JPS62295359A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS62295359A
JPS62295359A JP61135925A JP13592586A JPS62295359A JP S62295359 A JPS62295359 A JP S62295359A JP 61135925 A JP61135925 A JP 61135925A JP 13592586 A JP13592586 A JP 13592586A JP S62295359 A JPS62295359 A JP S62295359A
Authority
JP
Japan
Prior art keywords
plate
electrolyte
fuel cell
electrolyte plate
porous thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61135925A
Other languages
Japanese (ja)
Other versions
JPH0565991B2 (en
Inventor
Hajime Toritani
初 鳥谷
Akio Soma
相馬 昭男
Keizo Otsuka
大塚 馨象
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61135925A priority Critical patent/JPS62295359A/en
Publication of JPS62295359A publication Critical patent/JPS62295359A/en
Publication of JPH0565991B2 publication Critical patent/JPH0565991B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance the strength against thermal stress and heat-cycling capability without using the element of an electrolyte plate as a reinforcing element, by supporting the electrolyte plate made from ceramics or the like with metallic material. CONSTITUTION:Strength against thermal stress is enhanced by supporting an electrolyte plate 1 with metallic material having high strength against high temperature, considering from the fact that as the electrolyte plate 1 made from ceramics or the like is generally hard and weak against tension, the loading of stress Should be avoided. The supporting plate 8 (sealed part 8a) of the electrolyte plate 1 is held in between with the insulating elements 9 at a cell end, furthermore held in between with separator plates from the outside of the insulating elements 9 and these are bonded as one body, resulting in being one pack. Thereby, good contact among each of the parts is obtained and electrical resistance becomes low and therefore, cell performance is inproved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、燃料電池に係り、特に溶融炭酸塩型燃料電池
の電解質板の熱応力強度を向上させることのできる燃料
電池に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fuel cell, and in particular, to a fuel cell that can improve the thermal stress strength of an electrolyte plate of a molten carbonate fuel cell. Regarding fuel cells.

〔発明の技術的背景および従来技術〕[Technical background of the invention and prior art]

従来の溶融炭酸塩型燃料電池は、特開昭57−1547
66号に記載のものがあり、これを第4図乃至第8図に
示す。
The conventional molten carbonate fuel cell is disclosed in Japanese Patent Application Laid-Open No. 57-1547.
There is one described in No. 66, which is shown in FIGS. 4 to 8.

燃料電池の単位セルは1通常第4図に示すような構成か
らなり、この単位セルが複数個積層されて燃料電池を構
成する。ここにいる単位セルは、電解質板1を境にして
両側に多孔質体で形成され触媒が付加されてなる電極板
(アノード2およびカソード3)が配置され、さらに両
電極板の背面にアノード2に燃料を供給する複数の平行
に設けられたリブによって形成された流路l#!5およ
びカソード3に酸化剤ガスを供給する複数の平行に設け
られたリブによって形成された酸化剤流路溝6を有する
セパレータ板4を介して積層された構成されている。第
5図には、第4図に示される単位セルの断面図が示され
ている0図において、セパレータ4と電解質板1との間
にウェットシール7が介挿されている。これは、セル内
部に流れるガスをシールするためである。
A unit cell of a fuel cell usually has a structure as shown in FIG. 4, and a plurality of these unit cells are stacked to form a fuel cell. The unit cell here has electrode plates (anode 2 and cathode 3) formed of a porous material and to which a catalyst is added on both sides of an electrolyte plate 1, and an anode 2 on the back of both electrode plates. A flow path formed by a plurality of parallel ribs that supplies fuel to l#! 5 and the cathode 3 through a separator plate 4 having an oxidizing agent passage groove 6 formed by a plurality of parallel ribs for supplying an oxidizing gas to the cathode 3. In FIG. 5, a wet seal 7 is inserted between the separator 4 and the electrolyte plate 1 in FIG. 0, which shows a cross-sectional view of the unit cell shown in FIG. This is to seal the gas flowing inside the cell.

