JPS62296370A - Fuel cell power generating plant - Google Patents

Fuel cell power generating plant

Info

Publication number
JPS62296370A
JPS62296370A JP61138219A JP13821986A JPS62296370A JP S62296370 A JPS62296370 A JP S62296370A JP 61138219 A JP61138219 A JP 61138219A JP 13821986 A JP13821986 A JP 13821986A JP S62296370 A JPS62296370 A JP S62296370A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
compressed air
compressor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61138219A
Other languages
Japanese (ja)
Inventor
Yasushi Uchida
内田 恭嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61138219A priority Critical patent/JPS62296370A/en
Publication of JPS62296370A publication Critical patent/JPS62296370A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase compression efficiency of a compressor at a low cost by installing a plurality of compressing mechanisms which compress oxidizing agent, and arranging a cooling unit which cools compressed oxidizing agent by heat exchange with fuel between compressing mechanisms. CONSTITUTION:Low pressure side compressing mechanism 21 and high pressure side compressing mechanism 22 each comprising an exhaust gas turbine and a compressor are installed in order to supply compressed oxidizing agent to a positive electrode gas space of a fuel cell of fuel cell power generating plant. A cooling unit 23 which passes fuel a to a fuel treatment unit 10 from a fuel supply source A through a secondary coil 23a to cool high temperature, high pressure compressed air d is arranged between compressing mechanisms 21A, 22A. By compressing again cooled compressed air, the second step compression is effectively performed to increase compression efficiency. Decrease in controllability caused by use of large compressor is eliminated and compressed air having high compression rate can be obtained at a low cost.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の目的〕 (産業上の利用分野) 本発明は、水素−酸素燃料電池等の燃料電池を有する燃
料電池発電プラントに係り、特に、燃料電池に供給され
る圧縮酸化剤(圧縮空気)を冷却するようにした燃料電
池発電プラントに130する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Object of the Invention] (Field of Industrial Application) The present invention relates to a fuel cell power generation plant having a fuel cell such as a hydrogen-oxygen fuel cell, and in particular, The compressed oxidant (compressed air) supplied to the fuel cell is supplied to the fuel cell power plant 130 for cooling.

(従来の技術) 一般に、燃料電池発電プラントは燃料と酸化剤とを化学
反応させて直流電力を発電させる燃料電池を有する。
(Prior Art) Generally, a fuel cell power generation plant has a fuel cell that generates DC power by chemically reacting fuel and an oxidizing agent.

従来、この種の燃料用)1発電プラントは第2図に示す
ように構成され、燃料電池1は電解質保持マトリックス
2の上下に正極3と負極4とをそれぞれ積層して、正極
ガススペース5と負極ガススペース6とをそれぞれ設け
、正極3と負極4とに負荷7を接続して、正極ガススペ
ース5の上方に冷却器8を設けている。
Conventionally, a power generation plant for this type of fuel)1 is configured as shown in FIG. A load 7 is connected to the positive electrode 3 and the negative electrode 4, and a cooler 8 is provided above the positive electrode gas space 5.

負極ガススペース6はシフトコンバータ9、燃料処理装
δ10の改質器10Aおよび燃料ポンプ11に接続され
、この燃料ポンプ11の駆動によりメタンガス等の水素
を含む燃料aを気水分離器12からの水蒸気すと混合し
て、改質器10Aおよびシフトコンバータ9にこの順に
与えられ、これにより得られた水素が負極ガススペース
6に供給される。
The negative electrode gas space 6 is connected to the shift converter 9, the reformer 10A of the fuel processing device δ10, and the fuel pump 11, and when the fuel pump 11 is driven, the fuel a containing hydrogen such as methane gas is converted into water vapor from the steam separator 12. The hydrogen is then mixed and supplied to the reformer 10A and the shift converter 9 in this order, and the hydrogen thus obtained is supplied to the negative electrode gas space 6.

