JPS62293751A - Capacitor - Google Patents

Capacitor

Info

Publication number
JPS62293751A
JPS62293751A JP13767486A JP13767486A JPS62293751A JP S62293751 A JPS62293751 A JP S62293751A JP 13767486 A JP13767486 A JP 13767486A JP 13767486 A JP13767486 A JP 13767486A JP S62293751 A JPS62293751 A JP S62293751A
Authority
JP
Japan
Prior art keywords
polycrystalline
layer
capacitor
capacitance
linear patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13767486A
Other languages
Japanese (ja)
Inventor
Masamitsu Nakai
仲井 雅光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13767486A priority Critical patent/JPS62293751A/en
Publication of JPS62293751A publication Critical patent/JPS62293751A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a capacitor having a small occupying area and easy to be manufactured by dividing first conductive layers into a plurality of linear patterns mutually leaving spaces, electrically connecting the linear patterns and shaping capacitance storage sections to the side wall sections of these first conductive layers. CONSTITUTION:A first polycrystalline Si layer 2 is patterned so that peripheral length is lengthened as much as possible, and oxidized, and an oxide film 3 for shaping a capacitance between first polycrystalline Si 2 and second polycrystalline Si 4 is formed. Second polycrystalline Si 4 is grown on the whole surface, the whole surface is etched through an RIE method, and the second polycrystalline Si layer 4 is left on the side of the first polycrystalline Si layer 2, thus leaving the second polycrystalline Si layer 4 so as to completely surround the first polycrystalline Si layer 2. Accordingly, the large capacitance is acquired by a small area.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、半導体装置に関するもので、特に半導体集積
回路等に作り込むキャパシタに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a capacitor built into a semiconductor integrated circuit or the like.

〔発明の概要〕[Summary of the invention]

本発明は、半導体装置等に使用される第1導電層・誘電
体層・第2導電層からなるキャパシタに於いて、−第1
導電層を互いに間隔をあけた複数の線状パターンに分け
、かつそれを電気的に接続し、これらの第1導電層側壁
部に容量蓄積部を設けることによって、占有面積が小さ
くて製造の容易なキャパシタを提供したものである。
The present invention provides a capacitor including a first conductive layer, a dielectric layer, and a second conductive layer used in a semiconductor device, etc.
By dividing the conductive layer into a plurality of linear patterns spaced apart from each other, electrically connecting them, and providing a capacitance storage section on the side wall of the first conductive layer, the area occupied is small and manufacturing is easy. This provides a capacitor with a wide range of functions.

〔従来の技術〕[Conventional technology]

第3図A、 Bに2層多結晶シリコン構造を用いた従来
のキャパシタの例が示されている。これは、単結晶Si
等の基板1上に第1多結晶Si層をキャパシタの第1電
極として形成し、その上に厚さDのSiO□等の絶縁層
3を設け、さらにその上に第2多結晶Si層4を設けた
多結晶Si−多結晶Siキャパシタである。第3図Aの
平面図に示されるように、多結晶Si層をaxaの正方
形とし、絶キ(膜りの誘電率をεとすると、このキャパ
シタの容量はεa2/Dとなる。
An example of a conventional capacitor using a two-layer polycrystalline silicon structure is shown in FIGS. 3A and 3B. This is single crystal Si
A first polycrystalline Si layer is formed as the first electrode of a capacitor on a substrate 1 such as, an insulating layer 3 of SiO□ or the like having a thickness of D is provided thereon, and a second polycrystalline Si layer 4 is further formed on it. This is a polycrystalline Si-polycrystalline Si capacitor. As shown in the plan view of FIG. 3A, if the polycrystalline Si layer has a square shape of axa and the dielectric constant of the film is ε, then the capacitance of this capacitor is εa2/D.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のキャパシタの構造では、大きな容量を得るために
は大面積を必要とし・今後パターンが微細化していく半
導体技術に於いては従来のキャパシタ構造は不利な状況
にある。つまり多結晶Si −多結晶Si間主キヤパシ
タ於いては、基板シリコンに於ける酸化膜程薄くて良質
の熱酸化膜を形成することが困難であるために、熱酸化
膜厚を一定以下の厚さにして容量を大きくすることがで
きない。
Conventional capacitor structures require a large area in order to obtain large capacitance, and are at a disadvantage in semiconductor technology where patterns will become finer in the future. In other words, in the main capacitor between polycrystalline Si and polycrystalline Si, it is difficult to form a thermal oxide film as thin and high quality as the oxide film on the substrate silicon, so the thermal oxide film thickness is kept below a certain level. It is not possible to increase the capacity at the same time.

