを形成した基板上に、活性層を含む各層が形成さ
れ、共振器の前方端面には反射率が32%より小さくな
る保護膜を被覆し、共振器後方端面には反射率が32チ
よシも大きくなる保護膜を被覆した構成からなる。
Means for Solving the Problems In order to solve the above problems, the semiconductor laser device of the present invention includes an active layer formed on a substrate having a ridge whose width is narrow only near the front end facet of the resonator. The front end face of the resonator is coated with a protective film with a reflectance of less than 32%, and the rear end face of the resonator is coated with a protective film with a reflectance as high as 32%. Become.

作  用 この構成によって、端面近傍での内部光パワーを下げ、
また、端面近傍での光吸収を少なくすることによって高
出力を実現することができる。
Effect: This configuration lowers the internal optical power near the end face,
Further, high output can be achieved by reducing light absorption near the end face.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。p型G a A s基板1の(100)面上
に〈oll〉方向にメサを形成する。メサの幅は8μm
、高さは1.7μmとした(第2図a)。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. A mesa is formed on the (100) plane of a p-type GaAs substrate 1 in the <oll> direction. Mesa width is 8μm
, and the height was 1.7 μm (Fig. 2a).

この基板上に液相エピタキシャル成長法によりn型G 
a A a電流狭窄層2をメサ上の膜厚が1.0μmと
なるまで成長させた(第2図b)。この後、エツチング
により、2つの平行なリッジ2a、2bを形成した。リ
ッジ2a、2bの幅は、前方端面から16μm以内は1
0μmとし、それ以外の部分では50μmとした。リッ
ジ2a 、2bの高さは1.5μmとし、リッジ2a、
2bの溝の幅は4μmとした(第2図C)。この基板上
に液相エピタキシャル成長法により、第3層n型Ga0
M5AlQ15Asクラッド層3をリッジ2a、2b上
の平坦部で0.2μm、第2層ノンドープGao、9A
10.1As活性層4を同じ場所で0.06μm 、第
3層n型Ga0.5AJo、5Asクラッド層6を同じ
場所で1.5μm。
On this substrate, n-type G was grown by liquid phase epitaxial growth.
a A current confinement layer 2 was grown on the mesa until the film thickness was 1.0 μm (FIG. 2b). Thereafter, two parallel ridges 2a and 2b were formed by etching. The width of the ridges 2a and 2b is 1 within 16 μm from the front end surface.
The thickness was set to 0 μm, and the other portions were set to 50 μm. The height of the ridges 2a and 2b is 1.5 μm.
The width of the groove 2b was 4 μm (FIG. 2C). A third layer of n-type Ga0 was formed on this substrate by liquid phase epitaxial growth.
The M5AlQ15As cladding layer 3 is 0.2 μm thick on the flat part on the ridges 2a and 2b, and the second layer is non-doped Gao, 9A.
10.1As active layer 4 is 0.06 μm thick at the same location, third layer n-type Ga0.5AJo, 5As cladding layer 6 is 1.5 μm thick at the same location.

第4層n型G a A sコンタクト層6を4.0μm
の厚さになるように、連続成長を行なった。その後、成
長表面にn型電極用金属を蒸着し、合金処理を行なって
n側電極7を形成した。基板側にはp側電極用金属を蒸
着し、合金処理を行なってp側電極8を形成した(第2
図d)。
The thickness of the fourth layer n-type GaAs contact layer 6 is 4.0 μm.
Continuous growth was performed to obtain a thickness of . Thereafter, a metal for an n-type electrode was deposited on the growth surface, and an alloying process was performed to form an n-side electrode 7. A metal for the p-side electrode was deposited on the substrate side, and an alloying process was performed to form the p-side electrode 8 (second
Figure d).

このウェハーを骨間し、前方端面に2波長の膜厚のAl
2O3のコーティングを行ない、後方端面にR波長の膜
厚のA12o3とノイ波長のStを交互に4層コーティ
ングを行なった。コーティングを行なわないときの端面
の反射率は32チであるが、上記のコーティングによシ
、前方端面の反射率は2.5%、後方端面の反射率は9
3%となった。
This wafer is placed between the bones, and the front end face is coated with an Al film with a thickness of two wavelengths.
2O3 coating was carried out, and four layers of A12o3 having a thickness of R wavelength and St having a thickness of Neu wavelength were alternately coated on the rear end face. The reflectance of the end face without coating is 32%, but with the above coating, the reflectance of the front end face is 2.5% and the reflectance of the rear end face is 9%.
It became 3%.