一方、燃料電池1の正極ガススペース5は空気流を適宜
流量で分流させるエアーコントロールボックス13を介
して圧縮機14の圧縮機構14Aの吐出口に接続され、
圧縮114にて圧縮された酸化剤、例えば圧縮空気dが
給気される。
On the other hand, the positive electrode gas space 5 of the fuel cell 1 is connected to the discharge port of the compression mechanism 14A of the compressor 14 via an air control box 13 that divides the air flow at an appropriate flow rate.
A compressed oxidizer, such as compressed air d, is supplied in the compression 114.

圧縮1f114は補助バーナ15から排気される排ガス
fにより駆動される排ガスタービン14Bの出力軸に圧
縮機構14Aの回転軸を連動可能に結合しており、圧縮
!l構1/IAを排ガスタービン14Bにより駆動する
ようになっている。
The compression 1f 114 has the rotating shaft of the compression mechanism 14A coupled to the output shaft of the exhaust gas turbine 14B driven by the exhaust gas f exhausted from the auxiliary burner 15 so as to be interlocked with each other. 1/IA is driven by an exhaust gas turbine 14B.

一方、燃料電池1では正極ガススペース5に与えられた
圧縮空気dと、負極ガススペース6に与えられた水素と
が化学反応して直ffl電力eを発電すると共に、水を
生成し、水素ガスをまだ多聞に含む高温高圧の排ガスf
を正、負極ガススペース5.6からそれぞれ排出する。
On the other hand, in the fuel cell 1, the compressed air d given to the positive electrode gas space 5 and the hydrogen given to the negative electrode gas space 6 chemically react to generate direct ffl electric power e, generate water, and generate hydrogen gas. High-temperature, high-pressure exhaust gas that still contains a large amount of
are discharged from the positive and negative electrode gas spaces 5.6, respectively.

このときに高温となる燃料電池1は冷却ポンプ16の駆
動により気水分11312内のドレン水をラジェータ1
7に通水させて冷却してから冷却コイル8を通水させて
、冷N1され、一方冷却の際に加熱された冷却水は気水
分離7j12内にて蒸発し、蒸気を発生させる。
At this time, the fuel cell 1, which becomes high in temperature, drains the drain water in the steam and moisture 11312 to the radiator 1 by driving the cooling pump 16.
7 is cooled, and then water is passed through the cooling coil 8 to cool N1. On the other hand, the cooling water heated during cooling is evaporated in the steam/water separator 7j12 to generate steam.

負極ガススペース6からの排ガスfは燃料処理装置10
の改質器バーナ10Bに戻され、ここで、エアーコント
ローラボックス13からの圧縮空気dと混合されて燃焼
し、改質器10Aの熱諒として利用される。
Exhaust gas f from the negative electrode gas space 6 is sent to the fuel processing device 10
The air is returned to the reformer burner 10B, where it is mixed with compressed air d from the air controller box 13, combusted, and used as heat exchanger for the reformer 10A.

一方、正極ガススペース5からの排ガスfは再生器18
を経て、コンデンサ19へ与えられ、ここで、排ガス中
の水分が冷却凝縮されて除去され、ドレンは気水分N器
12へ戻され、排ガス分は水素ガスを含んでいるので、
再び再生器18で再熱されてから補助バーナ15に戻さ
れ、ここで、燃料aと混合されて燃焼される。
On the other hand, the exhaust gas f from the positive electrode gas space 5 is transferred to the regenerator 18
The water in the exhaust gas is cooled and condensed and removed, and the drain is returned to the steam/moisture N unit 12. Since the exhaust gas contains hydrogen gas,
After being reheated again in the regenerator 18, it is returned to the auxiliary burner 15, where it is mixed with fuel a and combusted.

補助バーナ15より排出された排ガスfは上述したよう
に圧縮114の排ガスタービン14Bに導入されて、こ
れを駆動し、圧縮i構14Aが連動して、その吸込口よ
り空気が吸い込まれてL[縮され、吐出口より圧縮空気
dが吐出され、この圧縮空気dは酸化剤として燃料電池
3の正極ガススペース5に与えられる。
As mentioned above, the exhaust gas f discharged from the auxiliary burner 15 is introduced into the exhaust gas turbine 14B of the compression 114 and drives it, and the compression i mechanism 14A is interlocked to suck air from its suction port to L[ The compressed air d is discharged from the discharge port, and this compressed air d is given to the positive electrode gas space 5 of the fuel cell 3 as an oxidizing agent.

