JPS6229065A - Secondary cell - Google Patents

Secondary cell

Info

Publication number
JPS6229065A
JPS6229065A JP60167615A JP16761585A JPS6229065A JP S6229065 A JPS6229065 A JP S6229065A JP 60167615 A JP60167615 A JP 60167615A JP 16761585 A JP16761585 A JP 16761585A JP S6229065 A JPS6229065 A JP S6229065A
Authority
JP
Japan
Prior art keywords
polyaniline
battery
positive electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60167615A
Other languages
Japanese (ja)
Inventor
Kazunori Fujita
一紀 藤田
Hiroyuki Sugimoto
博幸 杉本
Atsuko Toyama
遠山 厚子
Noboru Ebato
江波戸 昇
Shinpei Matsuda
松田 臣平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP60167615A priority Critical patent/JPS6229065A/en
Publication of JPS6229065A publication Critical patent/JPS6229065A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a secondary cell of high energy density or high output density, by using a prescribed polyaniline as an electroconductive polymer to act as a positive electrode active material. CONSTITUTION:The positive electrode active material of a secondary cell is an electroconductive polymer which is such a polyaniline that the ratio of integrated intensity of the main peak at the 1s bond energy of 400eV of the nitrogen atom measured from an X-ray photoelectron spectrum to that of a peak at the 1s bond energy of 402eV thereof is 75-76:23-25. The negative electrode of the cell is made of an alkali metal such as lithium or an alkaline earth metal. The electrolyte of the cell is a solution prepared by dissolving a lithium salt such as LiBF4, LiPF6, LiClO4 and LiAsF6 in a mixed solvent consisting of propylene carbonate and dimethoxyethane.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、二次電池、特に正極、負極及び電解質を含み
、正極の電極活物質に導電性ポリマーを用いてなる二次
電池に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a secondary battery, and particularly to a secondary battery that includes a positive electrode, a negative electrode, and an electrolyte, and uses a conductive polymer as the electrode active material of the positive electrode. .

〔発明の背景〕[Background of the invention]

導電性ポリマーを電極活物質に使用する電池は高エネル
ギー密度あるいは高出力密度がとれる電池でかつ充電が
可能なものとして注目されている。
Batteries using conductive polymers as electrode active materials are attracting attention as batteries that have high energy density or high output density and are rechargeable.

導電性ポリマーの代表的なものは、例えばポリアセチレ
ンであり、電気化学的にCΩ04−、 PF6−。
A typical conductive polymer is, for example, polyacetylene, which has an electrochemical resistance of CΩ04-, PF6-.

BF、−やAsF、−等の陰イオンが、またLi”や(
C,H,) 4N”などの陽イオンがドーピングされ、
p型及びn型導電性ポリアセチレンとなり、この反応を
利用して電池をつくることが報告されている(例えば特
開昭56−1s6469号公報)。その他ポリピロール
(第25回電池討論会、講演要旨集、(1984) p
 256) 、ポリチオフェン(特開昭58−2120
67号公報)やポリフェニルキノリン(特表昭59−5
00033号公報)を電極活物質に使う充電可能な二次
電池が提案されている。これらの電池ではいずれも電解
液は非水溶媒系を使用している。
Anions such as BF, - and AsF, -, as well as Li'' and (
Doped with cations such as C, H, ) 4N”,
It has been reported that it becomes p-type and n-type conductive polyacetylene, and that batteries can be made using this reaction (for example, JP-A-56-1S6469). Other polypyrroles (25th Battery Symposium, collection of lecture abstracts, (1984) p.
256), polythiophene (JP-A-58-2120
Publication No. 67) and polyphenylquinoline (Special Publication No. 59-5
A rechargeable secondary battery has been proposed that uses a material (No. 00033) as an electrode active material. All of these batteries use non-aqueous solvent electrolytes.

いずれの電池においても未だ二次電池としてのサイクル
寿命は短かく、また自己放電が大きく実用化の域には至
っていない。
All of these batteries still have a short cycle life as secondary batteries, and self-discharge is large so that they have not yet reached the level of practical use.

一方、ポリアニリンは前述のポリマーと同様の電気化学
的挙動を示し、電池への応用が可能である。ポリアニリ
ンはアニリンの酸性水溶液で電解酸化反応により合成す
ることができる(例えば、J、Electroanal
、Chei、+  VoQ 、l 61  (1984
)p 399)。電極上に生成した重合膜は支持塩を含
む酸性水溶液中で可逆的に酸化還元反応を示し、電気化
学的に活性である。乾燥状態でのポリアニリンの電気伝
導度は10−15から10−18/cmまで変化する(
日本化学会誌、Nα11 (1984)p 1801)
On the other hand, polyaniline exhibits electrochemical behavior similar to the aforementioned polymers and can be applied to batteries. Polyaniline can be synthesized by electrolytic oxidation reaction in an acidic aqueous solution of aniline (for example, J. Electroanal.
, Chei, + VoQ, l 61 (1984
) p 399). The polymer film formed on the electrode exhibits a reversible redox reaction in an acidic aqueous solution containing a supporting salt, and is electrochemically active. The electrical conductivity of polyaniline in dry state varies from 10-15 to 10-18/cm (
Journal of the Chemical Society of Japan, Nα11 (1984) p 1801)
.

正極に電解酸化反応により合成したポリアニリンを、負
極に亜鉛を、電解液に1MZnSO4水溶液、または同
水溶液に硫酸を加えてpHを低下させたものを用いた電
池は充放電が可能で、充電後の開路電圧は1.2〜1.
6vが得られている(電気化学協会第50回大会、講演
要旨集、  (1984)p22B)。この電池は電解
液に水溶液を使用しており、亜鉛を負極としているので
、電池電圧が低く、かつ充電時の亜鉛の樹枝状析出があ
り、電極の脱落や電極の短絡が避けられず、二次電池と
しての機能をはたすことが非常に薙かしい。
Batteries that use polyaniline synthesized by electrolytic oxidation reaction as the positive electrode, zinc as the negative electrode, and a 1M ZnSO4 aqueous solution as the electrolyte, or a solution whose pH has been lowered by adding sulfuric acid to the same aqueous solution, can be charged and discharged, and the The open circuit voltage is 1.2 to 1.
6v was obtained (Electrochemical Society of Japan 50th Conference, Abstracts of Lectures, (1984) p22B). This battery uses an aqueous solution as the electrolyte and uses zinc as the negative electrode, so the battery voltage is low and dendritic precipitation of zinc occurs during charging, making it inevitable that the electrodes will fall off or short-circuit. It is very difficult to function as a secondary battery.

またアニリンを含む2M HCQO4水溶液で白金上に
定電位電解してポリアニリンを合成し、これを正極に、
負極にリチウム金属を、電解液に1moΩ/QのL i
CQ O4を溶解した炭酸プロピレン溶液を用いた非水
系のポリアニリン電池は充放電可能であり、充電後の開
路電圧は3.6〜4.OVが得られている(第23回電
池討論会、講演要旨集、(1983) p 197)。
In addition, polyaniline was synthesized by constant potential electrolysis on platinum using a 2M HCQO4 aqueous solution containing aniline, and this was used as a positive electrode.
Lithium metal is used as the negative electrode, and Li of 1 moΩ/Q is used as the electrolyte.
A nonaqueous polyaniline battery using a propylene carbonate solution in which CQ O4 is dissolved can be charged and discharged, and the open circuit voltage after charging is 3.6 to 4. OV has been obtained (23rd Battery Symposium, Collection of Lecture Abstracts, (1983) p. 197).

この電池の電圧は高く、エネルギー密度も従来の電池よ
り高いが、サイクル寿命も短かく、かつ負極にリチウム
金属を使用しているため、充電時のリチウム金属の樹枝
状析出があり、実用的二次電池となる可能性が少ない。
Although this battery has a high voltage and a higher energy density than conventional batteries, its cycle life is short, and since lithium metal is used in the negative electrode, dendritic precipitation of lithium metal occurs during charging, making it impractical. There is little possibility that it will become the next battery.

このように、導電性ポリマーを電極活物質に使用する電
池は、高エネルギー密度あるいは高出力密度がとれる二
次電池として注目されているにも拘ねらず、未だ実用的
な二次電池は得られていない。
As described above, although batteries that use conductive polymers as electrode active materials are attracting attention as secondary batteries that can achieve high energy density or high output density, practical secondary batteries have not yet been obtained. Not yet.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の問題点を除去し、導電性ポリマーを正
極の電極活物質として用いる実用的な二次電池を提供可
能とすることを目的とするものである。
An object of the present invention is to eliminate the above-mentioned problems and to provide a practical secondary battery that uses a conductive polymer as a positive electrode active material.

〔発明の概要〕[Summary of the invention]

本発明は、正極、負極及び電解液を含み、前記正極の電
極活物質に導電性ポリマーを用いてなる二次電池におい
て、前記導電性ポリマーが、そのX線光電子スペクトル
から測定される窒素原子の1sの結合エネルギー400
eVの主ピークと402eVのピークとの面積強度比が
75〜76:23〜25であるポリアニリンであること
を特徴とするものである。
The present invention provides a secondary battery including a positive electrode, a negative electrode, and an electrolytic solution, in which a conductive polymer is used as an electrode active material of the positive electrode, in which the conductive polymer has nitrogen atoms measured from its X-ray photoelectron spectrum. 1s binding energy 400
The polyaniline is characterized in that the area intensity ratio between the eV main peak and the 402 eV peak is 75-76:23-25.

本発明はポリアニリンの構造の検討結果に基づいてなさ
れたものである。
The present invention was made based on the results of studies on the structure of polyaniline.

アニリンの重合体であるポリアニリンの構造は元素分析
等から決められているが、確かなものでない。本発明者
らは、導電性を示すポリアニリンの光電子スペクトルを
測定し、窒素原子の1sの結合エネルギーに相当する二
つのピークを観測した。その結合エネルギーは400.
2eV と402.2eVであり、それらのピークの面
積比(%)は75〜76 : 23〜25をとることが
分かった。またこのポリアニリンをアルカリの水溶液で
処理すると窒素原子の18の結合エネルギーは低エネル
ギー側にシフトし、かつ結合エネルギーにもとづくピー
クも一つになることがわかった。
The structure of polyaniline, a polymer of aniline, has been determined through elemental analysis, but it is not certain. The present inventors measured the photoelectron spectrum of polyaniline exhibiting electrical conductivity, and observed two peaks corresponding to the 1s bond energy of nitrogen atoms. Its binding energy is 400.
2 eV and 402.2 eV, and the area ratio (%) of those peaks was found to be 75-76:23-25. It was also found that when this polyaniline was treated with an aqueous alkali solution, the bond energy of nitrogen atom 18 shifted to the lower energy side, and the peaks based on the bond energies became one.

これらのポリアニリンを電極に成形し、これを正極に、
負極にLi−AQ金合金使用する非水系の −電池では
、前者のポリアニリンを使用した場合、正常に電池とし
ての機能を発揮したが、後者のそれは機能しなかった。
These polyanilines are molded into electrodes, and this is used as a positive electrode.
A non-aqueous battery using a Li-AQ gold alloy for the negative electrode normally functioned as a battery when polyaniline was used in the former case, but it did not function in the latter case.

電池性能を示すポリアニリンの窒素の結合状態は第3級
アミン及び第4級アンモニウムであり、いずれもポリマ
ーの主鎖に存在するものと思われる。それゆえ、電池性
能を得るためには、ポリアニリンの窒素は第3級アミン
と第4級アンモニウムの形である必要のあることがわか
ったにのポリアニリンの電気伝導度は乾燥状態において
58/amを示し、後に述べる電解液でアンド−ピング
すると0.1s70mに減少するが、これは電極活物質
に対して低すぎる値ではない。ポリアニリンは電気化学
的に合成したものでも、あるいは酸化剤を使用して化学
的に合成したものでもはぼ上述の結果が得られる。
The bonding states of nitrogen in polyaniline that indicate battery performance are tertiary amine and quaternary ammonium, both of which are thought to exist in the main chain of the polymer. Therefore, it was found that the nitrogen in polyaniline needs to be in the form of tertiary amine and quaternary ammonium to obtain battery performance.The electrical conductivity of polyaniline is 58/am in the dry state. When the electrolytic solution shown in FIG. The above-mentioned results can be obtained regardless of whether polyaniline is synthesized electrochemically or chemically using an oxidizing agent.

電解液は従来リチウム電池で用いられている電解液、す
なわちLiBF4.LiPF、、LiC+20゜LiA
sFI、などのリチウム塩を炭酸プロピレンとジメトキ
シエタンの混合溶媒に溶解したものが優れた電池性能を
示すが、非プロトン性溶媒であれば作業限定されること
はない。
The electrolytic solution is the electrolytic solution conventionally used in lithium batteries, namely LiBF4. LiPF, LiC+20°LiA
A solution of a lithium salt such as sFI in a mixed solvent of propylene carbonate and dimethoxyethane shows excellent battery performance, but there are no limitations on the work as long as it is an aprotic solvent.

一方、負極は電池電圧、エネルギー密度の点からリチウ
ムなどのアルカリ金属やアルカリ土類金属を使用するの
が好ましく、充電時にリチウム金属の樹脂状析出を防ぐ
ため、これら金属とAQの合金が使われる。
On the other hand, from the viewpoint of battery voltage and energy density, it is preferable to use an alkali metal or alkaline earth metal such as lithium for the negative electrode, and an alloy of these metals and AQ is used to prevent resinous precipitation of lithium metal during charging. .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

(実施例1) 0.2Mのアニリンを含む0.5MHBF4水溶液中で
作用極及び対極に白金を使用し、作用極の電位を銀−塩
化銀参照電極に対し0.8 Vに保ち、電解酸化を行い
、作用極上にポリアニリンを合成した。ポリアニリンを
電極からかき取り、水洗を行い、80℃で真空乾燥を行
い、微粉化した。このポリアニリについてX線光電子ス
ペクトロメータ  ターで窒素原子の15の結合エネル
ギーを測定し、波形解析を行った結果、400.2eV
と402.2eVに基づくピークを観測した。それらの
ピークの面積比(%)は75 : 25であった。
(Example 1) Platinum was used as the working electrode and the counter electrode in a 0.5M HBF4 aqueous solution containing 0.2M aniline, and the potential of the working electrode was kept at 0.8 V with respect to the silver-silver chloride reference electrode, and electrolytic oxidation was performed. Polyaniline was synthesized on the working electrode. The polyaniline was scraped off from the electrode, washed with water, vacuum dried at 80° C., and pulverized. The 15 bond energies of nitrogen atoms were measured for this polyaniline using an X-ray photoelectron spectrometer, and as a result of waveform analysis, it was found to be 400.2 eV.
A peak based on 402.2 eV was observed. The area ratio (%) of those peaks was 75:25.

上述のポリアニリンに炭素(アセチレンブラック)を1
0重量パーセント添加して混合し、16mgを300 
kg/cm2の圧力で、直径9mmのペレットに成形し
たものを正極に、3MのL i B F4 を溶解した
炭酸プロピレンとジメトキシエタン(1:1の容量比)
ラミ薄液に、50Li−50AQ(M子パーセント)の
合金を負極にし、電極間のセパレータにポリプロピレン
を用いて電池を構成し、この電池のポリアニリンに対す
るBF4−のドーピング率を30モルパーセント(対ア
ニリンユニット、分子量=91)とし、電流密度1mA
/cm”で充電し、同じ電流密度で電池電圧が1vにな
るまで放電した。このときの電圧の変化を示したのが第
1図で、横軸には充電率C%)及び放電率(%)が、縦
軸には電池電圧(V)がとっである。本電池の開路電圧
は3.35Vであった。充電時の電気量と放電時の電気
量の割合であるクーロン効率(%)は99%以上が得ら
れた。上記の充放電の条件でサイクル試験を行った結果
、750サイクルでもクーロン効率は99%以上であっ
た。
Add 1 carbon (acetylene black) to the above polyaniline
Add 0 weight percent and mix, add 16 mg to 300
Propylene carbonate and dimethoxyethane (1:1 volume ratio) in which 3M Li B F4 was dissolved were formed into pellets with a diameter of 9 mm at a pressure of kg/cm2 and used as the positive electrode.
A battery is constructed using a 50Li-50AQ (M%) alloy as a negative electrode and polypropylene as a separator between the electrodes, and the doping rate of BF4- to polyaniline in this battery is 30 mol% (to aniline). Unit, molecular weight = 91), current density 1 mA
/cm" and discharged at the same current density until the battery voltage reached 1 V. Figure 1 shows the change in voltage at this time. The horizontal axis shows the charging rate (C%) and the discharging rate ( %), but the vertical axis shows the battery voltage (V).The open circuit voltage of this battery was 3.35 V.The Coulombic efficiency (%) is the ratio of the amount of electricity during charging to the amount of electricity during discharging. ) was obtained at 99% or more.As a result of a cycle test conducted under the above charge/discharge conditions, the Coulombic efficiency was 99% or more even after 750 cycles.

37回め充電終了後、電池を開路状態に保ち21日間放
置し、その後充電と同じ条件で放電し、その電気量から
自己放電率を求めた結果、0.6%/日であった。
After the 37th charge, the battery was left open for 21 days, then discharged under the same conditions as charging, and the self-discharge rate was determined from the amount of electricity, which was 0.6%/day.

(実施例2) 0.2Mのアニリンを含む0.5MHBF4水溶液に室
温で過硫酸アンモニウム((NH4)28207)を0
.1Mになるように添加し、室温で攪拌しながら5時間
放置した。沈澱物を水洗し、真空乾燥して微粉末状にし
た。このポリアニリンについてX線光電子スペクトロメ
ーターで窒素原子の1sの結合エネルギーを測定し、波
形解析を行った結果、400.2aVと402.2 e
 Vに基づくピークをm測した。それらのピークの面積
比(%)は75:25であった。
(Example 2) Ammonium persulfate ((NH4)28207) was added to a 0.5M HBF4 aqueous solution containing 0.2M aniline at room temperature.
.. The mixture was added to a concentration of 1M and left at room temperature for 5 hours with stirring. The precipitate was washed with water and dried under vacuum to form a fine powder. The 1s bond energy of the nitrogen atom was measured for this polyaniline using an X-ray photoelectron spectrometer, and as a result of waveform analysis, it was found to be 400.2 aV and 402.2 e.
The peak based on V was measured. The area ratio (%) of those peaks was 75:25.

このポリアニリンに炭素(アセチレンブラック)を10
重量パーセント添加して混合し、16.9mgを300
 kg/cn+2の圧力で直径9mmのペレットに成形
し、これを正極にして実施例1と同様の電池を構成した
。この電池を1 m A / cm” の電流密度で電
池電圧が1vになるまで放電し、2.8クーロンの電気
量を得た。
Add 10 carbon (acetylene black) to this polyaniline.
Add weight percent and mix, add 16.9 mg to 300 mg
It was molded into a pellet with a diameter of 9 mm under a pressure of kg/cn+2, and this was used as a positive electrode to construct a battery similar to Example 1. This battery was discharged at a current density of 1 mA/cm'' until the battery voltage reached 1 V, yielding an amount of electricity of 2.8 coulombs.

この放電した電池をBF4−のポリアニリンのドーピン
グ率を30モルパーセント(対アニリンユニット、分子
量:91)とし、電流密度1mA/am2で充電し、同
じ電流密度で電池電圧が1vになるまで放電するサイク
ル試験を行った。630サイクルでも本電池のクーロン
効率は99%以上であった。52回めの充電終了後、電
池を開路状態に保ち30日間放置したときの自己放電率
は1.1%7日であった。
This discharged battery is charged at a current density of 1 mA/am2 with a doping rate of BF4- polyaniline of 30 mole percent (relative to aniline units, molecular weight: 91), and then discharged at the same current density until the battery voltage reaches 1 V. The test was conducted. Even after 630 cycles, the Coulombic efficiency of this battery was 99% or more. After the 52nd charge, the battery was left open for 30 days, and the self-discharge rate was 1.1% for 7 days.

(実施例3) 0.2 Mのアニリンを含むIMHaS04水溶液に、
室温で過硫酸アンモニウム((NH4)2S、○7)を
0.1Mになるように添加し、攪拌しながら5時間放置
した。沈澱物は実施例2と同様に処理し、微粉末を得た
。このポリアニリンについてX線光電子スペクトロメー
ターで窒素原子の18の結合エネルギーの測定を行った
結果は400.2eVと402.2θVであった。それ
らのピークの面積比(%)は76 : 23であった。
(Example 3) In an IMHaS04 aqueous solution containing 0.2 M aniline,
Ammonium persulfate ((NH4)2S, ○7) was added at room temperature to a concentration of 0.1M, and the mixture was left for 5 hours with stirring. The precipitate was treated in the same manner as in Example 2 to obtain a fine powder. The bond energies of 18 nitrogen atoms of this polyaniline were measured using an X-ray photoelectron spectrometer, and the results were 400.2 eV and 402.2θV. The area ratio (%) of those peaks was 76:23.

このポリアニリンを実施例2と同様に14mgをペレッ
トにし、同様の電池を構成した。この電池を1mA/a
m2の電流密度で電池電圧が1vになるまで放電し、2
.4クーロンの電気量を得た。
14 mg of this polyaniline was made into pellets in the same manner as in Example 2, and a similar battery was constructed. This battery is 1mA/a
Discharge at a current density of m2 until the battery voltage reaches 1v,
.. An amount of electricity of 4 coulombs was obtained.

この放電した電池をBF、−のポリアニリンのドーピン
グ率30モルパーセントとし、実施例2と同様の条件で
充放電サイクル試験を行った699%以上のクーロン効
率の得られるサイクル数は525回であった。38回め
の充電終了後、電池を開路状態に保ち31日間放置した
ときの自己放電率は0.8%/日であった。
This discharged battery was subjected to a charge/discharge cycle test under the same conditions as in Example 2, with a doping rate of BF, - polyaniline of 30 mole percent.The number of cycles at which a coulombic efficiency of 699% or more was obtained was 525. . After the 38th charge, the self-discharge rate was 0.8%/day when the battery was left open for 31 days.

(比較例) 実施例1で得られたポリアニリン粉末を2MのKOH溶
液に浸漬し、攪拌して5時間アルカリ処理を行い、水洗
、80℃で真空乾燥を行い微粉化した。このポリアニリ
ンについてxi光電子スペクトロメーターで窒素原子の
ISの結合エネルギーの測定を行った結果は399eV
で、波形解析をした結果、この結果エネルギーに基づく
ピークは一つであった。
(Comparative Example) The polyaniline powder obtained in Example 1 was immersed in a 2M KOH solution, stirred and subjected to alkali treatment for 5 hours, washed with water, and vacuum dried at 80° C. to be pulverized. The IS binding energy of the nitrogen atom was measured using a xi photoelectron spectrometer for this polyaniline, and the result was 399 eV.
As a result of waveform analysis, there was only one peak based on energy.

このポリアニリンにアセチレンブラックを10重量パー
セント添加して混合し、12mgを300kg/cm2
の圧力で直径9mmのペレットに成形し、実施例1と同
様の電池を構成した。この電池を1mA/cm2の電流
密度で放電したが、はとんど電気量はとれなかった。さ
らに本電池を1 m A / am”の電流密度で充電
したが、電池電圧は充電初期から急激に高くなり、第1
図に示すような充電パターンは得られなかった。
10% by weight of acetylene black was added to this polyaniline and mixed, and 12mg was added to 300kg/cm2.
The pellets were molded into pellets with a diameter of 9 mm at a pressure of 1.5 mm to form a battery similar to that of Example 1. This battery was discharged at a current density of 1 mA/cm2, but hardly any electricity could be obtained. Furthermore, this battery was charged at a current density of 1 mA/am'', but the battery voltage rose rapidly from the beginning of charging, and
The charging pattern shown in the figure was not obtained.

以上の実施例及び比較例から明らかなように、XI!光
電子スペクトルから測定される窒素原子には1sの結合
エネルギーが400.2  eVと402.2  eV
の二つの結合状態があり、かつそれらに基づくピークの
面積比(%)が75〜76:23〜25にあるポリアニ
リンを電極活物質とする二次電池は、実用的な二次電池
として優れた性能を発揮することができる。
As is clear from the above Examples and Comparative Examples, XI! The 1s binding energies of nitrogen atoms measured from the photoelectron spectrum are 400.2 eV and 402.2 eV.
A secondary battery using polyaniline as an electrode active material, which has two bonding states and has a peak area ratio (%) of 75-76:23-25, is excellent as a practical secondary battery. performance.

〔発明の効果〕〔Effect of the invention〕

本発明は、導電性ポリマーを正極の電極活物質として用
いる実用的な二次電池を提供可能とするもので、産業上
の効果の大なるものである。
The present invention makes it possible to provide a practical secondary battery using a conductive polymer as a positive electrode active material, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の二次電池の一実施例の特性線図であ
る。
FIG. 1 is a characteristic diagram of an embodiment of the secondary battery of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、正極、負極及び電解液を含み、前記正極の電極活物
質に導電性ポリマーを用いてなる二次電池において、前
記導電性ポリマーが、そのX線光電子スペクトルから測
定される窒素原子の1sの結合エネルギー400eVの
主ピークと402eVのピークとの面積強度比が75〜
76:23〜25であるポリアニリンであることを特徴
とする二次電池。
1. In a secondary battery including a positive electrode, a negative electrode, and an electrolyte, and using a conductive polymer as the electrode active material of the positive electrode, the conductive polymer has a The area intensity ratio between the main peak with binding energy of 400 eV and the peak with binding energy of 402 eV is 75 ~
76: A secondary battery characterized by being made of polyaniline of 23 to 25.
JP60167615A 1985-07-31 1985-07-31 Secondary cell Pending JPS6229065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167615A JPS6229065A (en) 1985-07-31 1985-07-31 Secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167615A JPS6229065A (en) 1985-07-31 1985-07-31 Secondary cell

Publications (1)

Publication Number Publication Date
JPS6229065A true JPS6229065A (en) 1987-02-07

Family

ID=15853066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167615A Pending JPS6229065A (en) 1985-07-31 1985-07-31 Secondary cell

Country Status (1)

Country Link
JP (1) JPS6229065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0282068A2 (en) * 1987-03-13 1988-09-14 Showa Denko Kabushiki Kaisha Nonaqueous secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0282068A2 (en) * 1987-03-13 1988-09-14 Showa Denko Kabushiki Kaisha Nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
JP3348405B2 (en) Secondary battery and capacitor using indole polymer
CN106935796A (en) A kind of sulphur/sulfide/copper tri compound positive pole and its preparation and the application in magnesium sulphur battery
JP2005340165A (en) Positive electrode material for lithium secondary cell
US4687598A (en) Electrode-active material for electrochemical batteries and method of preparation
US20040045818A1 (en) Electrochemical device
JP2002329495A (en) Lithium secondary battery and production process thereof
JPH0460304B2 (en)
Lan-sheng et al. Performance of polyaniline positive in a lithium battery
Ryu et al. The polyaniline electrode doped with Li salt and protonic acid in lithium secondary battery
JPS634569A (en) Nonaqueous electrolyte secondary battery
JPH01200572A (en) Electrolyte for lithium storage battery
JP3115153B2 (en) Electrochemical devices and secondary batteries
JPS6229065A (en) Secondary cell
JP2934450B2 (en) Polymer solid electrolyte and secondary battery using the same
JPS6231962A (en) Secondary battery
Takehara Development of lithium rechargeable batteries in Japan
US20040248004A1 (en) Secondary battery
JPS62229773A (en) Molten salt secondary battery
EP0198484A2 (en) Secondary battery
JP2528693B2 (en) Polymer battery
JPS63298968A (en) Manufacture of secondary battery
JPS6243066A (en) Secondary battery
JP6332634B2 (en) Copolymer, active material for electrode, and secondary battery
JPS622469A (en) High-molecular secondary cell
JPS62186474A (en) Nonaqueous secondary cell