JPS62294404A - Porous hollow membrane - Google Patents

Porous hollow membrane

Info

Publication number
JPS62294404A
JPS62294404A JP13557386A JP13557386A JPS62294404A JP S62294404 A JPS62294404 A JP S62294404A JP 13557386 A JP13557386 A JP 13557386A JP 13557386 A JP13557386 A JP 13557386A JP S62294404 A JPS62294404 A JP S62294404A
Authority
JP
Japan
Prior art keywords
poly
hollow fiber
porous
peripheral wall
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13557386A
Other languages
Japanese (ja)
Inventor
Eiichi Kamei
亀井 衛一
Yasushi Shimomura
下村 泰志
Mitsuo Yamanaka
光男 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP13557386A priority Critical patent/JPS62294404A/en
Publication of JPS62294404A publication Critical patent/JPS62294404A/en
Priority to US07/346,278 priority patent/US4992332A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation

Abstract

PURPOSE:To prepare a porous hollow membrane sufficiently hydrophilic for filtering water or aqueous solution and having a filter power in a wide range of filtration function from precision filtration to ultrafiltration, by coating a poly (2-hydroxylethyl methacrylate) over a hollow yarn substrate having through- microfine pores. CONSTITUTION:After immersing a hollow yarn substrate having a number of through-microfine pores on a peripheral wall such as porous polypropylene hollow yearn or the like into a solution obtained by dissolving poly (2- hydroxylethyl methacrylate) in methanol or the like, and permeating pretty sufficiently, said solution into microfine pores of a hollow yarn substrate poly (2-hydroxylethyl methacrylate) is separated on the hollow yarn substrate by air-drying or the like, and washed by water. Thus, a porous hollow yarn membrane of a hollow substrate, 4 having a number of through-microfine pores 7 on a peripheral wall 2 and the surface of a peripheral wall 2 and the inner surface of microfine pores 7 which are coated with poly (2-hydroxylethyl methacrylate) layer 3, is prepared.

Description

【発明の詳細な説明】 3、発明の詳細な説明 「産業上の利用分野] 本発明は、流体特に水の浄化のための分〜膜として好適
な中空糸膜に関するものであり、史に詳しくは親水性を
水曜的に白しさせ、またポリ(2−ヒドロキシエチルメ
タクリレート)の被覆状態を変化させるたけで精密濾過
から限外濾過までの広範囲の一過能を有する中空糸に関
するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a hollow fiber membrane suitable as a separation membrane for purifying fluids, especially water. This patent relates to a hollow fiber having a wide range of transitivity from microfiltration to ultrafiltration by simply changing the hydrophilicity and changing the coating state of poly(2-hydroxyethyl methacrylate).

[従来の技術] 高分子材料からなる中空糸膜製精密濾過膜、限外濾過膜
は水、溶液の分離精製、処理等の分野や医療分野て利用
されている。
[Prior Art] Microfiltration membranes and ultrafiltration membranes made of hollow fiber membranes made of polymeric materials are used in fields such as separation and purification and treatment of water and solutions, and in the medical field.