以上の繰り返しにより燃料電池3に直流電力eが連続的
に出力される。
By repeating the above steps, DC power e is continuously output to the fuel cell 3.

(発明が解決しようとする問題点) ところで、一般に燃料電池では、その燃料と酸化剤の反
応物質の圧力の増大に比例して効率が増大することが周
知であるので、第2図で示す従来例においても酸化剤と
しての空気を圧縮している。
(Problems to be Solved by the Invention) By the way, it is generally known that the efficiency of fuel cells increases in proportion to the increase in the pressure of the reactants of fuel and oxidizer. In the example as well, air is compressed as an oxidizing agent.

この空気を圧縮する圧縮機を、燃料電池で発電した電力
を受電するモータ等で駆動すると、モータ駆動のための
電力が別途必要となり、その分高価な燃料電池等の大型
化を招いて、却ってコスト高となるので、従来例のよう
に補助バーナ15からの排ガスにより排ガスタービン1
4Bを駆動し、この排ガスタービン14Bにより圧縮医
横14Aを駆動させる圧縮機14を設けている。
If the compressor that compresses this air is driven by a motor that receives electricity generated by a fuel cell, additional electricity will be required to drive the motor, which will lead to an increase in the size of the expensive fuel cell. Since the cost would be high, unlike the conventional example, the exhaust gas turbine 1 is
A compressor 14 is provided, which drives the compressor 4B and uses the exhaust gas turbine 14B to drive the compressor side 14A.

しかしながら、このような従来の燃料電池発電プラント
において圧縮空気の圧縮度を高める場合には、圧縮Jf
i14の大型化を招くという欠点があった。
However, when increasing the compression degree of compressed air in such a conventional fuel cell power plant, the compression Jf
The drawback was that it made the i14 larger.

圧縮機14が大型化すると、憤性質聞の増加による時定
数の増加、それに伴う制御の遅れ、振動の増大、コスト
増等種々の問題が発生し、特に、負荷追従性に優れた燃
料電池発電プラントにおいて圧縮機の1IiIJl!l
lの遅れは極めて大きな悪影響を与えることになる。
When the compressor 14 becomes larger, various problems arise, such as an increase in time constant due to an increase in the irradiance, a corresponding control delay, an increase in vibration, and an increase in cost. 1IiIJl of the compressor in the plant! l
A delay in l will have a very large negative effect.

そこで、本発明は圧縮機の圧縮効率を低コストで高める
ことができる燃料電池R1fプラントを提供することを
目的とする。
Therefore, an object of the present invention is to provide a fuel cell R1f plant that can increase the compression efficiency of a compressor at low cost.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は上流側の圧縮機にて圧縮された圧縮酸化剤を冷
却器で冷却して、次段の圧縮機における圧縮酸化剤の再
圧縮の効率の向上を主に図ったものであり、次のように
構成される。
(Means for Solving the Problems) The present invention improves the efficiency of recompressing the compressed oxidant in the next stage compressor by cooling the compressed oxidant compressed in the upstream compressor with a cooler. It is mainly aimed at, and is structured as follows.

燃料と酸化剤とが供給される燃料電池を右する燃料電池
発電プラントにおいて、上記酸化剤を圧縮する圧縮機構
を排ガスタービンにより駆動する圧縮機を複数台設け、
これら圧縮■間には上流側の圧縮機より吐出される圧縮
酸化剤を上記燃料と熱交換させて冷却する冷却器を設け
た。
In a fuel cell power generation plant in which a fuel cell is supplied with fuel and an oxidizer, a plurality of compressors are provided in which a compression mechanism for compressing the oxidizer is driven by an exhaust gas turbine,
A cooler was provided between these compressors (1) for cooling the compressed oxidizing agent discharged from the upstream compressor by exchanging heat with the fuel.