このため、大容量を得るためには誘電体層の厚さを薄く
するのではなく多結晶Si電極の面積を大きくする必要
があり、このことは微細化の方向と逆行している。また
、この容量形成を含むプロセスでは、第1多結晶Siに
加え(第1多結晶Siプロセスは通常のトランジスタ形
成プロセスに使用される)第2多結晶Siもフォトエツ
チングによりパターニングしなければならず、従来の多
結晶Si −多結晶Siキャパシタ構造は複雑なプロセ
スを必要としている。
Therefore, in order to obtain a large capacity, it is necessary to increase the area of the polycrystalline Si electrode rather than reducing the thickness of the dielectric layer, which is contrary to the direction of miniaturization. Furthermore, in a process that includes this capacitor formation, in addition to the first polycrystalline Si (the first polycrystalline Si process is used in a normal transistor formation process), the second polycrystalline Si must also be patterned by photoetching. , conventional polycrystalline Si-polycrystalline Si capacitor structures require complicated processes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に於いては、キャパシタの第1の電極を並列する
複数の線状パターンとし、これらの線状パターンを電気
的に誘電体層とキャパシタの第2の電極を設けて、少な
くとも第1電極の側壁部に容量蓄積部を形成することに
よって、上記問題点を解決した。
In the present invention, the first electrode of the capacitor is formed into a plurality of parallel linear patterns, and these linear patterns are electrically connected to the dielectric layer and the second electrode of the capacitor so that at least the first electrode The above-mentioned problem was solved by forming a capacitance storage section on the side wall of the device.

〔作用〕[Effect]

従来の平面的な多結晶Si−多結晶Siキャパシタに於
いては、容量を大きくする要求には面積を大きくするこ
とにより対処されていたが、本発明に於いては、第1電
極を複数の線状パターンに分割して、第1電極の側面の
縦の容量を利用して、キャパシタの占有面積の増大を防
いでいる。
In conventional planar polycrystalline Si-polycrystalline Si capacitors, the demand for increasing capacitance was met by increasing the area, but in the present invention, the first electrode is By dividing the capacitor into linear patterns and utilizing the vertical capacitance of the side surfaces of the first electrode, an increase in the area occupied by the capacitor is prevented.

〔実施例〕〔Example〕

実施例”■ 第1多結晶Si層2を第1図の様になるべく周辺長が長
くなる様にパターニングする。次に酸化を行い、第1多
結晶Si−第2多結晶Si間の容量形成用の酸化膜3を
形成する。その後全面に第2多結晶Siを成長させる。
Example "■ The first polycrystalline Si layer 2 is patterned so that the peripheral length is as long as possible as shown in FIG. 1. Next, oxidation is performed to form a capacitance between the first polycrystalline Si and the second polycrystalline Si. A second oxide film 3 is then formed.A second polycrystalline Si is then grown on the entire surface.

第2多結晶SiN4の全面エッチをRIE法により行い
、第1多結晶Si層2のサイドに第2多結晶Si層4を
残す。第1図Bに示すように、丁度第1多結晶Si層2
を取り囲む様に第2多結晶Si層4が残る事になる。
The entire surface of the second polycrystalline SiN 4 is etched by RIE, leaving the second polycrystalline Si layer 4 on the side of the first polycrystalline Si layer 2. As shown in FIG. 1B, just the first polycrystalline Si layer 2
The second polycrystalline Si layer 4 will remain so as to surround it.