水又は水溶液を精密濾過、あるいは、限外−過する場合
、膜は親木性を有することか必要てあり、従来、親水性
を有する精密濾過膜、限外症過膜を製造するだめの方法
として、親木性高分子膜素材を溶媒および膨潤剤、また
は非溶媒の混合溶媒系に溶解して均一溶液としたものを
原液とし、この原液を膜状にキャストし、揮発性溶媒を
一部あるいは完全に蒸発させた後、凝固浴中に侵漬して
溶媒を抽出除去して多孔質膜とする等の相転換による方
法や、高分子−膜素材に被溶出物質を混合して成膜した
後、膜中から被溶出物質を溶出させて多孔質膜とする抽
出による方法等か知られている。(以下、従来方法lと
する。) 一方、高密度ポリエチレン、ポリプロピレン、ポリ(4
−メチル−ペンテン−1)等の熱可塑性樹脂からなる多
孔質膜は、前記の方法の外、中空原糸を紡糸した後、特
定温度範囲及び/又は特定媒体中で延伸により多孔質化
する方法により製造することかでき、力学的特性に優れ
た多孔質中空糸膜を得ることか可能となっている。(以
下、従来方?j:2とする。) [発明か解決しようとする問題点] 、 しかしなから、親木性をイ・1与するための従来方
法1にあっては、前記の通り極めて複雑な処理工程を必
要とし・、その結果コスト面で難点かある。
When performing precision filtration or ultrafiltration of water or an aqueous solution, it is necessary for the membrane to have phyllophilic properties, and conventional methods for manufacturing microfiltration membranes and ultrafiltration membranes that have hydrophilic properties have been difficult. As a stock solution, a wood-philic polymer membrane material is dissolved in a mixed solvent system of a solvent and a swelling agent, or a non-solvent to make a homogeneous solution, and this stock solution is cast into a film shape, and some of the volatile solvent is removed. Alternatively, after complete evaporation, the solvent can be extracted and removed by immersion in a coagulation bath to form a porous membrane, or a membrane can be formed by mixing the substance to be eluted with the polymer-membrane material. After that, there is a known extraction method in which the substance to be eluted is eluted from the membrane to form a porous membrane. (Hereinafter referred to as conventional method 1.) On the other hand, high-density polyethylene, polypropylene, poly(4
- Porous membranes made of thermoplastic resins such as methyl-pentene-1) can be produced by, in addition to the above-mentioned method, a method in which hollow filaments are spun and then made porous by stretching in a specific temperature range and/or in a specific medium. It has become possible to obtain porous hollow fiber membranes with excellent mechanical properties. (Hereinafter, the conventional method ?j: 2.) [Problems to be solved by the invention] However, in the conventional method 1 for giving the parent tree property of i.1, as mentioned above, It requires an extremely complicated processing process, and as a result, there are some drawbacks in terms of cost.

また従来方υ、2においても、製造される多孔質中空糸
膜自体は疎水性であって、水又は水溶液の濾過に使用す
る際、アルコール等により親水化処理する必要かあり、
住つ常に湿潤状態を保持する必要かあること等、その維
持管理か煩雑となっている。
In addition, in conventional method υ, 2, the porous hollow fiber membrane itself produced is hydrophobic, and when used for filtration of water or an aqueous solution, it is necessary to make it hydrophilic with alcohol or the like.
Maintenance and management is complicated, as it is necessary to keep the area moist at all times.

し問題点を解決するだめの手段コ 本発明は、上記した従来の多孔質膜の改良を目的とする
もので、貫通微細孔を有する中空糸基体にポリ(2−ヒ
ドロキシエチルメタクリレ−1へ)を被覆することによ
り、水、又は水溶液の濾過に必要かつ十分な親木性を有
し、更に精密濾過から限外濾過までの広範囲に亘る濾過
能を有する多孔質中空糸膜か得られることを見出し、本
発明に到達した。
The present invention aims to improve the above-mentioned conventional porous membrane, and it is intended to improve the above-mentioned conventional porous membrane. ), it is possible to obtain a porous hollow fiber membrane that has sufficient wood-philicity necessary for filtration of water or aqueous solutions and also has a wide range of filtration ability from microfiltration to ultrafiltration. They discovered this and arrived at the present invention.

即ち、本発明によれば、周壁部に多数の貫通微細孔を有
する中空糸基体であって、その周壁部表面及び該微細孔
内表面をポリ(2−ヒドロキシエチルメタクリレート)
により被覆してなる多孔質中空糸膜か提供される。
That is, according to the present invention, there is provided a hollow fiber substrate having a large number of penetrating micropores in the peripheral wall, and the surface of the peripheral wall and the inner surface of the micropores are coated with poly(2-hydroxyethyl methacrylate).
A porous hollow fiber membrane coated with is provided.