(作用) 上流側の圧縮機では排ガスを導入する排ガスタービンに
より圧縮機構を駆動して、空気等の酸化剤を圧縮し、高
温高圧の圧縮酸化剤を冷却器へ吐出する。
(Function) In the upstream compressor, the exhaust gas turbine that introduces the exhaust gas drives the compression mechanism, compresses the oxidizing agent such as air, and discharges the compressed oxidizing agent at high temperature and high pressure to the cooler.

この圧縮酸化剤(圧縮空気)は冷却器にて、燃料と熱交
換をして冷却されて、次段の圧縮機に導入される一方、
燃料を加温して気化させる。
This compressed oxidizer (compressed air) is cooled by exchanging heat with the fuel in the cooler, and then introduced into the next stage compressor.
Heats the fuel and vaporizes it.

したがって、次段の圧縮機で圧縮酸化剤を再度圧縮する
場合は、この圧縮酸化剤が冷却器で既に冷却されている
ので、その圧縮効率を高めることができる。これにより
、圧縮機を大型化することなく、高圧縮度の圧縮酸化剤
を得ることができる。
Therefore, when compressing the compressed oxidant again in the next-stage compressor, the compression efficiency can be increased because the compressed oxidant has already been cooled in the cooler. Thereby, a compressed oxidizing agent with a high degree of compression can be obtained without increasing the size of the compressor.

しかも、圧縮酸化剤を冷却する冷却器は燃料電池に与え
られる燃料を冷kl材とするので、冷却器の冷却材を冷
却する二次冷却材の冷却系を別途設【プる必要がなく、
コスト低減を図ることができる。
Moreover, since the cooler that cools the compressed oxidizer uses cold KL as the fuel supplied to the fuel cell, there is no need to separately install a cooling system for the secondary coolant that cools the coolant in the cooler.
Cost reduction can be achieved.

(実施例) 以下、本発明の実施例を第1図に基づいて説明する。な
お、第1図中、第2図と共通する部分には同一符号を付
している。
(Example) Hereinafter, an example of the present invention will be described based on FIG. 1. In FIG. 1, parts common to those in FIG. 2 are given the same reference numerals.

第1図は本発明の一実施例の要部を示しており、本実施
例はこの要部を除いて第2図で示す従来例と同様である
ので、その重複した説明は省略する。
FIG. 1 shows a main part of an embodiment of the present invention, and since this embodiment is similar to the conventional example shown in FIG. 2 except for this main part, a redundant explanation thereof will be omitted.

すなわち、本実施例は第1図で示すように空気の流れ方
向上流側の低圧圧縮線21にn圧圧縮機22を直列に接
続し、その両者21.22間に圧縮空気冷却器23を介
装している。
That is, in this embodiment, as shown in FIG. 1, an n-pressure compressor 22 is connected in series to the low-pressure compression line 21 on the upstream side in the air flow direction, and a compressed air cooler 23 is interposed between the two 21 and 22. I am wearing it.

低圧圧縮機21は外気より空気を吸い込み、その空気に
ついて第1段の圧縮を行なう第1段圧縮磯構21Aを低
圧排ガスタービン21Bに軸21Cを介して連動可能に
連結しており、低圧排ガスタービン21Bにより第1段
圧縮機構21Aを駆動するようになっている。
The low-pressure compressor 21 sucks air from the outside and has a first-stage compression structure 21A that performs a first-stage compression of the air, which is operatively connected to a low-pressure exhaust gas turbine 21B via a shaft 21C. 21B drives the first stage compression mechanism 21A.

第1段圧縮機構21Aの吐出口は圧縮空気冷却器23を
介装している給気連絡管24を介して高圧圧縮機22の
第2段圧縮機構22Aの吸込口に接続されている。
The discharge port of the first stage compression mechanism 21A is connected to the suction port of the second stage compression mechanism 22A of the high pressure compressor 22 via an air supply communication pipe 24 that has a compressed air cooler 23 interposed therebetween.