上記構成よりなる装置において、電解質板1の材料とし
てリチウムアルミネート粉末(LiA Q Ox半分)
に補強剤としてアルミナ繊維等を混入した多孔質セラミ
ックス板等を用いて構成し、電解質としては、LixC
os、KzCOa、NaC0a等の炭酸塩の混合物を使
用して電解質板の内部に含浸させている。この電解質は
室温状態では固定であるが約490℃以上になると溶融
し、電極とセパレータ溝との境界面に流出して化学反応
を起し発電する。また、電極材として、アノード側にN
i、多孔質焼結体、カソード側にNiO多孔質体を使用
し、セパレータ板の材質としては、オーステナイトステ
ンレス鋼、例えば5US316.5US304゜5US
310.5US446等の高温耐腐食材料が用いられて
いた。7ノード側では水素による還元反応が発生し、カ
ソード側では空気中の酸素による酸化反応がアルカリ雰
囲気中で発生するため、耐食性のあるオーステナイト鋼
が適しているからである。
In the device having the above configuration, lithium aluminate powder (half of LiA Q Ox) is used as the material of the electrolyte plate 1.
It is constructed using a porous ceramic plate mixed with alumina fiber etc. as a reinforcing agent, and LixC is used as an electrolyte.
A mixture of carbonates such as os, KzCOa, NaC0a, etc. is used to impregnate the inside of the electrolyte plate. This electrolyte is fixed at room temperature, but melts when the temperature exceeds about 490° C., flows out to the interface between the electrode and the separator groove, causes a chemical reaction, and generates electricity. Also, as an electrode material, N is added to the anode side.
i. Porous sintered body, NiO porous body is used on the cathode side, and the material of the separator plate is austenitic stainless steel, for example, 5US316.5US304°5US
A high temperature corrosion resistant material such as 310.5 US 446 was used. This is because a reduction reaction due to hydrogen occurs on the 7 node side, and an oxidation reaction due to oxygen in the air occurs in an alkaline atmosphere on the cathode side, so austenitic steel with corrosion resistance is suitable.

上記構成材料等からなる単位セルは、反応性能向上およ
び外部へのガスの流出を防止するため一定荷重により圧
縮された状態で積層されている。
The unit cells made of the above-mentioned constituent materials are stacked in a compressed state under a constant load in order to improve reaction performance and prevent gas from flowing out.

このことは、電極2において反応により電気が発生する
ため電極2とセパレータ4との密着性がよいほど性能が
よくなることを意味する。したがって、セパレータ、f
[および電解質板を一体で製作すれば電池性能は向上し
、また単位セルごとの完成品は積層電池の組立補修も容
易となることがわかった。
This means that since electricity is generated by the reaction at the electrode 2, the better the adhesion between the electrode 2 and the separator 4, the better the performance. Therefore, the separator, f
[It was also found that if the electrolyte plate is manufactured in one piece, the battery performance will be improved, and the completed product for each unit cell will facilitate the assembly and repair of the laminated battery.

次に、第6図aには、電池運転時の起動停止特性が示さ
れている6発電前にセルの温度を定格温度まで上昇させ
る。その後、燃料および酸化剤ガスを流入して発電させ
る。停止時には、ガス停止後セル温度を降下させるよう
にしたものである。
Next, FIG. 6a shows the start-stop characteristics during battery operation.6 Before power generation, the temperature of the cell is raised to the rated temperature. After that, fuel and oxidant gas are introduced to generate electricity. When the cell is stopped, the cell temperature is lowered after the gas is stopped.

従来、燃料電池は火力発電設備の代替として有望であり
、国内においては原子力発電設備をベース負荷運用とし
、燃料電池は日負荷運用として用いられることが予想さ
れる。
Conventionally, fuel cells have been promising as a replacement for thermal power generation equipment, and in Japan, it is expected that nuclear power generation equipment will be used for base load operation and fuel cells will be used for daily load operation.

したがって、燃料電池はDSS運転に耐え得るヒートサ
イクル性に優れていることが必要条件となる。
Therefore, it is necessary for the fuel cell to have excellent heat cycle properties that can withstand DSS operation.

また、第6図すには燃料電池内部め起動、停止時の各部
の伸び変化が示されている。起動時の温度上昇と共に電
池のセパレータ板と、電解質板は夫々伸びδSおよびδ
Eとして発生するが、セパレータ板の伸び量δSは電解
質板の伸び量δEよりも大きくなることを示している。
Furthermore, Fig. 6 shows changes in elongation of various parts inside the fuel cell during startup and shutdown. As the temperature rises during startup, the separator plate and electrolyte plate of the battery elongate δS and δ, respectively.
This shows that the amount of elongation δS of the separator plate is larger than the amount of elongation δE of the electrolyte plate.