従来のキャパシタと本発明のキャパシタの間で容量の比
較をしてみる。単純化のため、両方ともキャパシタの大
きさ、形状は一辺の長さaの正方形とする。5in2層
の厚さをり、誘電率をεとすると、従来のキャパシタの
場合、容量は 一方、本発明のキャパシタの場合、第1多結晶Si層2
の線巾と線間隔を各々bとすると容量はおよそ、 εad     a      ta2    bD 
      b       D       dとな
る。d/b>lであれば、つまり第1多結晶5iJi2
の厚みdが線巾すより大であれば、従来のキャパシタに
比較して本発明のキャパシタの方が容量が大きくなる。
Let's compare the capacitance between a conventional capacitor and a capacitor according to the present invention. For simplification, the size and shape of both capacitors are assumed to be a square with a side length a. If the thickness of the 2 layers is 5in, and the dielectric constant is ε, then in the case of a conventional capacitor, the capacitance is, on the other hand, in the case of the capacitor of the present invention,
If the line width and line spacing are respectively b, the capacity is approximately εad a ta2 bD
b D d. If d/b>l, that is, the first polycrystal 5iJi2
If the thickness d is greater than the line width, the capacitance of the capacitor of the present invention will be larger than that of the conventional capacitor.

実施例■ 第1多結晶Si層2を第2図の様になるべく周辺長が長
くなる様にパターニングする。次に熱酸化を行い、第1
多結晶St層−第2多結晶Si層間の容量形成用の酸化
膜3を形成する。その後全面に第2多結晶Si層4を成
長させる。第2多結晶5iJ54のパターニングをRI
Eにより行い、容量を形成する。
Example 2 The first polycrystalline Si layer 2 is patterned so that the peripheral length is as long as possible as shown in FIG. Next, thermal oxidation is performed, and the first
An oxide film 3 for forming a capacitance between the polycrystalline St layer and the second polycrystalline Si layer is formed. Thereafter, a second polycrystalline Si layer 4 is grown over the entire surface. RI patterning of second polycrystalline 5iJ54
E to form a capacitor.

この実施例についてのキャパシタの容量は、D    
   b2 となる。d/b + 1/2 > 1、つまりd>b/
2であれば(b < 2d)、すなわち、第1多結晶S
i層2の線巾すがその厚みのdの2倍より小であれば、
本発明のキャパシタの方が従来のキャパシタより容量が
大となる。
The capacitance of the capacitor for this example is D
It becomes b2. d/b + 1/2 > 1, that is, d>b/
2 (b < 2d), that is, the first polycrystal S
If the line width of i-layer 2 is smaller than twice its thickness d, then
The capacitor of the present invention has a larger capacitance than the conventional capacitor.

〔発明の効果〕〔Effect of the invention〕

半導体集積回路技術の進展に伴い、パターンが微細化し
つつある状況に於いては、本発明の第1電極層の線巾す
を細くすることも容易になり6つあるから、小面積で大
きな容量が得られる本発明の構造のキャパシタはますま
す重要となって来る。
With the progress of semiconductor integrated circuit technology, patterns are becoming finer, and the line width of the first electrode layer of the present invention can be made thinner, and since there are six layers, large capacitance can be achieved in a small area. A capacitor having the structure of the present invention that provides the following is becoming increasingly important.

また本発明のキャパシタの形成方法は、ポリサイド ウ
オール スペーサを用いたLDD )ランジスタの形成
プロセスと整合性があるので、マスクパターンを修正す
るのみで、L[lD l−ランジスタ形成のプロセスに
本発明のキャパシタの製造プロセスを組み込むことがで
きる。
Furthermore, since the capacitor formation method of the present invention is compatible with the formation process of LDD transistors using polycide wall spacers, the present invention can be applied to the process of forming L[lD l- transistors by simply modifying the mask pattern. Capacitor manufacturing processes can be incorporated.