圧縮空気冷却器23は第1段圧縮機構21Aから吐出さ
れる圧縮空気を通気させる一次コイル(図示せず)と、
液状の燃料aを通液させる二次コイル23aとを熱交換
可能に設けており、燃料aと圧縮空気dとを熱交換させ
ることにより、圧縮空気dを冷却する一方で、燃料aを
加温して気化させることができる。
The compressed air cooler 23 includes a primary coil (not shown) that ventilates the compressed air discharged from the first stage compression mechanism 21A;
A secondary coil 23a through which liquid fuel a is passed is provided to enable heat exchange, and by exchanging heat between fuel a and compressed air d, compressed air d is cooled while fuel a is heated. can be vaporized.

圧縮空気冷却器23の二次コイル23aは燃料供給源A
と燃料処理装置10の燃料ポンプ11とを接続する燃料
供給管25の途中に介装され、燃料ポンプ11の駆動に
より燃料aが燃料供給源Δより改質1W10Aに供給さ
れる。
The secondary coil 23a of the compressed air cooler 23 is connected to the fuel supply source A.
The fuel pump 11 of the fuel processing device 10 is connected to the fuel supply pipe 25, and when the fuel pump 11 is driven, the fuel a is supplied from the fuel supply source Δ to the reformer 1W10A.

そして、高圧圧縮機22は給気連絡管24を通して上流
側の第1段圧縮灘構21Aの吐出口に連通ずる第2段圧
縮ぼ構22Aを高圧排ガスタービン22Bに軸22Gを
介して連動可能に連結しており、高圧排ガスタービン2
2Bにより第2段圧縮鍬構22Aを駆動するようになっ
ている。
The high-pressure compressor 22 can connect the second-stage compression structure 22A, which communicates with the discharge port of the first-stage compression structure 21A on the upstream side through the air supply communication pipe 24, to the high-pressure exhaust gas turbine 22B via the shaft 22G. The high pressure exhaust gas turbine 2
2B drives the second stage compression hoe mechanism 22A.

第2段圧縮機構22Aの吐出口は給気管28を介してエ
アーコントローラボックス13に連通され、第1段圧縮
日構21Aにて圧縮された圧縮空気を第2段圧縮機1M
22Aで再度圧縮してからエアーコントローラボックス
13に圧縮空気を供給する。
The discharge port of the second stage compression mechanism 22A is communicated with the air controller box 13 via the air supply pipe 28, and the compressed air compressed in the first stage compression mechanism 21A is transferred to the second stage compressor 1M.
After compressing the air again at 22A, the compressed air is supplied to the air controller box 13.

高圧排ガスタービン22Bの排気口は排気連絡管26を
介して低圧排ガスタービン21Bに接続され、高圧排ガ
スタービン22Bにて仕事をした排ガスfを低圧排ガス
タービン21Bに導入して、ここで再び仕事をさせてか
ら低圧で排ガスfを外気に放出するようになっている。
The exhaust port of the high-pressure exhaust gas turbine 22B is connected to the low-pressure exhaust gas turbine 21B via the exhaust connecting pipe 26, and the exhaust gas f that has been worked in the high-pressure exhaust gas turbine 22B is introduced into the low-pressure exhaust gas turbine 21B, where it is made to work again. After that, the exhaust gas f is released into the outside air at low pressure.

排ガスfを低圧に減圧してから外気へ放出するので、騒
音の低減を図ることができる。
Since the exhaust gas f is decompressed to a low pressure and then released to the outside air, noise can be reduced.

また、高圧排ガスタービン22Bの吸気口は排気管27
を介して補助バーナ15の排気口に連通しており、補助
バーナ15より排気される高温高圧の排ガスfを高圧排
ガスタービン22Bに導入するようになっている。
In addition, the intake port of the high-pressure exhaust gas turbine 22B is the exhaust pipe 27.
It communicates with the exhaust port of the auxiliary burner 15 via the auxiliary burner 15, and introduces the high-temperature, high-pressure exhaust gas f exhausted from the auxiliary burner 15 into the high-pressure exhaust gas turbine 22B.