これは、第7図に示すように電解質板よりもセパレータ
板の線膨張係数が大きいことに起因する。第8図は、電
池本体の伸び状況を平面および側面よりみた概略図であ
る。
This is due to the fact that the linear expansion coefficient of the separator plate is larger than that of the electrolyte plate, as shown in FIG. FIG. 8 is a schematic view of the elongation of the battery main body viewed from the top and side.

、電池は温度が上昇すると中心から四方向に伸びるがセ
パレータ板の伸び量δSが電解質板の伸び量δEよりも
大きく、かつ電池は圧縮荷重F図矢印方向より受けてい
るため、正パレータ板4の伸び量δSに引張られて電解
質板1が伸びようとする。従って、セパレータ板4より
も引張強度の弱い電解質板1は電池の起動停止(、昇温
、降りごとに引張、圧縮を受けることになる。
, when the temperature rises, the battery expands in four directions from the center, but since the amount of elongation δS of the separator plate is larger than the amount of elongation δE of the electrolyte plate, and the battery is receiving a compressive load from the direction of the arrow in figure F, the positive separator plate 4 The electrolyte plate 1 tries to expand due to the amount of expansion δS. Therefore, the electrolyte plate 1, which has a lower tensile strength than the separator plate 4, is subjected to tension and compression every time the battery is started or stopped (or whenever the temperature rises or falls).

したがって、電解質板として用いられるセラミツク材は
、圧縮強度は高いが引張強度が低いためにヒートサイク
ル時の疲労強度が問題となることがわかった。
Therefore, it was found that the ceramic material used as the electrolyte plate has a high compressive strength but a low tensile strength, so that fatigue strength during heat cycling becomes a problem.

そして、電解質板に疲労による割れが発生した場合、ア
ノード側の水素とカソードの空気が混合することになり
水が発生する酸化反応が起こる。
When cracks occur in the electrolyte plate due to fatigue, hydrogen on the anode side mixes with air on the cathode, causing an oxidation reaction that generates water.

こうなると発電反応が至しく低下すると共に発熱が生じ
、セパレータ板や電極を腐食させて電池本体の寿命を短
かくすることとなる。
If this happens, the power generation reaction will be severely reduced and heat will be generated, corroding the separator plates and electrodes and shortening the life of the battery body.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の装置にあってはセラミックス製よ
りなる電解質板をオーステナイト板より′なるセパレー
タで挾持する構造となっているため。
However, conventional devices have a structure in which an electrolyte plate made of ceramic is sandwiched between separators made of austenite plates.

熱伸びに対する配慮が全くなされていなかった。No consideration was given to thermal elongation.

また、1つのセルが電解質板、電極、セパレータ板と各
々の部品が分割されているため組立・補修が困難であり
9部品が分割されていることにより部品相互の密着性が
悪なくなり、電池性能の低下を招いていた。
In addition, each cell is divided into electrolyte plates, electrodes, and separator plates, making assembly and repair difficult.As the nine parts are separated, the adhesion between the parts deteriorates, resulting in poor battery performance. was causing a decline in

〔発明の目的〕[Purpose of the invention]

本発明の目的は、熱伸びすなわちヒートサイクル性に強
く、単位セルの1パツク化を図ることによって組立・補
修が容易で電池性能も向上させることのできる燃料電池
を提供することにある。
An object of the present invention is to provide a fuel cell that is resistant to thermal elongation, that is, heat cycle, and that can be easily assembled and repaired by making unit cells into one pack, and that can improve cell performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、溶融炭酸塩型燃料電池において、セラミック
ス製の電解質板は硬くかつ引張に弱いので応力の負荷は
避けるべきであることに鑑み、電地質板に一多数の孔を
有する薄板を配設することによって、熱応力強度を増加
させるようにしたものである。
In view of the fact that in a molten carbonate fuel cell, the electrolyte plate made of ceramics is hard and weak against tension, and stress loading should be avoided, the present invention provides a thin plate having a large number of holes in the electrolyte plate. The thermal stress intensity is increased by providing the

〔実施例〕〔Example〕

以下に、本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図には、本発明に係る燃料電池の一実施例を示す縦
断面図が示されている。従来例と同様の、構成のものは
同一符号で示している。
FIG. 1 shows a longitudinal sectional view of an embodiment of a fuel cell according to the present invention. Components having the same configuration as the conventional example are indicated by the same reference numerals.