これをStチップ上にマウントして完成する(第1図)
Mount this on the St chip and complete it (Figure 1)
.

以上のように端面近傍でリッジの幅を狭くすることによ
って、端面での光の吸収を無くし、高出力を得ることが
できた。このことについて以下に説明する。第2図dの
A −A’及びB −B’での断面図をそれぞれ第3図
a、bに示す。レーザチップの中心付近(A−A’)と
、前方端面近傍(B−B’)では、リッジ2a 、2b
の幅WRの異なるBTRSレーザ装置となっている。と
ころで、BTRSレーザ装置においては、第4図に示す
ように、リッジ2a、2bの幅WRが小さい程、リッジ
上での成長膜厚が薄くなるという特徴がある。また、液
相エピタキシャル成長においては、第5図に示すように
、活性層の成長速度が遅いほど、結晶中のAJの組成比
が大きくなり、禁制帯幅が大きくなる傾向がある。第4
図及び第6図の結果より、第2図において、レーザチッ
プの端面近傍の活性層膜厚dBはレーザチップの中心付
近の膜厚dAよりも薄くなり、その結果、禁制帯幅は、
端面近傍のみ大きくなる。その様子を第6図に示す。図
から明らかなように、レーザチップ内部で生じたレーザ
光は、端面近傍では禁制帯幅が大きいために吸収を受け
ない(ウィンドウ効果)。そのため、レーザ装置の最大
光出力を決定する端面破壊が起こりにくく、非常に大き
な光出力を得ることができる。また、端面の反射率を制
御することにより、レーザ内部の光パワー密度を下げる
ことにより、更に、破壊レベルを上昇せしめた。このこ
とについて、以下説明する。
As described above, by narrowing the width of the ridge near the end face, it was possible to eliminate light absorption at the end face and obtain high output. This will be explained below. Cross-sectional views along lines A-A' and B-B' in FIG. 2d are shown in FIGS. 3a and 3b, respectively. There are ridges 2a and 2b near the center of the laser chip (A-A') and near the front end face (B-B').
The BTRS laser devices have different widths WR. Incidentally, as shown in FIG. 4, the BTRS laser device has a characteristic that the smaller the width WR of the ridges 2a and 2b, the thinner the film grown on the ridge becomes. Furthermore, in liquid phase epitaxial growth, as shown in FIG. 5, there is a tendency that the slower the growth rate of the active layer, the larger the composition ratio of AJ in the crystal, and the larger the forbidden band width. Fourth
From the results shown in Fig. 6 and Fig. 6, in Fig. 2, the active layer film thickness dB near the end face of the laser chip is thinner than the film thickness dA near the center of the laser chip, and as a result, the forbidden band width is
It becomes larger only near the end face. The situation is shown in FIG. As is clear from the figure, the laser light generated inside the laser chip is not absorbed near the end face because the forbidden band width is large (window effect). Therefore, end face breakage, which determines the maximum optical output of the laser device, is less likely to occur, and a very large optical output can be obtained. Moreover, by controlling the reflectance of the end face, the optical power density inside the laser was lowered, thereby further increasing the level of destruction. This will be explained below.

第7図は、前方端面の光出力が10mWのときの、レー
ザ内部の光パワー分布を示したものである。曲線1は、
前方端面反射率Rr と後方端面反射率Rf とが共に
32チのときの光パワー分布である。一方、曲線2は、
Rr=93%、 Rf=2.6%のときの光パワー分布
である。曲線2の場合には、曲線1に比べて著しく内部
光パワー密度が低下していることがわかる。このように
、前方端面の反射率を下げ、後方端面の反射率を上げる
ことによって、内部光パワーを下げることができ、これ
によって破壊レベルを更に上昇することができた。
FIG. 7 shows the optical power distribution inside the laser when the optical output at the front end facet is 10 mW. Curve 1 is
This is the optical power distribution when both the front end face reflectance Rr and the rear end face reflectance Rf are 32 inches. On the other hand, curve 2 is
This is the optical power distribution when Rr=93% and Rf=2.6%. It can be seen that in the case of curve 2, the internal optical power density is significantly lower than in curve 1. In this way, by lowering the reflectance of the front end face and increasing the reflectance of the rear end face, it was possible to lower the internal optical power, thereby further increasing the level of destruction.