本発明において用いられる、周壁部に多数の貫通微細孔
を有する中空糸基体の材質については特に制限されるも
のではない。高分子材料を素材とするものの例としては
、ポリオレフィン(高密度ポリエチレン、ポリプロピレ
ン、ポリ(4−メチル−ベンゾン−1)など)、フッ素
含有高分子化合物、ポリスルポン、ポリカーボネート、
ポリ塩化ビニル、等の多孔質中空糸を挙げることがてき
る。また無機材料を素材とするものの例としては、ガラ
ス、セラミックス、炭素などの多孔質中空糸又は多孔質
チューブを挙げることかてきる。多孔質中空糸基体の外
径、周壁部厚さ、孔径も特に制限されるものてはないか
、一般には外径は10〜1000ミク℃1ン、周壁部厚
さは10〜500ミクロン、孔径は0.01〜50ミク
ロンのものか好ましい。
There are no particular limitations on the material of the hollow fiber substrate, which is used in the present invention and has a large number of through-holes in its peripheral wall. Examples of polymer materials include polyolefins (high-density polyethylene, polypropylene, poly(4-methyl-benzone-1), etc.), fluorine-containing polymer compounds, polysulfone, polycarbonate,
Examples include porous hollow fibers such as polyvinyl chloride. Examples of materials made of inorganic materials include porous hollow fibers or porous tubes made of glass, ceramics, carbon, and the like. There are no particular restrictions on the outer diameter, peripheral wall thickness, and pore diameter of the porous hollow fiber substrate; generally, the outer diameter is 10 to 1,000 microns, the peripheral wall thickness is 10 to 500 microns, and the pore diameter is 10 to 1,000 microns. is preferably 0.01 to 50 microns.

次に本発明の多孔質中空糸)漠の製造方法を説明する。Next, the manufacturing method of the porous hollow fiber of the present invention will be explained.

ポリ(2−ヒドロキシエチルメタクリレート)をポリ(
2−ヒドロキシエチルメタクリレート)可溶な溶媒に溶
解する。溶媒としては、メタノールか好ましい。また、
溶液の濃度は0105〜7wt%の範囲、好ましくは0
.1〜5 w t%の範囲である。
Poly(2-hydroxyethyl methacrylate) is converted into poly(2-hydroxyethyl methacrylate)
2-Hydroxyethyl methacrylate) dissolved in a soluble solvent. Methanol is preferred as the solvent. Also,
The concentration of the solution is in the range of 0.1 to 7 wt%, preferably 0.
.. It ranges from 1 to 5 wt%.

次いて、該ポリ(2−ヒドロキシエチルメタクリレート
)溶液に多孔質中空糸基体を浸漬し、多孔質中空糸基体
の微細孔内にも十分類ポリ(2−ヒトロキシエチルメタ
クリレート)溶液を行き渡らせた後、風乾又は水による
凝固あるいは風乾と水による凝固の組合せにより該ポリ
(2−ヒドロキシエチルメタクリレート)を多孔質中空
糸基体上に析出させた後、十分に水洗する。
Next, the porous hollow fiber substrate was immersed in the poly(2-hydroxyethyl methacrylate) solution, and the poly(2-hydroxyethyl methacrylate) solution was spread throughout the micropores of the porous hollow fiber substrate. Thereafter, the poly(2-hydroxyethyl methacrylate) is precipitated on the porous hollow fiber substrate by air drying, coagulation with water, or a combination of air drying and coagulation with water, and then thoroughly washed with water.