図において、電解質板1の中にプレス管により一体成形
成された多孔薄板8を挾持し、これを電極2,3で両側
で挾持するようにし、それらをガス等の流体が通過する
通路5,6を有するセパレータ板4で挟み込むことによ
り単位セルを構成している。また、電解質板1は、焼結
してもしなくてもよく、この電解質板1の両端に位置す
るセル端部には、炭酸塩が外部に洩れるのを防ぐため電
気絶縁シール9が介挿されている。このシール材9とセ
パレータ板4とは、拡散接合、レーザ接合等により極部
的に高温にすることにより一体化されている。セパレー
タ板4と電pfA2および電極3は、高温還元条件下で
容易に一体化できるため、あらかじめ接合するようにし
ておく。また、基盤目状に配列されている多孔薄板8は
、第2図に示す如くシール部8a以外のセル内部のみに
孔が穿設されている。孔の大きさは、板の強度および電
池反応速度によって設計を変える。そして、この多孔薄
板の材質としては、オーステナイトステンレス鋼等のよ
うなセパレータ板4と同一のものが適しているが、シー
ル部を摺動させる場合はセラミックス等のように熱伸び
の少ないセラミックス製繊維板等のものが適している。
In the figure, a porous thin plate 8 formed integrally with a press tube is sandwiched in an electrolyte plate 1, and this is sandwiched on both sides by electrodes 2 and 3, and a passage 5 through which a fluid such as gas passes, A unit cell is constituted by sandwiching the cell between separator plates 4 having a diameter of 6. Further, the electrolyte plate 1 may be sintered or not, and electrically insulating seals 9 are inserted at the cell ends located at both ends of the electrolyte plate 1 to prevent carbonate from leaking to the outside. ing. The sealing material 9 and the separator plate 4 are integrated by heating extremely high temperatures through diffusion bonding, laser bonding, or the like. Since the separator plate 4, the electrode pfA 2, and the electrode 3 can be easily integrated under high-temperature reducing conditions, they are bonded in advance. Further, the porous thin plate 8, which is arranged in a grid pattern, has holes only inside the cells other than the seal portion 8a, as shown in FIG. The size of the holes varies in design depending on the strength of the plate and the reaction rate of the cell. The same material as the separator plate 4, such as austenitic stainless steel, is suitable as the material for this porous thin plate, but when the seal portion is to be slid, it is preferable to use ceramic fibers with low heat elongation, such as ceramics. Something like a board is suitable.

また、セル内部の性質はアルカリ性であるため、耐アル
カリ腐食表面処理が必要である。
Furthermore, since the inside of the cell is alkaline in nature, alkali corrosion-resistant surface treatment is required.

次に、第3図には本発明の他の実施例が示されている1
図において、この装置は、電解質板1の下側に多孔薄板
8を位置せしめるとともにそれを包囲するようにしたも
のである。すなわち、鉄材等で構成される多孔敷板8の
上にセラミックス製の電解質板1を配置するように設け
ている。そして、この多孔薄板8のシール部近傍には段
差を形成してシール材9とセパレータ4と多孔薄Fi8
とが接合された場合でも熱伸びに追従することができる
ようにフレキシブルさをもたせている。この多孔薄板8
のシール部は、接合しなくてもよくままた、すベリ構造
としてもよいことは勿論である。
Next, FIG. 3 shows another embodiment of the present invention.
In the figure, this device has a porous thin plate 8 positioned below an electrolyte plate 1 and surrounding it. That is, an electrolyte plate 1 made of ceramic is disposed on a porous base plate 8 made of iron or the like. A step is formed near the sealing part of this porous thin plate 8 to connect the sealing material 9, separator 4, and porous thin Fi8.
It has flexibility so that it can follow thermal elongation even when the two are joined together. This porous thin plate 8
It goes without saying that the seal portion does not need to be joined or may have a sliding structure.

゛ また、多孔薄板にフレキシブル性をもたせるために
、波板形状、山波形状の多孔薄板のものとしてもよい。
゛ Furthermore, in order to impart flexibility to the porous thin plate, a corrugated or mountain-wave shaped porous thin plate may be used.

