JPS62291183A - Manufacture of multijunction semiconductor photoelectric conversion element - Google Patents

Manufacture of multijunction semiconductor photoelectric conversion element

Info

Publication number
JPS62291183A
JPS62291183A JP61135521A JP13552186A JPS62291183A JP S62291183 A JPS62291183 A JP S62291183A JP 61135521 A JP61135521 A JP 61135521A JP 13552186 A JP13552186 A JP 13552186A JP S62291183 A JPS62291183 A JP S62291183A
Authority
JP
Japan
Prior art keywords
layer
cell
junction
gaas
upper cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61135521A
Other languages
Japanese (ja)
Inventor
Shingo Katsumoto
勝本 信吾
Chikara Amano
主税 天野
Atsushi Shibukawa
渋川 篤
Akiisa Yamamoto
山本 ▲日高▼勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61135521A priority Critical patent/JPS62291183A/en
Publication of JPS62291183A publication Critical patent/JPS62291183A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a multijunction semiconductor photoelectric conversion element of high efficiency by a method wherein a connecting portion of an upper cell with a lower cell is formed on the upper cell formed on a dummy substrate, the lower cell is formed on the connecting portion subsequently, and the dummy substrate is removed thereafter. CONSTITUTION:With a dummy substrate 8 used, an upper cell 16 having a high growth temperature is made to grow first, and then a lower cell 23 having a low growth temperature is made to grow. Therefore, neither of the grown cells will be heated at higher temperatures than those during growth. As to a multijunction semiconductor photoelectric conversion element having an upper cell of a smaller lattice constant than a lower cell, as well, lattice mismatch can be surmounted easily, since cells are made to grow in the sequence of the ones of smaller lattice constants ahead. This method enables the formation of an upper cell of high quantity and, consequently, the formation of a multijunction semiconductor photoelectric conversion element of high efficiency.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は多接合半導体光電変換素子の製造方法に関する
ものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of manufacturing a multi-junction semiconductor photoelectric conversion element.

〔従来の技術〕[Conventional technology]

単一のPN接合を用いた半導体太陽電池は、透過損p光
エネルギ不完全利用損等の損失により、光洩で、その効
率は、!3〜.24t%(理論計算上の仮定等により、
ばらつきがある)である。これを上回る高効率を得るた
めの構造の太陽電池として多接合半導体構造の太陽電池
が提案されている。代表的多接合半導体太陽電池の例を
第グ図に示す。
A semiconductor solar cell using a single PN junction suffers from light leakage due to losses such as transmission loss and incomplete utilization of light energy, and its efficiency is... 3~. 24t% (due to assumptions in theoretical calculations, etc.)
There are variations). A solar cell with a multi-junction semiconductor structure has been proposed as a solar cell structured to obtain higher efficiency than this. An example of a typical multijunction semiconductor solar cell is shown in Fig.

これは短波長側の受光を禁制帯幅(Eり)の大きな半導
体材料より成る上部接合を有する上部セル2とEfの小
さな半導体材料より成る下部接合を有する下部セル弘を
上下接合部3で接続し、上部セル2上に表面電極/、下
部セルグ上に裏面電極夕を設けた構造である。この多接
合半導体太陽電池は、短波長側の受光を上部セル2で行
い、長波長側の受光を下部セル弘で行い、有効波長の広
帯域化を図っている。上下セルを電気的につなぐ方法と
してはトンネル接合、金属電極、格子不整によるリーク
電流を利用した接合等を用いた接続が提案されている。
In this case, an upper cell 2 having an upper junction made of a semiconductor material with a large forbidden band width (E) and a lower cell 2 having a lower junction made of a semiconductor material with a small Ef are connected at an upper and lower junction part 3 for receiving light on the short wavelength side. However, it has a structure in which a front electrode is provided on the upper cell 2 and a back electrode is provided on the lower cell. This multi-junction semiconductor solar cell receives light on the short wavelength side in the upper cell 2, and receives light on the long wavelength side in the lower cell 2, thereby achieving a wide range of effective wavelengths. As methods for electrically connecting upper and lower cells, connections using tunnel junctions, metal electrodes, junctions that utilize leakage current due to lattice misalignment, etc. have been proposed.

現在、このような多接合半導体構造の太陽電池を分子線
エピタキシー(MBE)法や有機金属気相成長(OMV
PE)法によって作製する試みが多く行われている。材
料系は、上部セル2にJ臥sやcmsp+下部セルグに
GaAs、 InGaAs等の■−v族化合物半導体を
使うものがほとんどである。このような多接合半導体太
陽電池は、先ず下部セル弘を成長させた後に上部セル2
を成長させる方法で作られていた。しかし、上部セル2
と下部セル弘の成長条件が異なる場合、従来の成長の順
番である下部セル弘を作製した後上部セル2を作製する
という順序で多接合構造の太陽電池を作ると、下部セル
≠が上部セル2の成長条件によって悪影響をうけるとい
う欠点がある。この悪影響とは、例えば、格子不整合、
熱かぶり、高濃度のキャリア濃度で接合をつくる時のド
ーピング等の問題点が原因になって起こるものである。
Currently, solar cells with such multijunction semiconductor structures are manufactured using molecular beam epitaxy (MBE) method and metal organic vapor phase epitaxy (OMV) method.
Many attempts have been made to produce the material using the PE method. Regarding the material system, most of the materials use a ■-v group compound semiconductor such as JS for the upper cell 2 and GaAs or InGaAs for the cmsp+ lower cell. In such a multi-junction semiconductor solar cell, first the lower cell layer is grown, and then the upper cell layer 2 is grown.
It was made in a way that allowed it to grow. However, upper cell 2
When the growth conditions of the lower cell 2 and the lower cell 2 are different, if a solar cell with a multijunction structure is made in the conventional growth order of producing the lower cell 2 and then producing the upper cell 2, the lower cell ≠ is the upper cell. It has the disadvantage that it is adversely affected by the growth conditions of 2. These negative effects include, for example, lattice mismatch,
This is caused by problems such as thermal fogging and doping when forming a junction with a high carrier concentration.