次に、本実茄例の作用について述べる。Next, we will discuss the effects of this example.

補助バーナ15はプラントの起動時に燃料供給源Aより
燃料aが供給されて、高温高圧の排ガスfを高圧圧縮機
22の高圧排ガスタービン22Bに与える。
The auxiliary burner 15 is supplied with fuel a from the fuel supply source A when the plant is started up, and provides high-temperature, high-pressure exhaust gas f to the high-pressure exhaust gas turbine 22B of the high-pressure compressor 22.

これにより、高圧排ガスタービン22Bが回転して第2
段圧縮機構22Aが駆動され、ここで仕事をして低圧に
降圧した排気ガスfがさらに低圧排ガスタービン21B
に給気されて、この低圧排ガスタービン21Bを回転し
、第1段圧縮v1構21Aを駆動する。
As a result, the high pressure exhaust gas turbine 22B rotates and the second
The stage compression mechanism 22A is driven, and the exhaust gas f that has been reduced to a low pressure by doing work there is further transferred to the low pressure exhaust gas turbine 21B.
The low pressure exhaust gas turbine 21B is rotated to drive the first stage compression v1 structure 21A.

したがって、第1段圧縮機構21Aは外気より空気を吸
い込み、第1段の圧縮を行ない、高温高圧の圧縮空気d
を圧縮空気冷却器23に吐出する。
Therefore, the first stage compression mechanism 21A sucks air from the outside air, performs first stage compression, and compresses the high temperature and high pressure compressed air d.
is discharged to the compressed air cooler 23.

圧縮空気冷却器23では高温高圧の圧縮空気dを一次コ
イルに通気させる一方で、二次コイル23aには液状の
燃料aを通液させて、両者d、aの熱交換を行なって圧
縮空気dを冷却し、既に駆動中の高圧圧縮機22Aの第
2段圧縮機構22△へ送気すると共に、燃料aを加温し
て気化させる。
In the compressed air cooler 23, high-temperature, high-pressure compressed air d is vented to the primary coil, while liquid fuel a is passed through the secondary coil 23a, and heat exchange between d and a is performed to convert the compressed air d. The fuel a is cooled and sent to the second stage compression mechanism 22Δ of the high pressure compressor 22A which is already in operation, and the fuel a is heated and vaporized.

第2段圧縮機構22Aは圧縮空気dをざらに圧縮するが
、この圧縮空気dは圧縮空気冷却器23で既に冷却され
ているので、その第2段の圧縮作用を効率的に行なうこ
とができる。
The second stage compression mechanism 22A roughly compresses the compressed air d, but since this compressed air d has already been cooled by the compressed air cooler 23, the second stage compression action can be performed efficiently. .

第2段圧縮機構22Aより吐出された圧縮空気dは給気
管28を通してエアーコントローラボックス13に送気
され、ここで、改質器バーナ10Bと燃料電池1の正極
ガススペース5とへそれぞれ分配される。
The compressed air d discharged from the second stage compression mechanism 22A is sent to the air controller box 13 through the air supply pipe 28, where it is distributed to the reformer burner 10B and the positive electrode gas space 5 of the fuel cell 1, respectively. .

以上説明したように本実施例によれば、高、低圧圧縮機
21.22の2台を設けて酸化剤の空気を2段で圧縮す
るようにしたので、各圧縮機21゜22の大型化を防止
することができ、大型化に伴うtui性の悪化等を防止
することができる。
As explained above, according to this embodiment, two high-pressure and low-pressure compressors 21 and 22 are provided to compress the oxidizer air in two stages, so that the size of each compressor 21 and 22 is increased. It is possible to prevent the deterioration of tui properties due to the increase in size.