事実、本実施例に基づいて作製した半導体レーザ装置で
は、最大光出力230mWという高出力を実現できた。
In fact, the semiconductor laser device manufactured based on this example was able to achieve a high output of maximum optical output of 230 mW.

発明の効果 以上の如く、本発明の半導体レーザ装置では、共振器の
前方端面近傍でのみ幅が狭くなっているリッジを形成し
た基板上に、活性層を含む各層が形成され、共振器の前
方端面には反射率が32%より小さくなる保護膜を被覆
し、共振器後方端面には反射率が32%よりも大きくな
る保護膜を被覆することによって、端面でのレーザ光の
吸収を減少させ、また、レーザ内部光パワーを低下させ
て、最大光出力を高めることができ、その実用的価値は
大なるものがある。
Effects of the Invention As described above, in the semiconductor laser device of the present invention, each layer including the active layer is formed on a substrate having a ridge whose width is narrow only near the front end face of the resonator. By coating the end face with a protective film that has a reflectance smaller than 32%, and covering the rear end face of the cavity with a protective film that has a reflectance larger than 32%, absorption of laser light at the end face can be reduced. Furthermore, the maximum optical output can be increased by lowering the internal optical power of the laser, which has great practical value.

【図面の簡単な説明】 第1図は本発明の一実施例における半導体レーザ装置の
斜視図、第2図a、b、c、dは本発明の一実施例にお
ける半導体レーザ装置の製造工程における斜視図、第3
図a、bは本発明の一実施例における半導体レーザ装置
の中心付近および端面近傍における断面図、第4図はB
TRSレーザ装置におけるリッジの幅とりフジ上膜厚の
関係を示す特性図、第5図は液相エピタキシャル成長に
おける活性層の成長速度とその禁制帯幅の関係を示す特
性図、第6図は本発明の一実施例における半導体レーザ
装置の活性層の禁制帯幅の分布を示す分布図、第7図は
本発明の一実施例における半導体レーザ装置の内部の光
パワー分布を示す分布図、第8図は従来のBTRSレー
ザ装置の断面図である。 1・・・・・・p型G a A s基板、2・・・・・
・n型G a A s電流狭窄層、3・・・・・・p型
Ga1−エAl!Asクラッド層、4・・・・・・ノン
ドープGa1−アAl yAs活性層、6・・・・・・
n型Ga1−xAJxAsクラッド層、6−・−−−−
n型GaAsコンタクト層、7・・・・・・n側オーミ
ック電極、8・・・・・・p側片−ミック電極、9・・
・・・・〆波長膜厚のAe2o3コーティング保護膜、
1o・−・・・・2波長膜厚のAl2O3とSi の4
層コーティング保護膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第2図 第3図 第4図 第  、  図        リ・伽中1 w“ 輛
“)第 。 a        1古導生4の・6覧長
躾4  (、lAmン← ウイシ(つ4J域 第7図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a perspective view of a semiconductor laser device according to an embodiment of the present invention, and FIGS. Perspective view, 3rd
Figures a and b are cross-sectional views near the center and near the end face of a semiconductor laser device according to an embodiment of the present invention, and Figure 4 is B.
A characteristic diagram showing the relationship between the width of the ridge and the film thickness on the ridge in a TRS laser device, FIG. 5 is a characteristic diagram showing the relationship between the growth rate of the active layer and its forbidden band width in liquid phase epitaxial growth, and FIG. 6 is a characteristic diagram showing the relationship between the width of the ridge and the film thickness on the ridge. FIG. 7 is a distribution diagram showing the distribution of the forbidden band width of the active layer of the semiconductor laser device in one embodiment of the present invention. FIG. 8 is a distribution diagram showing the optical power distribution inside the semiconductor laser device in one embodiment of the present invention. is a cross-sectional view of a conventional BTRS laser device. 1...p-type GaAs substrate, 2...
・N-type GaAs current confinement layer, 3...p-type Ga1-air Al! As cladding layer, 4... Non-doped Ga1-Al yAs active layer, 6...
n-type Ga1-xAJxAs cladding layer, 6-・----
n-type GaAs contact layer, 7... n-side ohmic electrode, 8... p-side piece-mic electrode, 9...
...Ae2o3 coating protective film with wavelength film thickness,
1o...4 of Al2O3 and Si with 2 wavelength film thickness
Layer coating protective film. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 2 Figure 3 Figure 4 Figure 2 Figure 3 Figure 4 Figure 1. a 1 Kodosei 4, 6 Ranchotei 4