また、本発明の構造のキャパシタの製造工程に於いては
、第2多結晶Si層をフォトエツチングによりバターニ
ングする必要がないと言う効果もある。
Further, in the manufacturing process of the capacitor having the structure of the present invention, there is also the advantage that there is no need to pattern the second polycrystalline Si layer by photoetching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の容量を示す。 第2図は他の本発明の容量を示す。 第3図は従来の多結晶−多結晶容量を示す。 FIG. 1 shows the capacity of the present invention. FIG. 2 shows another capacity of the present invention. FIG. 3 shows a conventional polycrystalline-polycrystalline capacitor.

Claims (1)

【特許請求の範囲】[Claims] 第1の導電層上に誘電体層を介して第2の導電層が形成
されたキャパシタにおいて、前記第1の導電層が互いに
間隔をあけて並列する複数の線状パターンよりなり、且
つ前記複数の線状パターンは互いに接続され、少なくと
も前記第1の導電層側壁部に容量蓄積部が形成されたこ
とを特徴とするキャパシタ。
In a capacitor in which a second conductive layer is formed on a first conductive layer via a dielectric layer, the first conductive layer is composed of a plurality of linear patterns arranged in parallel at intervals, and the plurality of A capacitor, wherein the linear patterns are connected to each other, and a capacitance storage portion is formed at least on a sidewall portion of the first conductive layer.
JP13767486A 1986-06-13 1986-06-13 Capacitor Pending JPS62293751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13767486A JPS62293751A (en) 1986-06-13 1986-06-13 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13767486A JPS62293751A (en) 1986-06-13 1986-06-13 Capacitor

Publications (1)

Publication Number Publication Date
JPS62293751A true JPS62293751A (en) 1987-12-21

Family

ID=15204167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13767486A Pending JPS62293751A (en) 1986-06-13 1986-06-13 Capacitor

Country Status (1)

Country Link
JP (1) JPS62293751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178404B2 (en) 2001-10-09 2012-05-15 Nxp B.V. Metal-insulator-metal (MIM) capacitor structure and methods of fabricating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178404B2 (en) 2001-10-09 2012-05-15 Nxp B.V. Metal-insulator-metal (MIM) capacitor structure and methods of fabricating same

Similar Documents

Publication Publication Date Title
KR950034789A (en) Semiconductor integrated circuit device and manufacturing method thereof
GB2392311A (en) DRAM storage capacitor electrodes
KR920022527A (en) Manufacturing method of semiconductor integrated circuit device
JP2008205180A (en) Semiconductor device and its manufacturing method
KR890008984A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS6118167A (en) Semiconductor device
JP2001257320A (en) Semiconductor memory device and method of manufacturing the same
KR930005741B1 (en) Dram cell having a tunnelled capacitor and method of fabricating therefor
JPS62293751A (en) Capacitor
KR100644526B1 (en) Method of fabricating embossing-typed capacitor
JPH08330518A (en) Semiconductor integrated circuit and its manufacturing method
KR940003606B1 (en) Semiconductor device
JPS59181045A (en) Semiconductor device
JPS63197368A (en) Semiconductor device and its manufacture
KR0155790B1 (en) Capacitor fabrication method of semiconductor device
JPH05347392A (en) Manufacture of semiconductor device
CN1255748A (en) Method for making storage electrode of DRAM capacitor
KR940001286B1 (en) High-load resistor of semiconductor device
KR0165304B1 (en) Self align contact structure semiconductor device &amp; its fabrication method
KR970000976B1 (en) Producing method of stack capacitor
JPS61152064A (en) Semiconductor memory device
KR0176267B1 (en) Manufacture of semiconductor storage device
JPH05110027A (en) Semiconductor device
KR0140781B1 (en) Structure of capacitor and its manufacturing method
KR100233560B1 (en) Dram device and its fabricating method