第3図において、第1図、第2図のものと同様の植成部
分は説明を省略する。
In FIG. 3, explanations of implanted parts similar to those in FIGS. 1 and 2 are omitted.

本実施例によれば、セラミックス製の電解質板は一般に
硬くかつ引張に弱いので応力の負荷は避けるべきである
ことに鑑み、電解質板は高温強度の高い金属材料で支持
することにより熱応力強度を向上させるる、また、セル
端部の絶縁材9で電解質板1の支持板8(シール部8a
)を挟持するようにし、絶縁材9の外方よりセパレータ
板で挟み込まれてそれらが一体接合(接合しなくてもよ
い)されることにより1バツク化されている。したがっ
て、各部品の密着性がよくなり、電気抵抗が低くなるか
ら電池性能が向上する。
According to this example, considering that stress should be avoided since ceramic electrolyte plates are generally hard and weak in tension, the electrolyte plate is supported with a metal material with high high temperature strength to reduce thermal stress strength. In addition, the supporting plate 8 of the electrolyte plate 1 (sealing part 8a
) are sandwiched between separator plates from the outside of the insulating material 9, and they are integrally joined (do not need to be joined) to form one bag. Therefore, the adhesion between each component is improved and electrical resistance is lowered, resulting in improved battery performance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればセラミみクス等か
らなる電解質板を金属材料で支持するようにしたため、
電解質板の部材を強度部材とすることなく熱応力強度を
向上させることができ、ヒートサイクル性も向上させる
ことができる。また、電解質板の支持板とセパレータ板
とを絶縁継手等の絶縁手段を介して接合し1パツク化で
きるようにしたから、接触性が良好となり電気抵抗が低
下するから電池性能も向上し、セルの組立・補修が容易
となる。
As explained above, according to the present invention, since the electrolyte plate made of ceramics or the like is supported by a metal material,
Thermal stress strength can be improved without using the electrolyte plate as a strength member, and heat cycle performance can also be improved. In addition, since the supporting plate of the electrolyte plate and the separator plate can be joined together via an insulating means such as an insulating joint to form a single pack, the contact properties are good and the electrical resistance is reduced, which improves the battery performance and improves the cell performance. Easy to assemble and repair.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す縦断面図、第2図は
、第1図に示す電解質板支持板構造図。
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention, and FIG. 2 is a structural diagram of the electrolyte plate support plate shown in FIG. 1.

Claims (1)

【特許請求の範囲】 1、電解質を含浸した電解質板と、該電解質板を介して
配置された一対の電極と、夫々の電極に対向する面に互
いに直交するような向きに形成されたリブによつて流体
燃料および流体酸化剤の流通路が形成されてなるセパレ
ータ板とを備えてなり、前記電解質板に多数の孔を有す
る薄板を配設するようにしたことを特徴とする燃料電池
。 2、特許請求の範囲第1項記載の燃料電池において、上
記多孔薄板は、上記電解質板の底に配置すると共に該電
解質板を包囲するように形成したことを特徴とする燃料
電池。 3、特許請求の範囲第1項記載の燃料電池において、上
記多孔薄板電解質板の中央に配設しかつ、該薄板端部は
、上記セパレータ板および電気絶縁部材とで挾持するよ
うにしたことを特徴とする燃料電池。 4、特許請求の範囲第1項乃至第3項記載の燃料電池に
おいて、上記多孔薄板は、オースラナイト鋼等の金属材
料からなることを特徴とする燃料電池。 5、特許請求の範囲第4項記載の燃料電池において、金
属材料からなる多孔薄板は、耐アルカリ層食表面処理を
施してなることを特徴とする燃料電池。 6、特許請求の範囲第1項乃至第3項記載の燃料電池に
おいて、上記多孔薄板の電気反応部は、波形形状とした
ことを特徴とする燃料電池。 7、特許請求の範囲第1項乃至第3項若しくは第6項記
載の燃料電池において、上記多孔薄板は、セラミックス
製繊維板を用いたことを特徴とする燃料電池。
[Scope of Claims] 1. An electrolyte plate impregnated with an electrolyte, a pair of electrodes arranged through the electrolyte plate, and ribs formed in directions perpendicular to each other on surfaces facing the respective electrodes. 1. A fuel cell comprising a separator plate in which flow paths for fluid fuel and fluid oxidant are formed, and a thin plate having a large number of holes is disposed in the electrolyte plate. 2. The fuel cell according to claim 1, wherein the porous thin plate is disposed at the bottom of the electrolyte plate and is formed to surround the electrolyte plate. 3. In the fuel cell according to claim 1, the porous thin electrolyte plate is arranged at the center thereof, and the thin plate ends are sandwiched between the separator plate and the electrically insulating member. Characteristic fuel cells. 4. The fuel cell according to claims 1 to 3, wherein the porous thin plate is made of a metal material such as auslanite steel. 5. The fuel cell according to claim 4, wherein the porous thin plate made of a metal material is subjected to an alkali corrosion-resistant surface treatment. 6. The fuel cell according to claims 1 to 3, wherein the electrical reaction portion of the porous thin plate has a corrugated shape. 7. A fuel cell according to claims 1 to 3 or 6, characterized in that the porous thin plate is a ceramic fiberboard.
JP61135925A 1986-06-13 1986-06-13 Fuel cell Granted JPS62295359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61135925A JPS62295359A (en) 1986-06-13 1986-06-13 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135925A JPS62295359A (en) 1986-06-13 1986-06-13 Fuel cell