以下1.pJGaAs −GaAs系とAA)aAs 
−InGaAs系を例にとって具体的に従来の欠点を指
摘する。
Below 1. pJGaAs-GaAs system and AA) aAs
- Taking the InGaAs system as an example, the drawbacks of the conventional system will be specifically pointed out.

■ AlGaAs −GaAs系は、格子定数、熱膨張
係数の上下セルでのマツチングもよく高効率が得られる
材料系として期待されている。上部セル2と下部セル弘
とを電気的につなぐ方法としても、非有効面積がなく成
長後や成長途中のプロセスが不必要なトンネル接合を採
用でき、ピーク電流密度が数アンペアから数百アンペア
/−と高電流密度の多接合半導体構造の太陽電池が得ら
れている。
(2) The AlGaAs-GaAs system is expected to be a material system that can provide high efficiency with good matching of lattice constant and coefficient of thermal expansion between upper and lower cells. As a method for electrically connecting the upper cell 2 and the lower cell 2, a tunnel junction can be used that does not have an ineffective area and does not require processes after growth or during growth, and the peak current density can range from several amperes to several hundred amperes/ A solar cell with a multi-junction semiconductor structure of - and high current density has been obtained.

ところが変換効率の向上には限界があった。即ち、AM
O〜2の太陽光に対して多接合構造の太陽電池でトンネ
ル接合を用いた純粋な二端子素子では変換効率10優に
満たないのが現状であった。
However, there was a limit to the improvement in conversion efficiency. That is, A.M.
At present, a pure two-terminal element using a tunnel junction in a solar cell with a multi-junction structure has a conversion efficiency of less than 10 for sunlight of 0~2.

この変換効率は各セルの単一構造の太陽電池から予想さ
れる値よりはるかに低い値である。
This conversion efficiency is much lower than what would be expected from a solar cell with a single structure of each cell.

各セル部分単独では良好な変換効率が得られながら多接
合構造全体の変換効率が向上しないことの最も大きな原
因は各部の最適成長条件が大幅に違い、多接合構造を作
製する際に先に形成した部分が後の工程で悪影響をうけ
てしまうことである。
The biggest reason why the conversion efficiency of the entire multi-junction structure does not improve even though good conversion efficiency can be obtained with each cell part alone is that the optimal growth conditions for each part are significantly different, and when the multi-junction structure is fabricated, it is necessary to This means that the parts that have been removed will be adversely affected in subsequent processes.

MBE法についていえば、下部セル≠のGaAs接合部
は基板温度TS = 610−t 00’C、V、A1
1俵−分l’f−e度比ト、= 、1: ;、 1で形
成Mたl鳴府の膜噴汐勉α好卿こトンネル接合を用いた
接続部3はTS−JOO〜620°C2γ=g〜IOで
形成し、上部セル2のM以S接合部はTs=70θ〜7
20″C2γ=2〜グで形成することが好ましい。第5
図に上部セル2であるM虱Sの成長温度と膜質を表わす
パラメータである少数キャリア拡散長との関係を示した
。短絡電流密度や少数キャリア拡散長の最大値が700
′C付近であることからも上部セル2の積層には高温成
長(TS=700〜720’C)が良い膜をつくる絶対
条件であることがわかる。ところが、トンネル接合を用
いた接続部は上部セルの高温成長により大幅に劣化して
しまう。この劣化の様子を第4図に示す。実線2は、s
ooocで成長したGaAs基板上−P++のトンネル
ダイオードの特性であり、点線7はGaAs n ++
−P″−の上に700”CでA/!GaAS膜/pmを
成長したGaAsn  −P  のトンネルダイオード
の特性である。第を図から点線7は実線2よりトンネル
電流が少ないことからトンネル接合が上部セル2成長時
の温度によって劣化されていることがわかる。
Regarding the MBE method, the GaAs junction of the lower cell≠ has a substrate temperature TS = 610-t 00'C, V, A1
The connection part 3 using the tunnel junction is TS-JOO ~ 620. °C2γ=g~IO, and the M to S junction of upper cell 2 is Ts=70θ~7
It is preferable to form with 20″C2γ=2~g.
The figure shows the relationship between the growth temperature of MEL S, which is the upper cell 2, and the minority carrier diffusion length, which is a parameter representing the film quality. The maximum value of short circuit current density and minority carrier diffusion length is 700
It can be seen that high temperature growth (TS=700 to 720'C) is an absolute condition for forming a good film in the lamination of the upper cell 2, since the temperature is around 'C. However, connections using tunnel junctions deteriorate significantly due to high temperature growth of the upper cell. The state of this deterioration is shown in FIG. Solid line 2 is s
The dotted line 7 shows the characteristics of a -P++ tunnel diode on a GaAs substrate grown by oooc.
A/! at 700”C on -P”-! These are the characteristics of a GaAsn-P tunnel diode grown with a GaAS film/pm. From the figure, it can be seen that the tunnel junction is degraded by the temperature during the growth of the upper cell 2 because the tunnel current is smaller in the dotted line 7 than in the solid line 2.

また、温度以外にもトンネル接合部のn  (hAs層
を高濃度にする際、不純物イオンの打込処理表面は高濃
度にすることが容易であるが、n ++GaAs層の不
純物イオンの打込処理裏面を高濃度にすることは難しい
ことが知られている。
In addition to temperature, when making the n(hAs layer of the tunnel junction a high concentration), it is easy to make the impurity ion implantation surface highly concentrated, but the impurity ion implantation treatment of the n++ GaAs layer It is known that it is difficult to achieve high concentration on the back side.

■ AIQjaAfs  In()aAs系では太陽光
に対して最も高効率を得られるEfの組み合せとして、
上部セル2のEgIが/、 &〜/、 7 eV、下部
セルIIO場が/、/〜/、 、2 eVが理論的に算
出されるがこの下部セル弘の好適なEpを実現する最も
簡単なm−v族の組み合せは、InGaAs (In組
成0./〜0.2)である。この下部セル材料の欠点は
・格子整合のとれる二元■−■族基板が存在しないこと
であるが、格子定数がInGaAsより小さい一基板を
用い、バッファ層を用いること等により、結晶品質のよ
いInGaAsをGaAs基板上に形成できる。
■ AIQjaAfs In()aAs system, the Ef combination that provides the highest efficiency for sunlight is
It is theoretically calculated that the EgI of the upper cell 2 is /, &~/, 7 eV, and the IIO field of the lower cell is /, /~/, , 2 eV, but this is the easiest way to realize a suitable Ep for the lower cell. A typical m-v group combination is InGaAs (In composition 0./~0.2). The disadvantage of this lower cell material is that there is no binary ■-■ group substrate that can achieve lattice matching, but by using a substrate with a lattice constant smaller than that of InGaAs and using a buffer layer, it is possible to achieve good crystal quality. InGaAs can be formed on a GaAs substrate.

ところが、このようにして得られたInGaAsを下部
セルに用いた多接合構造の太陽電池では、最も良好なも
のでも効率が20−.23%と単一な接合構造のものの
効率と余り変りがない。l’JcIIA5 HGaAS
P等を上部セル材料として用いた場合では格子不整の問
題が生じ、上部セル   ′  −9≠の材料の方が下
部セル弘の材料に比べ格子定数が小・さいため格子不整
の克服が難しい。また、これらの上部セル材料の成長時
には、一般に高温が必要なため下部セル弘のInGaA
sからInが上部セルλへ侵入して上部セル2を劣化さ
せる。このように品質のよい上部セルが形成できないの
で、太陽電池の効率を向上できない。
However, in the multi-junction solar cell using InGaAs for the lower cell obtained in this way, even the best one has an efficiency of 20-. The efficiency is 23%, which is not much different from the efficiency of a single junction structure. l'JcIIA5 HGaAS
When P or the like is used as the upper cell material, the problem of lattice misalignment occurs, and it is difficult to overcome the lattice misalignment because the material of the upper cell'-9≠ has a smaller lattice constant than the material of the lower cell. In addition, since high temperatures are generally required when growing these upper cell materials, InGaA for the lower cell layer is
In enters the upper cell λ from s and deteriorates the upper cell 2. Since a high-quality upper cell cannot be formed in this way, the efficiency of the solar cell cannot be improved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高効率の多接合半導体光電変換素子の
製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a highly efficient multi-junction semiconductor photoelectric conversion element.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、ダミー基板を用意し、その上に先ず上部セル
を先に形成した後、上部セル上に上部セルと下部セルの
接続部を形成し、次いで接続部上に下部セルを形成した
後ダミー基板を除去することを主要な特徴とする。
In the present invention, a dummy substrate is prepared, an upper cell is first formed on the dummy substrate, a connecting portion between the upper cell and the lower cell is formed on the upper cell, and then a lower cell is formed on the connecting portion. The main feature is that the dummy substrate is removed.

〔作 用〕[For production]

本発明の製造方法では、ダミー基板を用い、成長温度の
高い上部セルを先に成長させ、次いで成長温度の低い下
部セルを成長させるので各セルは成長後に成長時より高
い熱処理を経ない。また、下部セルに比べ格子定数の小
さい上部セルをもつ多接合半導体光電変換素子について
も、格子定数の小さい順にセルを成長させるので格子不
整合の克服が容易である。従って、高品質の上部セルを
形成でき、効率の高い多接合半導体光電変換素子を実現
できる。
In the manufacturing method of the present invention, a dummy substrate is used, and the upper cell with a higher growth temperature is grown first, and then the lower cell with a lower growth temperature is grown, so that each cell does not undergo a higher heat treatment after growth than during growth. Further, even in a multi-junction semiconductor photoelectric conversion element having an upper cell having a smaller lattice constant than a lower cell, it is easy to overcome lattice mismatch because the cells are grown in order of decreasing lattice constant. Therefore, a high-quality upper cell can be formed, and a highly efficient multijunction semiconductor photoelectric conversion element can be realized.

〔実施例〕〔Example〕

AlGaAs  GaAs系を用いた本発明の第1の実
施例を以下に述べる。
A first embodiment of the present invention using an AlGaAs GaAs system will be described below.

第1図は、本発明の第1の実施例を説明する図である。FIG. 1 is a diagram illustrating a first embodiment of the present invention.

エピタキシャル成長法として!−、i:MBE法を用い
ている。まず、ダミー基板としてGaAs結晶ざを用意
する。次いで、このダミー基板ざの表面の欠陥等の上部
セルへの悪影響を除去するために帥バッファ層りを成長
基板温度T5−!♂O′Cで−IO− ダミー基板r上に成長する(第1図(A))。次にT、
を700”Cへ上げ、ストップエッチ層となる鳩(hl
−)4 A、s (:IQ) = (1)り)層10を
バッファ層り上に成長する(第7図(B))。続いて素
子本体の成長に入るがAtGaAsは表面オーミック電
極がとりにくいため、Tsを再びrro’cへ下げオー
ミック用のキャリア濃度が約10  cm  のPOa
AS層//をMO,g GaO,I As層10の上に
成長する(第1図(C))。
As an epitaxial growth method! -, i: MBE method is used. First, a GaAs crystal substrate is prepared as a dummy substrate. Next, a buffer layer is grown on the dummy substrate at a temperature T5-! in order to remove any adverse effects on the upper cells such as defects on the surface of the dummy substrate. -IO- is grown on the dummy substrate r with ♂O'C (FIG. 1(A)). Next, T.
Raise the temperature to 700"C and apply a stop etch layer (hl).
-)4 A,s (:IQ) = (1) ri) A layer 10 is grown on the buffer layer (FIG. 7(B)). Next, the growth of the device body begins, but since it is difficult to form an ohmic electrode on the surface of AtGaAs, Ts is lowered to rro'c again, and POa with an ohmic carrier concentration of about 10 cm is used.
An AS layer // is grown on the MO, g GaO, I As layer 10 (FIG. 1(C)).