また、本実施例では自圧縮機21.22間に圧縮空気冷
却器23を介装して圧縮空気を冷却するので、第2段目
の圧縮作用を効率的に行なうことができ、小型の圧縮1
ff21.22で比較的高圧縮度の圧縮空気を得ること
ができる。
In addition, in this embodiment, the compressed air cooler 23 is interposed between the self-compressors 21 and 22 to cool the compressed air, so the compression action in the second stage can be performed efficiently, and a compact compressor can be used. 1
Compressed air with a relatively high degree of compression can be obtained at ff21.22.

さらに、圧縮空気冷却!23は圧縮空気を冷却する冷W
材として液状燃料aを利用するので、冷却材を冷却する
二次冷却系を削減することができると共に、燃料aの気
化を同時行なうことができる。
Plus, compressed air cooling! 23 is a cold W that cools compressed air.
Since the liquid fuel a is used as the material, the secondary cooling system for cooling the coolant can be eliminated, and the fuel a can be vaporized at the same time.

なお、上記実施例では圧縮機として高、低圧圧縮gff
21,22の2台を設けた場合について述べたが、本発
明はこれに限定されるものではなく、例えば圧縮機を3
台以上設けてもよく、圧縮空気冷却器23を2台以上設
番ノでもよい。
In the above embodiment, high and low pressure compression gff are used as compressors.
Although the case where two compressors 21 and 22 are provided has been described, the present invention is not limited to this. For example, three compressors are provided.
More than one compressed air cooler 23 may be provided, and two or more compressed air coolers 23 may be provided.

また、本発明は第2図で示す燃料電池1以外の燃料電池
を有する燃料電池発電プラントについても適用すること
ができる。
Further, the present invention can also be applied to a fuel cell power generation plant having a fuel cell other than the fuel cell 1 shown in FIG. 2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、空気等の酸化剤を複数台
の圧縮機により複数段で圧縮し、上流側の圧縮機により
圧縮された酸化剤を、燃料を冷却材とする冷却器により
冷却するので、圧縮酸化剤をさらに圧縮する下流側の圧
縮機の圧縮効率を低コストで高めることができる。
As explained above, the present invention compresses an oxidizing agent such as air in multiple stages using multiple compressors, and cools the oxidizing agent compressed by the upstream compressor using a cooler using fuel as a coolant. Therefore, the compression efficiency of the downstream compressor that further compresses the compressed oxidizing agent can be increased at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る燃料電池発電プラントの一実施例
の要部ブロック図、第2図は従来例の全体構成を示ずブ
ロック図である。 1・・・燃Fl電池、21・・・低圧圧縮機、21A・
・・第1段圧縮機構、21B・・・低圧排ガスタービン
、22・・・高圧圧縮機、22A・・・第2段圧縮機構
、22B・・・高圧排ガスタービン、23・・・圧縮空
気冷却器。
FIG. 1 is a block diagram of essential parts of an embodiment of a fuel cell power generation plant according to the present invention, and FIG. 2 is a block diagram of a conventional example without showing the overall configuration. 1...Fuel cell, 21...Low pressure compressor, 21A.
...First stage compression mechanism, 21B...Low pressure exhaust gas turbine, 22...High pressure compressor, 22A...Second stage compression mechanism, 22B...High pressure exhaust gas turbine, 23... Compressed air cooler .

Claims (1)

【特許請求の範囲】 1、燃料と酸化剤とが供給される燃料電池を有する燃料
電池発電プラントにおいて、上記酸化剤を圧縮する圧縮
機構を排ガスタービンにより駆動する圧縮機を複数台設
け、これら圧縮機間には上流側の圧縮機より吐出される
圧縮酸化剤を上記燃料と熱交換させて冷却する冷却器を
設けたことを特徴とする燃料電池発電プラント。 2、酸化剤が空気である特許請求の範囲第1項に記載の
燃料電池発電プラント。
[Claims] 1. In a fuel cell power generation plant having a fuel cell to which fuel and an oxidizer are supplied, a plurality of compressors are provided in which a compression mechanism for compressing the oxidizer is driven by an exhaust gas turbine; A fuel cell power generation plant characterized in that a cooler is provided between the machines for cooling the compressed oxidizing agent discharged from the upstream compressor by exchanging heat with the fuel. 2. The fuel cell power generation plant according to claim 1, wherein the oxidizing agent is air.
JP61138219A 1986-06-16 1986-06-16 Fuel cell power generating plant Pending JPS62296370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61138219A JPS62296370A (en) 1986-06-16 1986-06-16 Fuel cell power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138219A JPS62296370A (en) 1986-06-16 1986-06-16 Fuel cell power generating plant