Claims (1)

【特許請求の範囲】[Claims] ストライプ状凸部を有する一導電型の半導体基板上に、
前記一導電型とは反対の導電型の層が形成され、前記凸
部直上の前記反対導電型の層の表面から前記凸部に達す
る深さのストライプ状の溝が形成されるとともに、前記
溝の外側に、たがいに平行な二つのリッジが、共振器前
方端面近傍で幅が狭くなるように形成され、前記リッジ
を有する基板上に、第1クラッド層、活性層、第2クラ
ッド層が形成され、前記前方端面には反射率が32%よ
りも小さい保護膜が、後方端面には反射率が32%より
も大きい保護膜が形成されていることを特徴とする半導
体レーザ装置。
On a semiconductor substrate of one conductivity type having striped convex portions,
A layer of a conductivity type opposite to the one conductivity type is formed, and a striped groove having a depth reaching the convex portion is formed from the surface of the layer of the opposite conductivity type directly above the convex portion, and the groove is Two parallel ridges are formed on the outside of the resonator so that the width becomes narrow near the front end face of the resonator, and a first cladding layer, an active layer, and a second cladding layer are formed on the substrate having the ridges. A semiconductor laser device characterized in that a protective film having a reflectance of less than 32% is formed on the front end face, and a protective film having a reflectance of more than 32% is formed on the rear end face.
JP14066686A 1986-06-17 1986-06-17 Semiconductor laser device Pending JPS62296490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14066686A JPS62296490A (en) 1986-06-17 1986-06-17 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14066686A JPS62296490A (en) 1986-06-17 1986-06-17 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS62296490A true JPS62296490A (en) 1987-12-23

Family

ID=15273936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14066686A Pending JPS62296490A (en) 1986-06-17 1986-06-17 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS62296490A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137287A (en) * 1988-11-17 1990-05-25 Sanyo Electric Co Ltd Semiconductor laser device
JPH0451581A (en) * 1990-06-19 1992-02-20 Toshiba Corp Semiconductor laser device
US5721752A (en) * 1995-12-15 1998-02-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2013516765A (en) * 2009-12-30 2013-05-13 アイピージー フォトニクス コーポレーション Optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167488A (en) * 1984-02-10 1985-08-30 Hitachi Ltd Semiconductor laser device
JPS60257583A (en) * 1984-06-04 1985-12-19 Matsushita Electric Ind Co Ltd Semiconductor laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167488A (en) * 1984-02-10 1985-08-30 Hitachi Ltd Semiconductor laser device
JPS60257583A (en) * 1984-06-04 1985-12-19 Matsushita Electric Ind Co Ltd Semiconductor laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137287A (en) * 1988-11-17 1990-05-25 Sanyo Electric Co Ltd Semiconductor laser device
JPH0451581A (en) * 1990-06-19 1992-02-20 Toshiba Corp Semiconductor laser device
US5721752A (en) * 1995-12-15 1998-02-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2013516765A (en) * 2009-12-30 2013-05-13 アイピージー フォトニクス コーポレーション Optical element

Similar Documents

Publication Publication Date Title
US4329660A (en) Semiconductor light emitting device
KR900000075B1 (en) Semiconductor laser diode
JPH01175285A (en) Semiconductor laser device
JP2863677B2 (en) Semiconductor laser and method of manufacturing the same
JPS62296490A (en) Semiconductor laser device
JPS60789A (en) Semiconductor laser device
EP0178912B1 (en) A semiconductor laser
US4821278A (en) Inverted channel substrate planar semiconductor laser
US5042046A (en) Semiconductor laser device
JPS5984577A (en) Semiconductor laser
JPH0797689B2 (en) Semiconductor laser device
JPH0671121B2 (en) Semiconductor laser device
JPS6297384A (en) Semiconductor laser device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP2940158B2 (en) Semiconductor laser device
JP3075512B2 (en) Semiconductor laser device
JPS6334993A (en) Semiconductor laser device
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS62214687A (en) Structure of semiconductor laser
JP2988552B2 (en) Semiconductor laser device and method of manufacturing the same
JPS60257583A (en) Semiconductor laser device
EP0395436A2 (en) A semiconductor laser device, a semiconductor wafer, and a method for the production of the same
JPS609187A (en) Semiconductor light-emitting device
JPS61244082A (en) Semiconductor laser device
JPS6136720B2 (en)