このようにして得られた、ポリ(2−ヒドロキシエチル
メタクリレート)によって被覆された多孔質中空糸は、
ポリ(2−ヒドロキシエチルメタクリレート)溶液の濃
度、多孔質中空糸基体の微細孔内てのポリ(2−ヒドロ
キシエチルメタクリレート)溶液の濃度勾配(多孔質中
空糸基体を該溶液に浸漬する際、濃度の異なる該溶液に
二回以上浸漬する等により濃度勾配を作る)等の条件及
び風乾、水による析出又は両者の組合せ等の析出条件、
及び該溶液への浸漬−析出一水洗一乾燥等の工程の複数
回実施等を適宜調節、変化させることにより、中空糸基
体の周壁部表面及びその微細孔内表面のみか極薄膜に覆
われ、十分な親木性を示すか、その孔径か元の多孔質中
空糸基体の孔径とほとんど変りかないものから、中空糸
基体周壁部の内外表面のうち少なくともその一表面側に
非孔性シート層を有するもの、さらには微細孔内かポリ
(2−ヒドロキシエチルメタクリレート)で閉塞されて
いるものまて得ることができる。
The porous hollow fibers coated with poly(2-hydroxyethyl methacrylate) thus obtained were
Concentration of poly(2-hydroxyethyl methacrylate) solution, concentration gradient of poly(2-hydroxyethyl methacrylate) solution within the micropores of the porous hollow fiber substrate (when the porous hollow fiber substrate is immersed in the solution, the concentration gradient conditions such as creating a concentration gradient by immersing the solution twice or more in different solutions, and precipitation conditions such as air drying, precipitation with water, or a combination of the two,
By appropriately adjusting and changing the steps of immersion in the solution, precipitation, washing, and drying multiple times, only the surface of the peripheral wall of the hollow fiber substrate and the inner surfaces of its micropores are covered with an extremely thin film. A non-porous sheet layer is formed on at least one surface of the inner and outer surfaces of the peripheral wall of the hollow fiber substrate, which exhibits sufficient wood-philicity or whose pore diameter is almost the same as that of the original porous hollow fiber substrate. It is also possible to obtain one in which the micropores are blocked with poly(2-hydroxyethyl methacrylate).

次に未発IJ11の多孔質中空糸膜の構造を第1〜3図
に基いて説明する。
Next, the structure of the porous hollow fiber membrane of undeveloped IJ11 will be explained based on FIGS. 1 to 3.

図中、■は中空糸膜な軸方向に直角に切断した一部断面
部を示す。
In the figure, ■ indicates a partial cross section cut at right angles to the axial direction of the hollow fiber membrane.

第1区は一部拡大断面図であって、周壁部2に多数の貫
通微細孔7を有する中空糸基体4てあって、その周壁部
2及び微細孔7内表面がポリ(2−ヒドロキシエチルメ
タクリレート)層3により被覆されたものを示している
。即ち、第1図はポリ(2−ヒドロキシエチルメタクリ
レート)の被覆状態として薄膜の状態を示す。
The first section is a partially enlarged cross-sectional view showing a hollow fiber substrate 4 having a large number of through micropores 7 in the peripheral wall 2, and the inner surface of the peripheral wall 2 and the micropores 7 are poly(2-hydroxyethyl). methacrylate) layer 3 is shown. That is, FIG. 1 shows the state of a thin film coated with poly(2-hydroxyethyl methacrylate).

第2図は第1図と異なり、中空糸膜周壁部の内外表面の
うち、少なくともその一表面側をポリ(2−ヒドロキシ
エチルメタクリレ・−ト)の非孔性シート層5て被覆し
たものを示す。
Fig. 2 differs from Fig. 1 in that at least one surface of the inner and outer surfaces of the peripheral wall of the hollow fiber membrane is covered with a non-porous sheet layer 5 of poly(2-hydroxyethyl methacrylate). shows.

第3図は、微細孔7内をポリ(2−ヒドロキシエチルメ
タクリレート)で閉塞(図中、6)した場合を示す。
FIG. 3 shows a case where the inside of the micropore 7 is closed with poly(2-hydroxyethyl methacrylate) (6 in the figure).

[実施例] 以下、本発明を実施例によりさらに具体的に説明するが
、本発明かこれに限定されないことは明らかてあろう。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but it will be clear that the present invention is not limited thereto.