Publications (1)

Publication Number Publication Date
JPS62296370A true JPS62296370A (en) 1987-12-23

Family

ID=15216870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138219A Pending JPS62296370A (en) 1986-06-16 1986-06-16 Fuel cell power generating plant

Country Status (1)

Country Link
JP (1) JPS62296370A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261392A (en) * 1988-08-26 1990-03-01 Toshiba Corp Starting of turbocompressor and starting device
JP2004158371A (en) * 2002-11-08 2004-06-03 Nissan Motor Co Ltd Fuel cell system and fuel cell vehicle
WO2002086997A3 (en) * 2001-04-22 2004-10-21 Daimler Chrysler Ag Fuel cell air supply
KR100481599B1 (en) * 2002-11-06 2005-04-08 (주)앤틀 Fuel cell system
JP2008226676A (en) * 2007-03-14 2008-09-25 Toyota Industries Corp Fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261392A (en) * 1988-08-26 1990-03-01 Toshiba Corp Starting of turbocompressor and starting device
WO2002086997A3 (en) * 2001-04-22 2004-10-21 Daimler Chrysler Ag Fuel cell air supply
EP1717892A1 (en) * 2001-04-22 2006-11-02 DaimlerChrysler AG Method of controlling an air supply system of a fuel cell
EP1724868A1 (en) * 2001-04-22 2006-11-22 DaimlerChrysler AG Method of controlling an air supply system of a fuel cell
KR100481599B1 (en) * 2002-11-06 2005-04-08 (주)앤틀 Fuel cell system
JP2004158371A (en) * 2002-11-08 2004-06-03 Nissan Motor Co Ltd Fuel cell system and fuel cell vehicle
JP2008226676A (en) * 2007-03-14 2008-09-25 Toyota Industries Corp Fuel cell system

Similar Documents

Publication Publication Date Title
US6607854B1 (en) Three-wheel air turbocompressor for PEM fuel cell systems
US6481212B2 (en) Combustion turbine cooling media supply system and related method
US3976506A (en) Pressurized fuel cell power plant with air bypass
EP2800186B1 (en) Fuel cell hybrid system
US5495709A (en) Air reservoir turbine
US7781115B2 (en) Recuperated atmosphere SOFC/gas turbine hybrid cycle
US4004947A (en) Pressurized fuel cell power plant
US4001041A (en) Pressurized fuel cell power plant
US8197227B2 (en) Multi-stage compressor system
US5678401A (en) Energy supply system utilizing gas and steam turbines
JPH08510311A (en) High efficiency multi-axis reheat turbine using intercooling and recuperation
JPH07259510A (en) Cooling method of thermally loaded component of gas turbine group
EP0150990B1 (en) Process for producing power
JP2005315244A (en) Device for using exhaust heat of compressor
JPH0610705A (en) Method of operating gas turbine group
JP3924243B2 (en) Fuel cell combined power generation system
US6296959B2 (en) Air supply device for fuel cell
US6136462A (en) High temperature fuel cells with heating of the reaction gas
JP2971378B2 (en) Hydrogen combustion gas turbine plant and operation method thereof
JPS62296370A (en) Fuel cell power generating plant
CA1284586C (en) Air turbine cycle
JP2002056865A (en) Compressed air supply device for fuel cell
JPH09264158A (en) Gas turbine cycle
JPH07332109A (en) Compressed air storage type power generating plant
JP2653610B2 (en) Combined cycle power plant