に、キャリア濃度が約! X / 018cm−8の上
部セル接X合用のP A/y、、Oat x4As (
X、−0,t4 )層/3、キャリア濃度が10〜10
  cm  の上部セル接合用のn Atx2Gal−
没AS層/グ、キャリア濃度が約jX10 cmの裏窓
層用のn A2x3Gai−均As (xs = 0.
 z)層/オ、の順にP  GaAs層//の上に成長
する(第7図(D))。
, the carrier concentration is approximately! P A/y,, Oat x4As (
X, -0, t4) layer/3, carrier concentration is 10 to 10
n Atx2Gal- for the top cell junction of cm
n A2x3 Gai - average As (xs = 0.
z) layer/o is grown on the P GaAs layer// in this order (FIG. 7(D)).

これらの層/、2〜/jの部分がM以S上部セル/lで
ある。続いて、I5をtoo″cへ下げ、キャリア濃度
が約/ 019cm−8のトンネル上部層のn ” O
結、s層/7、キャリア濃度が約/ 019cm−8の
トンネル下部層のP  GaAs層it、をA7GaA
s上部セル/lの上に成長する(第1図(E))。これ
らの層/7.  XIがトンネル接合を用いた接続部/
りである。次にTsをj♂O′Cへ上げ、キャリア濃度
が約夕×10crnの下部セル接合用のP GaAs層
20、キャリア濃度が1016〜1017の下部セル接
合用のnGau層2/、キャリア濃度が約r X / 
018on−”の裏面電極コンタクト用n  鳳s層2
2の順で接続部/りの上に成長する(第1図(F))。
The portions of these layers /, 2 to /j are the upper M or S upper cells /l. Subsequently, I5 is lowered to too''c, and the n''O of the tunnel upper layer with a carrier concentration of about /019 cm
In other words, the P GaAs layer of the tunnel lower layer with an s layer of /7 and a carrier concentration of about /019 cm-8 is made of A7GaA.
It grows on top of the s upper cell/l (Fig. 1(E)). These layers/7. Connection part where XI uses tunnel junction/
It is. Next, Ts is increased to j♂O'C, and a P GaAs layer 20 for the lower cell junction with a carrier concentration of about 10 crn, an nGau layer 2/ for the lower cell junction with a carrier concentration of 1016 to 1017, and a carrier concentration of Approximately r x /
018on-'' n-s layer 2 for back electrode contact
It grows on the connection part/li in the order of 2 (FIG. 1(F)).

これらの層20.2/、22の部分がGaAs下部セル
23である。なお、不純物としてはn形がSi+P形が
Beを用いればよい。
A portion of these layers 20.2/22 is the GaAs lower cell 23. Note that as impurities, Si for n-type and Be for p-type may be used.

続いて、n ()aAs層22面上(素子としては裏面
)に裏面電極となるAu−Sn合金2≠を蒸着してAu
2j蒸着をしたAt板、2JにとのAu −Sn合金層
2≠をA7ペーストで貼り付ける(第1図((2))。
Subsequently, an Au-Sn alloy 2≠, which will become a back electrode, is deposited on the surface of the n()aAs layer 22 (the back surface as an element) to form an Au
The Au-Sn alloy layer 2≠ of 2J is attached to the At plate on which 2J has been deposited using A7 paste (FIG. 1 (2)).

At板2tを研磨して30μmまで薄くした後、これを
I202 : NH4OH(体積比30 : / )溶
液に入れてダミー GaAs基板♂及びGaAsバッフ
ァ層りをエツチング除去する(第1図([() )。こ
のエツチングはGaAsにのみ有効なため素子本体はス
トップエッチ履用Ato、g GaO,IAS層IOに
よって保護される。次にAtO,g GaO,l As
層IOにのみエツチングが有効なKI:I2;I20(
重量比7:4t:I77)溶液でストップエッチ層A1
6oGaO,IAs層IOをエツチングで除去する(第
り 7図(I))。露出した(3aAS面//にAu −Z
n合金U−fI−を真空蒸着によりつける(第1図(J
))。フォトリングラフィ技術を用いて、櫛形のエツチ
ングマスクをつけて、保護されているところ以外のAu
−Znり 合金24−をKI: I2 ’ HiO溶液(重量比7
:グ:/77)り でエツチングしパターンj−!I−aを形成する。さら
に)(202’ NH4OH(体積比3C):/)溶液
を用い、ク パターン2−IFaをマスクにして、GaAS層//を
エツチングしパターン//aを形成する。これをア七ト
ンで洗いエツチングマスクをとれば櫛形のAu−Zn合
金電極2−9−ができる(第1図()0)。
After polishing the At plate 2t to a thickness of 30 μm, it was placed in an I202:NH4OH (volume ratio 30:/) solution and the dummy GaAs substrate ♂ and the GaAs buffer layer were etched away (see Figure 1 ([()). ).Since this etching is effective only for GaAs, the element body is protected by the stop-etch layer Ato, g GaO, IAS layer IO. Next, AtO, g GaO, l As
KI where etching is effective only for layer IO: I2; I20(
Weight ratio 7:4t:I77) Stop etch layer A1 with solution
The 6oGaO, IAs layer IO is removed by etching (FIG. 7(I)). Au-Z on the exposed (3aAS surface //
n alloy U-fI- is applied by vacuum evaporation (Fig. 1 (J
)). Using photolithography technology, a comb-shaped etching mask is applied to remove the Au other than the protected areas.
-Zn alloy 24- is KI: I2' HiO solution (weight ratio 7
:G:/77) Etching pattern j-! Form I-a. Further, using a (202' NH4OH (volume ratio 3C):/) solution and using the pattern 2-IFa as a mask, the GaAS layer // is etched to form a pattern //a. If this is washed with acetone and the etching mask is removed, a comb-shaped Au--Zn alloy electrode 2-9- is obtained (FIG. 1()0).

以上の工程で特に問題となるのは、TS”30ぴCで成
長したトンネル接合の接続部/りが下部セル23の各層
成長時にJ′gO′Cとなることによって劣化しないか
という点であるが、第2図に示すようにj♂O′CでG
aAsを3μm成長させたときの特性30にみられるよ
うにJ′go”cの工程を通ったトンネル接合では大幅
な劣化はみられない。但し、オ♂O′Cの工程を経るに
してもGaAs )ンネル接合の成長温度は必らずso
o′cで行う必要がある。
A particular problem in the above process is whether the connection part of the tunnel junction grown at TS"30 pC will deteriorate due to becoming J'gO'C during the growth of each layer of the lower cell 23. However, as shown in Figure 2, G at j♂O'C
As seen in characteristic 30 when aAs is grown to 3 μm, no significant deterioration is observed in tunnel junctions that have gone through the J'go'c process. However, even though they have gone through the O♂O'C process, The growth temperature of the GaAs) tunnel junction is necessarily so
It is necessary to do this at o'c.

このような工程で作製した素子では特性の劣化はほとん
どみられず、A M / + / 00 m w/cr
/lの太陽光に対し変換効率2!〜、2&%とかなりの
素子特性の改善をみた。
Devices fabricated using this process show almost no deterioration in characteristics, with A M / + / 00 mw/cr
Conversion efficiency is 2 for /l of sunlight! A considerable improvement in device characteristics was observed, ranging from 2% to 2%.

次にAtGaAs −InGaAs系を用いる本発明の
第2実施例を以下に述べる。
Next, a second embodiment of the present invention using the AtGaAs-InGaAs system will be described below.

第3図は、本発明の第2の実施例を説明する図である。FIG. 3 is a diagram illustrating a second embodiment of the present invention.

ダミー GaAs基板10gを用い、GaAsバッファ
層10り、ストップエッチのだめのM@(3al %A
S(XO=(7,7)層/10及びオーミックコンタク
ト用のP  GaAS層///の形成を実施例/と同様
に行う。次にTsを700′Cへ上げキャリア濃度約夕
×10  cm  の窓層用のp AtX、 Gal 
XI As (xs == (H)層//、2.キャリ
ア濃度約J−X / 018cm””の上部セル接合用
のP+人へ、 (hl−y、 As ()Q =0.−
2 )層//3.キャリア濃度〆・o、、46.、、/
θ1°7□−3“3の上部セル接合用の積載−1+−m
 As層//弘、ギヤリア濃度約!r×10 tyn 
 の裏窓層用のn +Aty、、 Ga1−y、 As
 、(黛= 、’0.4’ )層//j、をこの順にP
1℃aA、s層///の上に成長する(第4図(A))
。これら各層/72〜//!の部分がAlGaAs上部
セル//1である。続いてTsを!rOO°Cへ下げ、
キャリア濃度約1019ノn ++A1.X6Ga1−
x6As (Xs = (7,,2)層//7、キャリ
ア濃度約10 cm  のP  Iny、G11−y、
ks(Y1=0.0り  //J’、をV臥S上部セル
部//1.の上に成長する(第3図(B))。
Using 10 g of dummy GaAs substrate, 10 g of GaAs buffer layer, M@(3al%A
The S(XO=(7,7) layer/10 and the P GaAS layer/// for ohmic contact are formed in the same manner as in Example/. Next, Ts is increased to 700'C and the carrier concentration is approximately 2×10 cm. p AtX, Gal for the window layer of
XI As (xs == (H) layer//, 2. P+ person for the upper cell junction with carrier concentration approximately J-X/018 cm"", (hl-y, As ()Q = 0.-
2) Layer //3. Carrier concentration 〆・o,,46. ,,/
Loading for upper cell junction of θ1°7□-3"3 -1+-m
As layer//Hiroshi, Gearia concentration approx! r×10 tyn
n +Aty, Ga1-y, As for the back window layer of
, (Mayuzumi = , '0.4') layer //j, in this order P
1℃aA, grows on top of the s layer /// (Figure 4 (A))
. Each of these layers /72~//! The portion is the AlGaAs upper cell //1. Next is Ts! lower to rOO°C;
Carrier concentration approximately 1019n ++A1. X6Ga1-
x6As (Xs = (7,,2) layer //7, P Iny with carrier concentration of about 10 cm, G11-y,
ks(Y1=0.0ri//J') is grown on the upper cell part of V*S//1. (Fig. 3(B)).

これらの層//7+//♂が格子不整のある接続部/l
りである。最後にTsを!20°Cとし、キャリア濃度
約3×1018.−”のバッファ層用のP+Iny2G
al−y2AS (Yz 嬌0.03−0./ j )
層/20.下部上下接合用のキャリア濃度約!×101
m  のP  Iny2(Jkr) y2As層72ノ
、キャリア濃度1016〜101″crn−8の下部セ
ル接合用のn Iny2Ga 1−y2 As層/22
.キャリア濃度約j×1018crn−8の裏面電極コ
ンタクト用のn  Iny2Ga1 、Assi23・
 を形成する(第3図(C))。
These layers //7+//♂ are connections with lattice misalignment/l
It is. Finally, Ts! The temperature was 20°C, and the carrier concentration was approximately 3×1018. -” P+Iny2G for buffer layer
al-y2AS (Yz嬌0.03-0./j)
Layer/20. Carrier concentration for lower and upper junctions is approximately! ×101
m P Iny2 (Jkr) y2As layer 72, n Iny2Ga 1-y2 As layer/22 for lower cell junction with carrier concentration 1016~101'' crn-8
.. n Iny2Ga1 for back electrode contact with carrier concentration of about j×1018crn-8, Assi23・
(Fig. 3(C)).

これらの層/20〜/コ3までの部分がIrf)aAs
下部セル/24tである。
These layers /20 to /ko3 are Irf)aAs
The lower cell is 24t.

このあと、第1図((2)〜(K)の構造を得る工程を
第1の実施例と同様に行う。
Thereafter, the steps for obtaining the structures shown in FIG. 1 ((2) to (K)) are performed in the same manner as in the first embodiment.

以上の工程によって作製した素子では、InGaAsの
下部セル/2弘が高温にさらされることがないので、上
部セル//z−\のInの侵入がなく、上部セル//乙
の劣化はみられない。AM/ 、 / oomWAdの
太陽光に対し、変換効率2グ〜2j%とかなりの特性の
改善をみた。特に上部セル//1と下部セル/21I−
をつないでいる接続部//りの不整格子によるオーミッ
ク接続が良いだめ、レンズによる通常の太陽光の10倍
程度の集光をしても変換効率は落ちなかった。
In the device manufactured by the above process, the lower InGaAs cell /2 is not exposed to high temperatures, so there is no intrusion of In in the upper cell //z-\, and no deterioration of the upper cell /2 is observed. do not have. For AM/, /oomWAd sunlight, we observed a significant improvement in the conversion efficiency, with a conversion efficiency of 2g to 2j%. Especially the upper cell //1 and the lower cell /21I-
Thanks to the good ohmic connection made by the mismatched lattice at the connecting part, the conversion efficiency did not drop even when the lens focused about 10 times the amount of normal sunlight.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば上部セルを先に作
製するので、熱に弱い下部セルを高温にさらすことなく
多接合半導体構造を作製できる。
As explained above, according to the present invention, since the upper cell is manufactured first, a multijunction semiconductor structure can be manufactured without exposing the lower cell, which is sensitive to heat, to high temperatures.

よって、上部セルを高温で長時間かけて成長しても、下
部セルは劣化しない。
Therefore, even if the upper cell grows at high temperature for a long time, the lower cell will not deteriorate.

このように本発明では、多接合半導体構造中の各機能部
分を最適の条件で成長でき、かつ互いに他の部分の劣化
を伴うことがないため、高効率の光電変換素子を得られ
る。
As described above, in the present invention, each functional part in a multi-junction semiconductor structure can be grown under optimal conditions, and each functional part can be grown without deterioration of other parts, so that a highly efficient photoelectric conversion element can be obtained.

また基板を除去しているため軽量となっている。Also, since the substrate is removed, it is lightweight.

ところで、一般にn 層を作る際にnドーパント(sn
、si等)はまずn++層表面に堆積し、その後拡散に
よシn++層内に拡がるため、n++層表面は高濃度に
なるが表面から遠ざかるにつれて濃度が低くなる。本発
明によれば、トンネル接合部をn++層、P 層の順に
作るのでPn接合部分を高濃度にできるため、よシ良い
特性が得られる(特にMBE法の場合)。
By the way, when forming an n layer, an n dopant (sn
, si, etc.) are first deposited on the surface of the n++ layer and then spread into the n++ layer by diffusion, so that the concentration is high at the surface of the n++ layer, but the concentration decreases as you move away from the surface. According to the present invention, since the tunnel junction is formed in the order of the n++ layer and the P layer, the concentration of the Pn junction can be made high, so that better characteristics can be obtained (particularly in the case of the MBE method).

更に、第2の実施例のような材料系の場合、格子不整合
面は上下セルの間の一面でよく、この格子不整合面も本
発明では、禁制帯内準位を利用することによってオーミ
ック接続をとることができるので上下セルを電気的に接
続することが容易にできる。
Furthermore, in the case of a material system like the second embodiment, the lattice mismatching surface may be one surface between the upper and lower cells, and in the present invention, this lattice mismatching surface can also be made ohmic by utilizing the levels in the forbidden band. Since the connection can be made, it is easy to electrically connect the upper and lower cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による第1の実施例の多接合半導体光
電変換素子の製造工程を示す図、第2図はjrOoCで
成長した多接合半導体光電変換素子のトンネル特性を示
す図、第3図は本発明による第2の実施例の多接合半導
体光電変換素子の製造工程を示す図、第グ図は多接合半
導体光電変換素子の概略断面図、第!図はA7!GaA
s上部セルのMBE成長温度に対する短絡光電流密度及
び少数キャリア拡散長を示す図、第2図は高温成長での
多接合半導体光電変換素子のトンネル特性の劣化を示し
た図。 r・・・GaAs基板、り・・・GaAsバッファ層、
10・・・AtGaAsストップエッチ層、//・・・
GaA3オーミックコンタクト層、/l・・・AtGa
As上部接合部、/9・・・トンネル接合を用いた接続
部、23・・・GaA s下部接合部、//2・・・G
aAs上部セル、//り・・・格子不整のある接続部、
/2グ・・・InGaAs下部セル。
FIG. 1 is a diagram showing the manufacturing process of a multi-junction semiconductor photoelectric conversion device according to a first embodiment of the present invention, FIG. 2 is a diagram showing tunneling characteristics of a multi-junction semiconductor photoelectric conversion device grown with jrOoC, and FIG. The figures are diagrams showing the manufacturing process of a multi-junction semiconductor photoelectric conversion device according to a second embodiment of the present invention. The diagram is A7! GaA
FIG. 2 is a diagram showing the short-circuit photocurrent density and minority carrier diffusion length with respect to the MBE growth temperature of the upper cell. FIG. r...GaAs substrate, r...GaAs buffer layer,
10...AtGaAs stop etch layer, //...
GaA3 ohmic contact layer, /l...AtGa
As upper junction, /9...Connection using tunnel junction, 23...GaAs lower junction, //2...G
aAs upper cell, //ri...connection with lattice irregularity,
/2g...InGaAs lower cell.

Claims (4)

【特許請求の範囲】[Claims] (1)上部セルと下部セルとを接続部にて接続した多接
合半導体光電変換素子の製造方法において、基板上に前
記上部セルを形成する工程と、その後前記上部セル上に
前記接続部を形成する工程と、更にその後前記接続部上
に前記上部セルの形成温度より低い温度で前記下部セル
を形成する工程と、前記基板を除去する工程とを含むこ
とを特徴とする多接合半導体光電変換素子の製造方法。
(1) A method for manufacturing a multi-junction semiconductor photoelectric conversion element in which an upper cell and a lower cell are connected at a connecting portion, including a step of forming the upper cell on a substrate, and then forming the connecting portion on the upper cell. A multi-junction semiconductor photoelectric conversion element comprising the steps of: forming the lower cell on the connection portion at a temperature lower than the formation temperature of the upper cell; and removing the substrate. manufacturing method.
(2)前記基板はGaAsダミー基板上のGaAs層上
にAl_x__0Ga_1_−_x__0As層が設け
られた構造であって、前記基板の除去工程は前記GaA
s層をエッチングし前記Al_x__0Ga_1_−_
x__0As層を殆んどエッチングしないエッチング液
で前記GaAsダミー基板及び前記GaAs層を除去し
た後、前記Al_x__0Ga_1_−_x__0As
層に対するエッチング速度が他のAlGaAs層のエッ
チング速度よりも早いエッチング液で前記Al_x__
0Ga_1_−_x__0As層を除去する工程である
ことを特徴とする特許請求の範囲第1項記載の多接合半
導体光電変換素子の製造方法。
(2) The substrate has a structure in which an Al_x__0Ga_1_-_x__0As layer is provided on a GaAs layer on a GaAs dummy substrate, and the step of removing the substrate is performed using the GaAs layer.
Etching the s layer and forming the Al_x__0Ga_1_-_
After removing the GaAs dummy substrate and the GaAs layer with an etching solution that hardly etches the x__0As layer, the Al_x__0Ga_1_-_x__0As
The Al_x__
2. The method for manufacturing a multi-junction semiconductor photoelectric conversion element according to claim 1, wherein the step is to remove the 0Ga_1_-_x__0As layer.
(3)前記上部セルの形成工程はGaAsオーミックコ
ンタクト層、窓用P^+Al_x__1Ga_1_−_
x__1As層、上部セル接合用P^+Al_x__2
Ga_1_−_x__2層、上記セル接合用nAl_x
__2Ga_1_−_x__2As層及び裏窓層用のn
^+Al_x__3Ga_1_−_x__3As層をこ
の順に積層する工程で、前記接続部の形成工程はn^+
GaAs層及びP^+^+GaAs層をこの順に積層す
るトンネル接合部の形成工程で、前記下部セルの形成工
程は、下部セル接合用 P^+GaAs層、下部セル接合用nGaAs層及び裏
面電極コンタクト用n^+GaAs層をこの順に積層す
る工程であることを特徴とする特許請求の範囲第1項記
載の多接合半導体光電変換素子の製造方法。
(3) The formation process of the upper cell is a GaAs ohmic contact layer, P^+Al_x__1Ga_1_-_ for the window.
x__1 As layer, P^+Al_x__2 for upper cell junction
Ga_1_-_x__2 layer, nAl_x for the above cell junction
___2Ga_1_-_x__2n for As layer and back window layer
In the step of stacking the ^+Al_x__3Ga_1_-_x__3As layers in this order, the step of forming the connection part is n^+
In the step of forming a tunnel junction in which a GaAs layer and a P^+^+GaAs layer are laminated in this order, the step of forming the lower cell includes a P^+GaAs layer for the lower cell junction, an nGaAs layer for the lower cell junction, and a back electrode contact layer. The method for manufacturing a multi-junction semiconductor photoelectric conversion device according to claim 1, characterized in that the step is to stack n^+GaAs layers in this order.
(4)前記上部セルの形成工程はGaAsオーミックコ
ンタクト層、窓用P^+Al_x__1Ga_1_−_
x__1As層、上部セル接合用P^+Al_x__4
Ga_1_−_x__4As層、上部セル接合用nAl
_x__4Ga_1_−_x__4As層及び裏窓層用
のn^+Al_x__5Ga_1_−_x__5As層
をこの順に積層する工程で、前記接続部の形成工程はn
^+^+Al_x__6Ga_1_−_x__6As層
及びP^+^+In_y__1Ga_1_−_y__1
As層をこの順に積層する格子不整のある接続部の形成
工程で、前記下部セルの形成工程はバッファ層用P^+
In_y__2Ga_1_−_y__2As層、下部セ
ル接合用のP^+In_y__2Ga_1_−_y__
2As層、下部セル接合用nIn_y__2Ga_1_
−_y__2As層及び裏面電極コンタクト用n^+I
n_y__2Ga_1_−_y__2As層をこの順に
積層する工程であることを特徴とする特許請求の範囲第
1項記載の多接合半導体光電変換素子の製造方法。
(4) The formation process of the upper cell is a GaAs ohmic contact layer, P^+Al_x__1Ga_1_-_ for the window.
x__1 As layer, P^+Al_x__4 for upper cell junction
Ga_1_-_x__4As layer, nAl for upper cell junction
In the step of laminating the _x__4Ga_1_-_x__4As layer and the n^+Al_x__5Ga_1_-_x__5As layer for the back window layer in this order, the step of forming the connection part is n
^+^+Al_x__6Ga_1_-_x__6As layer and P^+^+In_y__1Ga_1_-_y__1
In the process of forming a connection part with lattice misalignment in which As layers are laminated in this order, the process of forming the lower cell is performed using P^+ for the buffer layer.
In_y__2Ga_1_-_y__2As layer, P^+In_y__2Ga_1_-_y__ for lower cell junction
2As layer, nIn_y__2Ga_1_ for lower cell junction
-_y__2As layer and back electrode contact n^+I
The method for manufacturing a multi-junction semiconductor photoelectric conversion device according to claim 1, characterized in that the step is to stack n_y__2Ga_1_-_y__2As layers in this order.
JP61135521A 1986-06-11 1986-06-11 Manufacture of multijunction semiconductor photoelectric conversion element Pending JPS62291183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61135521A JPS62291183A (en) 1986-06-11 1986-06-11 Manufacture of multijunction semiconductor photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135521A JPS62291183A (en) 1986-06-11 1986-06-11 Manufacture of multijunction semiconductor photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS62291183A true JPS62291183A (en) 1987-12-17

Family

ID=15153710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135521A Pending JPS62291183A (en) 1986-06-11 1986-06-11 Manufacture of multijunction semiconductor photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS62291183A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105675A1 (en) * 2006-03-13 2007-09-20 Shin-Etsu Chemical Co., Ltd. Method for manufacturing substrate for photoelectric conversion element
US7488890B2 (en) 2003-04-21 2009-02-10 Sharp Kabushiki Kaisha Compound solar battery and manufacturing method thereof
JP2009065208A (en) * 2008-12-12 2009-03-26 Sharp Corp Compound solar cell and manufacturing method therefor
JP2009076921A (en) * 2007-09-24 2009-04-09 Emcore Corp Multijunction solar cell and manufacturing method thereof
JP2010010704A (en) * 2009-10-06 2010-01-14 Sharp Corp Compound solar cell and method of manufacturing the same
JP2010118666A (en) * 2008-11-14 2010-05-27 Emcore Solar Power Inc Alternative substrate of inversion altered multi-junction solar battery
WO2013047059A1 (en) * 2011-09-30 2013-04-04 シャープ株式会社 Laminated body for manufacturing compound semiconductor solar cell, compound semiconductor solar cell, and method for manufacturing compound semiconductor solar cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488890B2 (en) 2003-04-21 2009-02-10 Sharp Kabushiki Kaisha Compound solar battery and manufacturing method thereof
WO2007105675A1 (en) * 2006-03-13 2007-09-20 Shin-Etsu Chemical Co., Ltd. Method for manufacturing substrate for photoelectric conversion element
JP2007250575A (en) * 2006-03-13 2007-09-27 Shin Etsu Chem Co Ltd Manufacturing method of substrate for photoelectric conversion element
US7935611B2 (en) 2006-03-13 2011-05-03 Shin-Etsu Chemical Co., Ltd. Method for manufacturing substrate for photoelectric conversion element
JP2009076921A (en) * 2007-09-24 2009-04-09 Emcore Corp Multijunction solar cell and manufacturing method thereof
JP2010118666A (en) * 2008-11-14 2010-05-27 Emcore Solar Power Inc Alternative substrate of inversion altered multi-junction solar battery
JP2009065208A (en) * 2008-12-12 2009-03-26 Sharp Corp Compound solar cell and manufacturing method therefor
JP2010010704A (en) * 2009-10-06 2010-01-14 Sharp Corp Compound solar cell and method of manufacturing the same
WO2013047059A1 (en) * 2011-09-30 2013-04-04 シャープ株式会社 Laminated body for manufacturing compound semiconductor solar cell, compound semiconductor solar cell, and method for manufacturing compound semiconductor solar cell
JP2013077724A (en) * 2011-09-30 2013-04-25 Sharp Corp Laminate for manufacturing compound semiconductor solar cell, compound semiconductor solar cell, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5342453A (en) Heterojunction solar cell
US5458694A (en) Multispectral photovoltaic component comprising a stack of cells, and method of manufacture
JP3318658B2 (en) High efficiency solar cell and its manufacturing method
US5316593A (en) Heterojunction solar cell with passivated emitter surface
US20040261837A1 (en) Multi-junction solar cell device
JPH05114747A (en) Improved monolithic tandem-type solar cell
JPH02218174A (en) Photoelectric converting semiconductor device
JPS61502020A (en) Solar cells and photodetectors
RU2391745C1 (en) Method of making cascade solar cells (versions)
TW201438264A (en) Compound semiconductor photovoltaic cell and manufacturing method of the same
US20150034159A1 (en) Hole-blocking TiO2/Silicon Heterojunction for Silicon Photovoltaics
US20130139877A1 (en) Inverted metamorphic multijunction solar cell with gradation in doping in the window layer
JPS62291183A (en) Manufacture of multijunction semiconductor photoelectric conversion element
CN108735848B (en) Multi-junction laminated laser photovoltaic cell and manufacturing method thereof
JPH0964386A (en) Multijunction solar cell
RU2575972C1 (en) METHOD FOR PRODUCTION OF GaSb-BASED PHOTOCONVERTER
CN108269866B (en) Mixed polarity InGaN solar cell structure
KR102175147B1 (en) Solar cell and manufacturing method thereof
JPH0955522A (en) Tunnel diode
JP2016028413A (en) Compound semiconductor photovoltaic cell and manufacturing method of compound semiconductor photovoltaic cell
US4366334A (en) Photovoltaic cell usable as a solar cell
JPH08204215A (en) Series connected solar cell
RU2607734C1 (en) Method of making gaas-based photocell
CN116666500B (en) Germanium photoelectric detector and method for improving long-wave response thereof through thermal mismatch stress
US9853180B2 (en) Inverted metamorphic multijunction solar cell with surface passivation