(実施例1) ポリプロピレン(IIBE−PP−J109G、商品名
:宇部興産(株)製、MFI−9g/10分)を、直径
33 m m、内径27 m mの気体供給管を備えた
中空糸製造用ノズルを使用し、紡糸温度200℃、引取
り速度116m/分の条件で紡糸した。得られたポリプ
ロピレン中空糸を145℃の加熱空気槽て6分間加熱処
理し、次いて液体窒素(−195°C)中で、初期長さ
に対し20%延伸し、延伸状態を保ったまま145°C
の加熱空気槽内て2分間熱処理を行なった。
(Example 1) Polypropylene (IIBE-PP-J109G, trade name: manufactured by Ube Industries, Ltd., MFI-9g/10 min) was formed into a hollow fiber equipped with a gas supply pipe having a diameter of 33 mm and an inner diameter of 27 mm. Using a production nozzle, spinning was carried out at a spinning temperature of 200° C. and a take-off speed of 116 m/min. The obtained polypropylene hollow fibers were heat treated in a heated air tank at 145°C for 6 minutes, then stretched in liquid nitrogen (-195°C) to 20% of the initial length, and then stretched to 145°C while maintaining the stretched state. °C
Heat treatment was performed for 2 minutes in a heated air bath.

この中空糸を130℃の空気雰囲気て400%の熱延伸
を行なった後、延伸状態を保ったまま145°Cの加熱
空気槽内て15分間熱処理を行ない多孔質ポリプロピレ
ン中空糸を製造した。
This hollow fiber was hot-stretched by 400% in an air atmosphere at 130°C, and then heat-treated for 15 minutes in a heated air bath at 145°C while maintaining the stretched state to produce a porous polypropylene hollow fiber.

得られた多孔質ポリプロピレン中空糸の平均透孔径を水
銀圧入法(測定はカルロエルハ(CARI、0ERBA
)社(イタリア)製のポロシメトロ シリーズ(POR
O3INETIIO5ERIES)1500を使用して
行った。
The average pore diameter of the obtained porous polypropylene hollow fibers was measured using a mercury intrusion method (measured using CARI, 0ERBA).
) (Italy) made Porosimetro series (POR
The test was carried out using O3INETIIO5ERIES) 1500.

以下同様)て測定したところ、0.377%mであり、
空隙率は74%゛Cあった。
The same applies hereafter) and it was measured to be 0.377%m,
The porosity was 74%゛C.

上記の多孔質ポリプロピレン中空糸の周壁部を電子顕微
鏡により観察したところ、周壁部に多数の大きな透孔か
均一に形成されており、また透孔径も全体にわたってほ
ぼ一定していた。また、この多孔質ポリプロピレン中空
糸の外径は400ミクロン、内径は300ミクロンてあ
った。
When the peripheral wall of the above porous polypropylene hollow fiber was observed using an electron microscope, it was found that many large pores were uniformly formed in the peripheral wall, and the diameter of the pores was also approximately constant throughout. The porous polypropylene hollow fibers had an outer diameter of 400 microns and an inner diameter of 300 microns.

次に、」−記多孔質ボリブロピレン中空糸を先ずポリ(
2−ヒドロキシエチルメタクリレート)(ジャンセン 
キミカ(JANSSEN (1:HIMIcA)社製、
ベルギー国))の濃度か1.5wt%のメタノール溶液
に浸漬し、中空糸の孔内部及び中空糸内径部まて十分に
溶液を行渡らせた後、水に浸漬しポリ(2−ヒドロキシ
エチルメタクリレート)を析出し、水洗後乾燥した。
Next, the porous polypropylene hollow fibers were first
2-Hydroxyethyl methacrylate) (Janssen
Manufactured by KIMICA (JANSSEN (1:HIMIcA)),
Poly(2-hydroxyethyl methacrylate) was precipitated, washed with water, and then dried.

このようにして得られた中空糸膜の周壁部の内外表面、
及び周壁部断面を電子顕微鏡て観察したところ、周壁部
、周壁部断面も木質的に、原多孔質中空糸と同一の多数
の大きな透孔が保持された形態が観察された。
The inner and outer surfaces of the peripheral wall of the hollow fiber membrane thus obtained,
When the cross-section of the peripheral wall was observed using an electron microscope, it was observed that the peripheral wall and the cross-section of the peripheral wall had a wood-like morphology in which the same large number of large pores as the original porous hollow fiber were retained.

得られた中空糸膜なアルコール等て前処理することなし
に水を濾過した際の透水量は15.31/m1n−s2
・atmてあった。
When water was filtered through the hollow fiber membrane without pretreatment with alcohol, the water permeability was 15.31/m1n-s2.
・There was an ATM.

(比較例) 実施例1に記載されている多孔質ポリプロピレン中空糸
膜のみをアルコール等て前処理することなしに、水を圧
力1 、5 kg/cm2て濾過することを試みたか透
水量は0てあった。また、アルコールて親水化処理した
後、水を濾過するとその透水量は25 、5 (1/r
s2・m’+n−at、trrてあった。
(Comparative Example) An attempt was made to filter water at a pressure of 1.5 kg/cm2 using only the porous polypropylene hollow fiber membrane described in Example 1 without pretreatment with alcohol or the like. There was. In addition, when water is filtered after being hydrophilized with alcohol, the water permeability is 25,5 (1/r
s2・m'+n-at, trr.

(実施例2) ポリ(2−ヒI−: Cff−Vジエチルメタクリレー
ト)の濃度か3.0wt%のメタノール溶液に浸漬した
後、完全に風乾したこと以外は実施例1と同様の工程を
行9た。
(Example 2) The same process as in Example 1 was performed except that the sample was immersed in a methanol solution with a concentration of 3.0 wt% poly(2-hyI-: Cff-V diethyl methacrylate) and then completely air-dried. It was 9.

得られた中空糸膜の周壁部の内外表面及び周壁部断面を
電子WJ微鏡でrIJl察したところ、内側周壁部表面
及び周壁部断面は木質的に原多孔質中空糸と同一の多数
の大きな透孔か保持された形態か観察されたか、外側周
壁部表面には、非孔性シート膜か形成されていた。
When the inner and outer surfaces and the cross section of the peripheral wall of the obtained hollow fiber membrane were observed using an electronic WJ microscope, it was found that the surface of the inner peripheral wall and the cross section of the peripheral wall contained a large number of large wood grains that were the same as the original porous hollow fiber. A non-porous sheet film was formed on the surface of the outer peripheral wall, indicating that the pores were maintained.

得られた中空糸をアルコール等で前処理することなしに
水を濾過した際の透水にはO,Ion/m2・ll1i
n−aLIIIであった。また0、1%のアルラミンの
生理食塩水溶液を濾過したところ、アルブミンは完全に
遮断されていた。
When water is filtered through the obtained hollow fiber without pretreatment with alcohol etc., the water permeability is O, Ion/m2・ll1i.
It was n-aLIII. Furthermore, when a 0.1% albumin saline solution was filtered, albumin was completely blocked.

[発明の効果] 以上説明したように、本発明に係る多孔質中空糸膜は多
孔質中空糸基体の周壁部及び微細孔内をポリ(2−ヒ)
−ロキジエチルメタクリレート)によって被覆したこと
により、水又は水溶液の濾過に必要かつ上のな親木性を
有し、さらに前記のポリ(2−ヒドロキシエチルメタク
リレート)の被覆状態を調節、変化させることにより、
精密濾過から限外濾過までの広範囲の濾過、分離を達成
することができる。
[Effects of the Invention] As explained above, the porous hollow fiber membrane according to the present invention contains poly(2-H) in the peripheral wall and inside the micropores of the porous hollow fiber substrate.
- By coating with poly(2-hydroxyethyl methacrylate), it has excellent wood-philic properties necessary for filtration of water or aqueous solutions, and further by adjusting and changing the coating state of the poly(2-hydroxyethyl methacrylate). ,
A wide range of filtration and separation can be achieved, from microfiltration to ultrafiltration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る多孔質中空糸膜の一実施例を示す
一部拡大断面説明IA、第2図及び第3図は各々本発明
の他の実施例を示ず一部拡大断面説明図を示す。 2・・・中空糸の周壁部、3・・・ポリ(2−ヒドロキ
シエチルメタクリレート)層、4・・・中空糸基体、5
・・・ポリ(2−ヒドロキシエチルメタクリレート)の
非孔性シー1一層。
FIG. 1 is a partially enlarged cross-sectional explanation IA showing one embodiment of the porous hollow fiber membrane according to the present invention, and FIGS. 2 and 3 are partially enlarged cross-sectional explanations showing other embodiments of the present invention. Show the diagram. 2... Peripheral wall portion of hollow fiber, 3... Poly(2-hydroxyethyl methacrylate) layer, 4... Hollow fiber substrate, 5
... One layer of non-porous sheet of poly(2-hydroxyethyl methacrylate).

Claims (3)

【特許請求の範囲】[Claims] (1)周壁部に多数の貫通微細孔を有する中空糸基体で
あって、その周壁部表面及び該微細孔内表面をポリ(2
−ヒドロキシエチルメタクリレート)により被覆してな
ることを特徴とする多孔質中空糸膜。
(1) A hollow fiber substrate having a large number of penetrating micropores in the peripheral wall, the surface of the peripheral wall and the inner surface of the micropores are
-Hydroxyethyl methacrylate).
(2)該中空糸基体周壁部の内外表面のうち、少なくと
もその一表面側をポリ(2−ヒドロキシエチルメタクリ
レート)の非孔性シート層で被覆したことを特徴とする
特許請求の範囲第1項記載の多孔質中空糸膜。
(2) At least one surface of the inner and outer surfaces of the peripheral wall of the hollow fiber substrate is coated with a non-porous sheet layer of poly(2-hydroxyethyl methacrylate). The porous hollow fiber membrane described.
(3)該中空糸基体の微細孔内をポリ(2−ヒドロキシ
エチルメタクリレート)で閉塞したことを特徴とする特
許請求の範囲第1項記載の多孔質中空糸膜。
(3) The porous hollow fiber membrane according to claim 1, wherein the micropores of the hollow fiber substrate are closed with poly(2-hydroxyethyl methacrylate).
JP13557386A 1986-02-04 1986-06-11 Porous hollow membrane Pending JPS62294404A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13557386A JPS62294404A (en) 1986-06-11 1986-06-11 Porous hollow membrane
US07/346,278 US4992332A (en) 1986-02-04 1989-04-27 Porous hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13557386A JPS62294404A (en) 1986-06-11 1986-06-11 Porous hollow membrane

Publications (1)

Publication Number Publication Date
JPS62294404A true JPS62294404A (en) 1987-12-21

Family

ID=15154974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13557386A Pending JPS62294404A (en) 1986-02-04 1986-06-11 Porous hollow membrane

Country Status (1)

Country Link
JP (1) JPS62294404A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120602A (en) * 1984-11-16 1986-06-07 Mitsubishi Rayon Co Ltd Hydrophilic heat resistant porous polyolefin hollow yarn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120602A (en) * 1984-11-16 1986-06-07 Mitsubishi Rayon Co Ltd Hydrophilic heat resistant porous polyolefin hollow yarn

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
RU2113273C1 (en) Polysulfone-based hollow-fiber membrane and method of manufacturing thereof
EP0513390B1 (en) Porous hollow fiber membrane of polyethylene and production thereof
US5232642A (en) Process of making porous polypropylene hollow fiber membrane of large pore diameter
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US4073733A (en) PVA membrane and method for preparing the same
JPS6335726B2 (en)
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
JPS61283305A (en) Porous hollow yarn membrane
US4992332A (en) Porous hollow fiber
JPH07289863A (en) Polysulfone hollow fiber membrane and its production
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JPH05317664A (en) Porous hollow fiber membrane
JP2899347B2 (en) Porous hollow fiber membrane
JP2899352B2 (en) Porous hollow fiber membrane
JPS61200806A (en) Polyether sulfone porous hollow yarn membrane and its production
JPH0427891B2 (en)
JPS61268302A (en) Aromatic polysulfone composite semipermeable membrane and preparation thereof
JPS62294404A (en) Porous hollow membrane
JPS62237904A (en) Porous, hollow yarn membrane
JPS6365904A (en) Porous hollow yarn membrane
JPS62180703A (en) Porous hollow yarn membrane
JPS6365903A (en) Porous hollow yarn membrane
JPH01184001A (en) Porous membrane of polysulfone
JP2883406B2 (en) Hydrophilic membrane