Publications (2)

Publication Number Publication Date
JPS62295359A true JPS62295359A (en) 1987-12-22
JPH0565991B2 JPH0565991B2 (en) 1993-09-20

Family

ID=15163057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135925A Granted JPS62295359A (en) 1986-06-13 1986-06-13 Fuel cell

Country Status (1)

Country Link
JP (1) JPS62295359A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129775A (en) * 1982-01-29 1983-08-02 Hitachi Ltd Fuel battery
JPS6093760A (en) * 1983-10-27 1985-05-25 Matsushita Electric Ind Co Ltd Molten salt fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129775A (en) * 1982-01-29 1983-08-02 Hitachi Ltd Fuel battery
JPS6093760A (en) * 1983-10-27 1985-05-25 Matsushita Electric Ind Co Ltd Molten salt fuel cell

Also Published As

Publication number Publication date
JPH0565991B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
JP4969023B2 (en) Solid oxide fuel cell stack and packet structure
RU2431220C2 (en) Compression assembly for distribution of external compression force to pile of solid-oxide fuel elements, and pile of solid-oxide fuel elements
JP2656943B2 (en) Improved solid oxide fuel cell and assembly
CA2618131A1 (en) Solid oxide fuel cell stack for portable power generation
JP2012146649A (en) Sealing member for solid oxide fuel cell and solid oxide fuel cell employing the same
JPH0626126B2 (en) Fuel cell
US7601450B2 (en) Hybrid interconnect for a solid-oxide fuel cell stack
JP6194433B2 (en) Sealing configuration and method of solid oxide battery stack
KR102316138B1 (en) Three layered electrically insulating gasket for sofc unit
JP6118230B2 (en) Fuel cell stack
US20050255363A1 (en) Contact element for a fuel cell stack
KR100633464B1 (en) Manufacturing method and Polymer electrolyte fuel cell and the stack
JPS62295359A (en) Fuel cell
JP6777669B2 (en) How to operate the electrochemical reaction cell stack and the electrochemical reaction system
JPH1140181A (en) Start-stopage of solid electrolyte type fuel cell, and high temperature holding method during operation or stand-by state
JP3672273B2 (en) Flat solid electrolyte fuel cell
WO2019186959A1 (en) Solid oxide fuel cell
JP7232224B2 (en) Electrochemical reaction cell stack
WO2020250722A1 (en) Electrochemical cell unit, electrochemical cell stack, method for manufacturing electrochemical cell unit, and method for manufacturing electrochemical cell stack
JP7023898B2 (en) Electrochemical reaction cell stack
JP7159249B2 (en) Electrochemical reaction cell stack and IC-single cell composite
JP2005216652A (en) Solid oxide type fuel cell and solid oxide type fuel cell stack equipped therewith
JP7112443B2 (en) Electrochemical reaction cell stack
JP2024056240A (en) Electrochemical reaction cell stack
JP2022017724A (en) Electrochemical reaction cell stack

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees